893
Views
16
CrossRef citations to date
0
Altmetric
Review

Advances in prognostic biomarkers for esophageal cancer

, , , , , , , , , , , , & show all
Pages 109-119 | Received 07 Oct 2018, Accepted 21 Dec 2018, Published online: 30 Dec 2018

References

  • Domper Arnal MJ, Ferrandez Arenas A, Lanas Arbeloa A. Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol. 2015 Jul 14;21(26):7933–7943.
  • Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016 Mar-Apr;66(2):115–132.
  • Arnold M, Soerjomataram I, Ferlay J, et al. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015 Mar;64(3):381–387.
  • Kuwano H, Saeki H, Kawaguchi H, et al. Proliferative activity of cancer cells in front and center areas of carcinoma in situ and invasive sites of esophageal squamous-cell carcinoma. Int J Cancer. 1998 Oct 5;78(2):149–152.
  • Yang W, Ma J, Zhou W, et al. Molecular mechanisms and clinical implications of miRNAs in drug resistance of esophageal cancer. Expert Rev Gastroenterol Hepatol. 2017 Dec;11(12):1151–1163.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424.
  • Rubenstein JH, Shaheen NJ. Epidemiology, diagnosis, and management of esophageal adenocarcinoma. Gastroenterology. 2015 Aug;149(2):302–17.e1.
  • Merkow RP, Bilimoria KY, Keswani RN, et al. Treatment trends, risk of lymph node metastasis, and outcomes for localized esophageal cancer. J Natl Cancer Inst. 2014 Jul;106(7):pii: dju133.
  • Kalia M. Biomarkers for personalized oncology: recent advances and future challenges. Metabolism. 2015 Mar;64(3 Suppl 1):S16–S21.
  • Davidson B. Prognostic factors in malignant pleural mesothelioma. Hum Pathol. 2015 Jun;46(6):789–804.
  • Netto GJ, Tafe LJ. Emerging bladder cancer biomarkers and targets of therapy. Urol Clin North Am. 2016 Feb;43(1):63–76.
  • Baldini E, Sorrenti S, Tuccilli C, et al. Emerging molecular markers for the prognosis of differentiated thyroid cancer patients. Int J Surg. 2014;12(Suppl 1):S52–S56.
  • Khattak A. Liquid biopsies: advancing cancer research through drops of blood. Intern Med J. 2016 Mar;46(3):376–377.
  • Cai X, Janku F, Zhan Q, et al. Accessing genetic information with liquid biopsies. Trends Genet. 2015 Oct;31(10):564–575.
  • Huang WL, Chen YL, Yang SC, et al. Liquid biopsy genotyping in lung cancer: ready for clinical utility? Oncotarget. 2017 Mar 14;8(11):18590–18608.
  • Semrau R, Herzog SL, Vallbohmer D, et al. Prognostic factors in definitive radiochemotherapy of advanced inoperable esophageal cancer. Dis Esophagus. 2012 Aug;25(6):545–554.
  • Bidard FC, Ferrand FR, Huguet F, et al. Disseminated and circulating tumor cells in gastrointestinal oncology. Crit Rev Oncol Hematol. 2012 May;82(2):103–115.
  • Ikoma D, Ichikawa D, Ueda Y, et al. Circulating tumor cells and aberrant methylation as tumor markers in patients with esophageal cancer. Anticancer Res. 2007 Jan-Feb;27(1b):535–539.
  • Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014 Sep;14(9):623–631.
  • Lopez A, Harada K, Mizrak Kaya D, et al. Liquid biopsies in gastrointestinal malignancies: when is the big day? Expert Rev Anticancer Ther. 2018 Jan;18(1):19–38.
  • Cohen SJ, Alpaugh RK, Gross S, et al. Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer. Clin Colorectal Cancer. 2006 Jul;6(2):125–132.
  • Jia S, Zhang R, Li Z, et al. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget. 2017 Aug 15;8(33):55632–55645.
  • Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012 Jan 20;148(1–2):349–361.
  • Goetz JG. Metastases go with the flow. Science (New York, NY). 2018 Nov 30;362(6418):999–1000.
  • Brown M, Assen FP, Leithner A, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science (New York, NY). 2018 Mar 23;359(6382):1408–1411.
  • Follain G, Osmani N, Azevedo AS, et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell. 2018 Apr 9;45(1):33–52.e12.
  • Groot Koerkamp B, Rahbari NN, Buchler MW, et al. Circulating tumor cells and prognosis of patients with resectable colorectal liver metastases or widespread metastatic colorectal cancer: a meta-analysis. Ann Surg Oncol. 2013 Jul;20(7):2156–2165.
  • Wang S, Du H, Li G. Significant prognostic value of circulating tumor cells in esophageal cancer patients: a meta-analysis. Oncotarget. 2017 Feb 28; 8(9):15815–15826.
  • Reeh M, Effenberger KE, Koenig AM, et al. Circulating tumor cells as a biomarker for preoperative prognostic staging in patients with esophageal cancer. Ann Surg. 2015 Jun;261(6):1124–1130.
  • Wang HB, Guo Q, Li YH, et al. Effects of minimally invasive esophagectomy and open esophagectomy on circulating tumor cell level in elderly patients with esophageal cancer. World J Surg. 2016 Jul;40(7):1655–1662.
  • Matsushita D, Uenosono Y, Arigami T, et al. Clinical significance of circulating tumor cells in peripheral blood of patients with esophageal squamous cell carcinoma. Ann Surg Oncol. 2015 Oct;22(11):3674–3680.
  • Qiao YY, Lin KX, Zhang Z, et al. Monitoring disease progression and treatment efficacy with circulating tumor cells in esophageal squamous cell carcinoma: a case report. World J Gastroenterol. 2015 Jul 7;21(25):7921–7928.
  • Grover PK, Cummins AG, Price TJ, et al. Circulating tumour cells: the evolving concept and the inadequacy of their enrichment by EpCAM-based methodology for basic and clinical cancer research. Ann Oncol. 2014 Aug;25(8):1506–1516.
  • Stewart CM, Tsui DWY. Circulating cell-free DNA for non-invasive cancer management. Cancer Genet. 2018 Mar 11;228-229:169-179.
  • Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001 Feb 15;61(4):1659–1665.
  • Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012 Nov 28;4(162):162ra154.
  • Tomita H, Ichikawa D, Ikoma D, et al. Quantification of circulating plasma DNA fragments as tumor markers in patients with esophageal cancer. Anticancer Res. 2007 Jul-Aug;27(4c):2737–2741.
  • Luo H, Li H, Hu Z, et al. Noninvasive diagnosis and monitoring of mutations by deep sequencing of circulating tumor DNA in esophageal squamous cell carcinoma. Biochem Biophys Res Commun. 2016 Mar 18;471(4):596–602.
  • Ueda M, Iguchi T, Masuda T, et al. Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence. Oncotarget. 2016 Sep 20;7(38):62280–62291.
  • Ling ZQ, Zhao Q, Zhou SL, et al. MSH2 promoter hypermethylation in circulating tumor DNA is a valuable predictor of disease-free survival for patients with esophageal squamous cell carcinoma. Eur J Surg Oncol. 2012 Apr;38(4):326–332.
  • Hsieh CC, Hsu HS, Chang SC, et al. Circulating cell-free DNA levels could predict oncological outcomes of patients undergoing esophagectomy for esophageal squamous cell carcinoma. Int J Mol Sci. 2016 Dec 17;17(12).
  • Boldrin E, Rumiato E, Fassan M, et al. Liquid biopsy as a novel tool to monitor the carcinogenesis of Barrett’s esophagus. Transl Res. 2016;176:127–131.
  • Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014 Feb 19;6(224):224ra24.
  • Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015 Nov 19;527(7578):329–335.
  • O’Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther. 2012 Aug;12(4):262–274.
  • Schwarzenbach H. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev Mol Diagn. 2015;15(9):1159–1169.
  • Soung YH, Nguyen T, Cao H, et al. Emerging roles of exosomes in cancer invasion and metastasis. BMB Rep. 2016 Jan;49(1):18–25.
  • Bullock MD, Silva AM, Kanlikilicer-Unaldi P, et al. Exosomal non-coding RNAs: diagnostic, prognostic and therapeutic applications in cancer. Noncoding RNA. 2015 Jun 3;1(1):53–68.
  • Silva J, Garcia V, Rodriguez M, et al. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer. 2012 Apr;51(4):409–418.
  • Lowry MC, Gallagher WM, O’Driscoll L. The role of exosomes in breast cancer. Clin Chem. 2015 Dec;61(12):1457–1465.
  • Chiam K, Wang T, Watson DI, et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015 Jul;19(7):1208–1215.
  • Liu MX, Liao J, Xie M, et al. miR-93-5p transferred by exosomes promotes the proliferation of esophageal cancer cells via intercellular communication by targeting PTEN. Biomed Environ Sci. 2018 Mar;31(3):171–185.
  • Matsumoto Y, Kano M, Akutsu Y, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep. 2016 Nov;36(5):2535–2543.
  • Tanaka Y, Kamohara H, Kinoshita K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 2013 Mar 15;119(6):1159–1167.
  • Takeshita N, Hoshino I, Mori M, et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer. 2013 Feb 19;108(3):644–652.
  • Smith RA, Lam AK. Liquid biopsy for investigation of cancer DNA in esophageal adenocarcinoma: cell-Free plasma DNA and exosome-associated DNA. Methods Mol Biol. 2018;1756:187–194.
  • Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010 Mar;11(3):220–228.
  • Attaran-Bandarabadi F, Ziaee AA, Yazdanbod M, et al. Loss of heterozygosity on chromosome 5 in Iranian esophageal cancer patients. Genet Mol Res. 2011 Oct 5;10(4):2316–2325.
  • Forghanifard MM, Vahid EE, Dadkhah E, et al. Loss of heterozygosity and microsatellite instability as predictive markers among Iranian esophageal cancer patients. Iran J Basic Med Sci. 2016 Jul;19(7):726–733.
  • Martin SA, Hewish M, Lord CJ, et al. Genomic instability and the selection of treatments for cancer. J Pathol. 2010 Jan;220(2):281–289.
  • Pinheiro Ddo R, Ferreira WA, Barros MB, et al. Perspectives on new biomarkers in gastric cancer: diagnostic and prognostic applications. World J Gastroenterol. 2014 Sep 7;20(33):11574–11585.
  • Paulson TG, Maley CC, Li X, et al. Chromosomal instability and copy number alterations in Barrett’s esophagus and esophageal adenocarcinoma. Clin Cancer Res. 2009 May 15;15(10):3305–3314.
  • Xing J, Ajani JA, Chen M, et al. Constitutive short telomere length of chromosome 17p and 12q but not 11q and 2p is associated with an increased risk for esophageal cancer. Cancer Prev Res (Phila). 2009 May;2(5):459–465.
  • Miyawaki Y, Kawachi H, Ooi A, et al. Genomic copy-number alterations of MYC and FHIT genes are associated with survival in esophageal squamous-cell carcinoma. Cancer Sci. 2012 Aug;103(8):1558–1566.
  • Nones K, Waddell N, Wayte N, et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014 Oct 29;5:5224.
  • Rumiato E, Pasello G, Montagna M, et al. DNA copy number profile discriminates between esophageal adenocarcinoma and squamous cell carcinoma and represents an independent prognostic parameter in esophageal adenocarcinoma. Cancer Lett. 2011 Nov 1;310(1):84–93.
  • Murugaesu N, Wilson GA, Birkbak NJ, et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov. 2015 Aug;5(8):821–831.
  • Matsusaka K, Funata S, Fukayama M, et al. DNA methylation in gastric cancer, related to helicobacter pylori and Epstein-Barr virus. World J Gastroenterol. 2014 Apr 14;20(14):3916–3926.
  • Matsumoto Y, Nagasaka T, Kambara T, et al. Microsatellite instability and clinicopathological features in esophageal squamous cell cancer. Oncol Rep. 2007 Nov;18(5):1123–1127.
  • Kagawa Y, Yoshida K, Hirai T, et al. Microsatellite instability in squamous cell carcinomas and dysplasias of the esophagus. Anticancer Res. 2000 Jan-Feb;20(1a):213–217.
  • Farris AB 3rd, Demicco EG, Le LP, et al. Clinicopathologic and molecular profiles of microsatellite unstable Barrett esophagus-associated adenocarcinoma. Am J Surg Pathol. 2011 May;35(5):647–655.
  • Kulke MH, Thakore KS, Thomas G, et al. Microsatellite instability and hMLH1/hMSH2 expression in Barrett esophagus-associated adenocarcinoma. Cancer. 2001 Apr 15;91(8):1451–1457.
  • Dudley JC, Lin MT, Le DT, et al. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016 Feb 15;22(4):813–820.
  • Hao XD, Yang Y, Song X, et al. Correlation of telomere length shortening with TP53 somatic mutations, polymorphisms and allelic loss in breast tumors and esophageal cancer. Oncol Rep. 2013 Jan;29(1):226–236.
  • Adduri RS, Katamoni R, Pandilla R, et al. TP53 Pro72 allele is enriched in oral tongue cancer and frequently mutated in esophageal cancer in India. PloS one. 2014;9(12):e114002.
  • Niyaz M, Turghun A, Ping ZH, et al. TP53 gene deletion in esophageal cancer tissues of patients and its clinical significance. Mol Med Rep. 2013 Jan;7(1):122–126.
  • Zheng H, Wang Y, Tang C, et al. TP53, PIK3CA, FBXW7 and KRAS mutations in esophageal cancer identified by targeted sequencing. Cancer Genomics Proteomics. 2016 May-Jun;13(3):231–238.
  • Abedi-Ardekani B, Kamangar F, Sotoudeh M, et al. Extremely high Tp53 mutation load in esophageal squamous cell carcinoma in Golestan province, Iran. PloS one. 2011;6(12):e29488.
  • Wu M, Chang SC, Kampman E, et al. Single nucleotide polymorphisms of ADH1B, ADH1C and ALDH2 genes and esophageal cancer: a population-based case-control study in China. Int J Cancer. 2013 Apr 15;132(8):1868–1877.
  • Li QT, Kang W, Wang M, et al. Association between esophageal cancer risk and EPHX1 polymorphisms: a meta-analysis. World J Gastroenterol. 2014 May 7;20(17):5124–5130.
  • Zhao L, Zhao X, Wu X, et al. Association of p53 Arg72Pro polymorphism with esophageal cancer: a meta-analysis based on 14 case-control studies. Genet Test Mol Biomarkers. 2013 Oct;17(10):721–726.
  • Renouf DJ, Zhai R, Sun B, et al. Association of MDM2 T309G and p53 Arg72Pro polymorphisms and gastroesophageal reflux disease with survival in esophageal adenocarcinoma. J Gastroenterol Hepatol. 2013 Sep;28(9):1482–1488.
  • Cescon DW, Bradbury PA, Asomaning K, et al. p53 Arg72Pro and MDM2 T309G polymorphisms, histology, and esophageal cancer prognosis. Clin Cancer Res. 2009 May 1;15(9):3103–3109.
  • Jiang DK, Yao L, Wang WZ, et al. TP53 Arg72Pro polymorphism is associated with esophageal cancer risk: a meta-analysis. World J Gastroenterol. 2011 Mar 7;17(9):1227–1233.
  • Zeng M, Lv Y, Wang HF, et al. Correlation of CYP1A1 and GSTM1 gene polymorphisms and environmental factors to familial aggregation of esophageal cancer among the Kazakh ethnic group in Xinjiang. Genet Mol Res. 2015 Dec 29;14(4):19102–19109.
  • Gong FF, Lu SS, Hu CY, et al. Cytochrome P450 1A1 (CYP1A1) polymorphism and susceptibility to esophageal cancer: an updated meta-analysis of 27 studies. Tumour Biol. 2014 Oct;35(10):10351–10361.
  • Shen FF, Zhou FY, Xue QS, et al. Association between CYP1A1 polymorphisms and esophageal cancer: a meta-analysis. Mol Biol Rep. 2013 Oct;40(10):6035–6042.
  • Qin J, Zhang JX, Li XP, et al. Association between the CYP1A1 A2455G polymorphism and risk of cancer: evidence from 272 case-control studies. Tumour Biol. 2014 Apr;35(4):3363–3376.
  • Zhuo WL, Zhang YS, Wang Y, et al. Association studies of CYP1A1 and GSTM1 polymorphisms with esophageal cancer risk: evidence-based meta-analyses. Arch Med Res. 2009 Apr;40(3):169–179.
  • Nimura Y, Yokoyama S, Fujimori M, et al. Genotyping of the CYP1A1 and GSTM1 genes in esophageal carcinoma patients with special reference to smoking. Cancer. 1997 Sep 1;80(5):852–857.
  • Yun YX, Wang YP, Wang P, et al. CYP1A1 genetic polymorphisms and risk for esophageal cancer: a case-control study in central China. Asian Pac J Cancer Prev. 2014 Jan;14(11):6507–6512.
  • Jain M, Kumar S, Ghoshal UC, et al. CYP1A1 Msp1 T/C polymorphism in esophageal cancer: no association and risk modulation. Oncol Res. 2007;16(9):437–443.
  • Zheng H, Zhao Y. Association of CYP1A1 MspI polymorphism in the esophageal cancer risk: a meta-analysis in the Chinese population. Eur J Med Res. 2015 Mar 30;20:46.
  • Wu B, Liu K, Huang H, et al. MspI and Ile462Val polymorphisms in CYP1A1 and overall cancer risk: a meta-analysis. PloS one. 2013;8(12):e85166.
  • Plum PS, Bollschweiler E, Holscher AH, et al. Novel diagnostic and prognostic biomarkers in esophageal cancer. Expert Opin Med Diagn. 2013 Nov;7(6):557–571.
  • Uemura N, Kondo T. Current advances in esophageal cancer proteomics. Biochim Biophys Acta. 2015 Jun;1854(6):687–695.
  • Zheng GB, Gao CF, Wang XL, et al. Study on serum proteomic features in patients with and without recurrence or metastasis after surgical resection of esophageal carcinoma. Genet Mol Res. 2014 Jan 21;13(1):538–545.
  • Meves V, Behrens A, Pohl J. Diagnostics and early diagnosis of esophageal cancer. Viszeralmedizin. 2015 Oct;31(5):315–318.
  • Nagaraja V, Eslick GD. Advances in biomarkers for esophageal cancer. Expert Rev Anticancer Ther. 2013 Oct;13(10):1169–1180.
  • Walsh TN, Grannell M, Mansoor S. Predictive factors for success of neo-adjuvant therapy in upper gastrointestinal cancer. J Gastroenterol Hepatol. 2002 Feb;17(Suppl):S172–S175.
  • Bagaria B, Sood S, Sharma R, et al. Comparative study of CEA and CA19-9 in esophageal, gastric and colon cancers individually and in combination (ROC curve analysis). Cancer Biol Med. 2013 Sep;10(3):148–157.
  • Scarpa M, Noaro G, Saadeh L, et al. Esophageal cancer management: preoperative CA19.9 and CEA serum levels may identify occult advanced adenocarcinoma. World J Surg. 2015 Feb;39(2):424–432.
  • Groblewska M, Mroczko B, Sosnowska D, et al. Interleukin 6 and C-reactive protein in esophageal cancer. Clin Chim Acta. 2012 Oct 9;413(19–20):1583–1590.
  • Zhang J, Zhu Z, Liu Y, et al. Diagnostic value of multiple tumor markers for patients with esophageal carcinoma. PloS one. 2015;10(2):e0116951.
  • Hong L, Han Y, Zhang H, et al. Prognostic markers in esophageal cancer: from basic research to clinical use. Expert Rev Gastroenterol Hepatol. 2015 Jul;9(7):887–889.
  • Zhao R, Quaroni L, Casson AG. Identification and characterization of stemlike cells in human esophageal adenocarcinoma and normal epithelial cell lines. J Thorac Cardiovasc Surg. 2012 Nov;144(5):1192–1199.
  • Aoki Y, Sakogawa K, Hihara J, et al. Involvement of ribonucleotide reductase-M1 in 5-fluorouracilinduced DNA damage in esophageal cancer cell lines. Int J Oncol. 2013 Jun;42(6):1951–1960.
  • Ul Hussain M. Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res. 2012 Aug;349(2):405–413.
  • Takasaki S. Roles of microRNAs in cancers and development. Methods Mol Biol. 2015;1218:375–413.
  • Hong L, Han Y, Zhang H, et al. Prognosis-related microRNAs in esophageal cancer. Expert Opin Biol Ther. 2014 Apr;14(4):483–489.
  • Acunzo M, Romano G, Wernicke D, et al. MicroRNA and cancer–a brief overview. Adv Biol Regul. 2015;57:1–9.
  • Song JH, Meltzer SJ. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology. 2012 Jul;143(1):35–47.e2.
  • Tanaka K, Miyata H, Sugimura K, et al. miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis. 2015 Aug;36(8):894–903.
  • Tian J, Shang M, Shi SB, et al. Cetuximab plus pemetrexed as second-line therapy for fluorouracil-based pre-treated metastatic esophageal squamous cell carcinoma. Cancer Chemother Pharmacol. 2015 Oct;76(4):829–834.
  • Sugimura K, Miyata H, Tanaka K, et al. Let-7 expression is a significant determinant of response to chemotherapy through the regulation of IL-6/STAT3 pathway in esophageal squamous cell carcinoma. Clin Cancer Res. 2012 Sep 15;18(18):5144–5153.
  • Hamano R, Miyata H, Yamasaki M, et al. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res. 2011 May 1;17(9):3029–3038.
  • Ko MA, Zehong G, Virtanen C, et al. MicroRNA expression profiling of esophageal cancer before and after induction chemoradiotherapy. Ann Thorac Surg. 2012 Oct;94(4):1094–1102. discussion 1102-3.
  • Winther M, Alsner J, Tramm T, et al. Evaluation of miR-21 and miR-375 as prognostic biomarkers in esophageal cancer. Acta Oncol. 2015;54(9):1582–1591.
  • Chen G, Peng J, Zhu W, et al. Combined downregulation of microRNA-133a and microRNA-133b predicts chemosensitivity of patients with esophageal squamous cell carcinoma undergoing paclitaxel-based chemotherapy. Med Oncol. 2014 Nov;31(11):263.
  • Hezova R, Kovarikova A, Srovnal J, et al. Diagnostic and prognostic potential of miR-21, miR-29c, miR-148 and miR-203 in adenocarcinoma and squamous cell carcinoma of esophagus. Diagn Pathol. 2015 Apr 28;10:42.
  • Komatsu S, Ichikawa D, Kawaguchi T, et al. Plasma microRNA profiles: identification of miR-23a as a novel biomarker for chemoresistance in esophageal squamous cell carcinoma. Oncotarget. 2016 Sep 20;7(38):62034–62048.
  • Zhao MY, Wang LM, Liu J, et al. MiR-21 suppresses anoikis through targeting PDCD4 and PTEN in human esophageal adenocarcinoma. Curr Med Sci. 2018 Apr;38(2):245–251.
  • Hezova R, Kovarikova A, Srovnal J, et al. MiR-205 functions as a tumor suppressor in adenocarcinoma and an oncogene in squamous cell carcinoma of esophagus. Tumour Biol. 2016 Jun;37(6):8007–8018.
  • Matsui D, Zaidi AH, Martin SA, et al. Primary tumor microRNA signature predicts recurrence and survival in patients with locally advanced esophageal adenocarcinoma. Oncotarget. 2016 Dec 6;7(49):81281–81291.
  • Zhou Y, Hong L. Prediction value of miR-483 and miR-214 in prognosis and multidrug resistance of esophageal squamous cell carcinoma. Genet Test Mol Biomarkers. 2013 Jun;17(6):470–474.
  • Lynam-Lennon N, Bibby BA, Mongan AM, et al. Low miR-187 expression promotes resistance to chemoradiation therapy in vitro and correlates with treatment failure in patients with esophageal adenocarcinoma. Mol Med (Cambridge, MA). 2016 May 23;22:388-397.
  • Hong L, Han Y, Zhang H, et al. The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg. 2010 Jun;251(6):1056–1063.
  • Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013 Nov;12(11):847–865.
  • Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014 Nov;1839(11):1097–1109.
  • Suzuki H, Maruyama R, Yamamoto E, et al. Relationship between noncoding RNA dysregulation and epigenetic mechanisms in cancer. Adv Exp Med Biol. 2016;927:109–135.
  • Wu Z, Liu X, Liu L, et al. Regulation of lncRNA expression. Cell Mol Biol Lett. 2014 Dec;19(4):561–575.
  • Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev. 2015 Jun 29;87:15–24.
  • Tian X, Xu G. Clinical value of lncRNA MALAT1 as a prognostic marker in human cancer: systematic review and meta-analysis. BMJ Open. 2015 Sep 30;5(9):e008653.
  • Sugihara H, Ishimoto T, Miyake K, et al. Noncoding RNA expression aberration is associated with cancer progression and is a potential biomarker in esophageal squamous cell carcinoma. Int J Mol Sci. 2015 Nov 24;16(11):27824–27834.
  • Li J, Chen Z, Tian L, et al. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut. 2014 Nov;63(11):1700–1710.
  • Yao J, Huang JX, Lin M, et al. Microarray expression profile analysis of aberrant long non-coding RNAs in esophageal squamous cell carcinoma. Int J Oncol. 2016 Jun;48(6):2543–2557.
  • Xie HW, Wu QQ, Zhu B, et al. Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumour Biol. 2014 Aug;35(8):7743–7754.
  • Kang K, Huang YH, Li HP, et al. Expression of UCA1 and MALAT1 long-chain non-coding RNAs in esophageal squamous cell carcinoma tissues is predictive of patient prognosis. Arch Med Sci. 2018 Jun;14(4):752–759.
  • Xue-Liang J, Ming-Dong W, Ya-Bi Z, et al. Upregulated long noncoding RNA SPRY4-IT1 contributes to increased cell viability by activating zinc finger 703 expression in esophageal squamous cell carcinoma. Indian J Cancer. 2015 Dec;52(Suppl 3):E164–E167.
  • Li JY, Ma X, Zhang CB. Overexpression of long non-coding RNA UCA1 predicts a poor prognosis in patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(11):7938–7944.
  • Liu FT, Dong Q, Gao H, et al. The prognostic significance of UCA1 for predicting clinical outcome in patients with digestive system malignancies. Oncotarget. 2017 Jun 20;8(25):40620–40632.
  • Jiao C, Song Z, Chen J, et al. lncRNA-UCA1 enhances cell proliferation through functioning as a ceRNA of Sox4 in esophageal cancer. Oncol Rep. 2016 Nov;36(5):2960–2966.
  • Chen FJ, Sun M, Li SQ, et al. Upregulation of the long non-coding RNA HOTAIR promotes esophageal squamous cell carcinoma metastasis and poor prognosis. Mol Carcinog. 2013 Nov;52(11):908–915.
  • Ge XS, Ma HJ, Zheng XH, et al. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci. 2013 Dec;104(12):1675–1682.
  • Li X, Wu Z, Mei Q, et al. Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. Br J Cancer. 2013 Oct 15;109(8):2266–2278.
  • Lv XB, Lian GY, Wang HR, et al. Long noncoding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival. PloS one. 2013;8(5):e63516.
  • Ma G, Wang Q, Lv C, et al. The prognostic significance of HOTAIR for predicting clinical outcome in patients with digestive system tumors. J Cancer Res Clin Oncol. 2015 Dec;141(12):2139–2145.
  • Huang C, Yu Z, Yang H, et al. Increased MALAT1 expression predicts poor prognosis in esophageal cancer patients. Biomed Pharmacother. 2016;83:8–13.
  • Wang W, Zhu Y, Li S, et al. Long noncoding RNA MALAT1 promotes malignant development of esophageal squamous cell carcinoma by targeting beta-catenin via Ezh2. Oncotarget. 2016 May 3;7(18):25668–25682.
  • Cao X, Zhao R, Chen Q, et al. MALAT1 might be a predictive marker of poor prognosis in patients who underwent radical resection of middle thoracic esophageal squamous cell carcinoma. Cancer Biomarkers. 2015;15(6):717–723.
  • Wu H, Zheng J, Deng J, et al. LincRNA-uc002yug.2 involves in alternative splicing of RUNX1 and serves as a predictor for esophageal cancer and prognosis. Oncogene. 2015 Sep 3;34(36):4723–4734.
  • Pan F, Yao J, Chen Y, et al. A novel long non-coding RNA FOXCUT and mRNA FOXC1 pair promote progression and predict poor prognosis in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(6):2838–2849.
  • Tong YS, Zhou XL, Wang XW, et al. Association of decreased expression of long non-coding RNA LOC285194 with chemoradiotherapy resistance and poor prognosis in esophageal squamous cell carcinoma. J Transl Med. 2014 Aug 29;12:233.
  • Pan Z, Mao W, Bao Y, et al. The long noncoding RNA CASC9 regulates migration and invasion in esophageal cancer. Cancer Med. 2016 Sep;5(9):2442–2447.
  • Zhang X, Xu Y, He C, et al. Elevated expression of CCAT2 is associated with poor prognosis in esophageal squamous cell carcinoma. J Surg Oncol. 2015 Jun;111(7):834–839.
  • Wang YL, Bai Y, Yao WJ, et al. Expression of long non-coding RNA ZEB1-AS1 in esophageal squamous cell carcinoma and its correlation with tumor progression and patient survival. Int J Clin Exp Pathol. 2015;8(9):11871–11876.
  • Jiang L, Wang W, Li G, et al. High TUG1 expression is associated with chemotherapy resistance and poor prognosis in esophageal squamous cell carcinoma. Cancer Chemother Pharmacol. 2016 Aug;78(2):333–339.
  • Zhou XL, Wang WW, Zhu WG, et al. High expression of long non-coding RNA AFAP1-AS1 predicts chemoradioresistance and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Mol Carcinog. 2016 Dec;55(12):2095–2105.
  • Liu Z, Yang T, Xu Z, et al. Upregulation of the long non-coding RNA BANCR correlates with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Biomed Pharmacothe. 2016;82:406–412.
  • Crider KS, Yang TP, Berry RJ, et al. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Advances in Nutrition (Bethesda, MD). 2012 Jan;3(1):21–38.
  • Ushijima T, Okochi-Takada E. Aberrant methylations in cancer cells: where do they come from? Cancer Sci. 2005 Apr;96(4):206–211.
  • Afonso LA, Moyses N, Cavalcanti SM. Human papillomavirus detection and p16 methylation pattern in a case of esophageal papilloma. Braz J Med Biol Res = Rev Bras Pesqui Med Biol. 2010 Jul;43(7):694–696.
  • Hussain S, Singh N, Salam I, et al. Methylation-mediated gene silencing of suppressor of cytokine signaling-1 (SOCS-1) gene in esophageal squamous cell carcinoma patients of Kashmir valley. J Recept Signal Transduct Res. 2011 Apr;31(2):147–156.
  • Chen Y, Yin D, Li L, et al. Screening aberrant methylation profile in esophageal squamous cell carcinoma for Kazakhs in Xinjiang area of China. Mol Biol Rep. 2015 Feb;42(2):457–464.
  • Xu R, Wang F, Wu L, et al. A systematic review of hypermethylation of p16 gene in esophageal cancer. Cancer Biomarkers. 2013;13(4):215–226.
  • Li X, Zhou F, Jiang C, et al. Identification of a DNA methylome profile of esophageal squamous cell carcinoma and potential plasma epigenetic biomarkers for early diagnosis. PloS one. 2014;9(7):e103162.
  • Qifeng S, Bo C, Xingtao J, et al. Methylation of the promoter of human leukocyte antigen class I in human esophageal squamous cell carcinoma and its histopathological characteristics. J Thorac Cardiovasc Surg. 2011 Mar;141(3):808–814.
  • Hibi K, Kodera Y, Ito K, et al. Methylation pattern of CDH13 gene in digestive tract cancers. Br J Cancer. 2004 Sep 13;91(6):1139–1142.
  • Kim MS, Yamashita K, Chae YK, et al. A promoter methylation pattern in the N-methyl-D-aspartate receptor 2B gene predicts poor prognosis in esophageal squamous cell carcinoma. Clin Cancer Res. 2007 Nov 15;13(22 Pt 1):6658–6665.
  • Umar M, Upadhyay R, Khurana R, et al. Evaluation of MTHFR677C>T polymorphism in prediction and prognosis of esophageal squamous cell carcinoma: a case-control study in a northern Indian population. Nutr Cancer. 2010;62(6):743–749.
  • Lee HS, Lee K, Jang HJ, et al. Epigenetic silencing of the non-coding RNA nc886 provokes oncogenes during human esophageal tumorigenesis. Oncotarget. 2014 Jun 15;5(11):3472–3481.
  • Hibino S, Kanda M, Oya H, et al. Reduced expression of DENND2D through promoter hypermethylation is an adverse prognostic factor in squamous cell carcinoma of the esophagus. Oncol Rep. 2014 Feb;31(2):693–700.
  • Cui L, Xu LY, Shen ZY, et al. NGALR is overexpressed and regulated by hypomethylation in esophageal squamous cell carcinoma. Clin Cancer Res. 2008 Dec 1;14(23):7674–7681.
  • Abbaszadegan MR, Raziee HR, Ghafarzadegan K, et al. Aberrant p16 methylation, a possible epigenetic risk factor in familial esophageal squamous cell carcinoma. Int J Gastrointestinal Cancer. 2005;36(1):47–54.
  • Hibi K, Taguchi M, Nakayama H, et al. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2001 Oct;7(10):3135–3138.
  • Das M, Sharma SK, Sekhon GS, et al. Promoter methylation of MGMT gene in serum of patients with esophageal squamous cell carcinoma in North East India. Asian Pac J Cancer Prev. 2014;15(22):9955–9960.
  • Wang JX, He YL, Zhu ST, et al. Aberrant methylation of the 3q25 tumor suppressor gene PTX3 in human esophageal squamous cell carcinoma. World J Gastroenterol. 2011 Oct 7;17(37):4225–4230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.