359
Views
16
CrossRef citations to date
0
Altmetric
Review

Common mutations of interest in the diagnosis of amyotrophic lateral sclerosis: how common are common mutations in ALS genes?

& ORCID Icon
Pages 703-714 | Received 31 Jan 2020, Accepted 03 Jun 2020, Published online: 16 Jun 2020

References

  • Chio A, Logroscino G, Traynor B, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41:118–130.
  • Volk AE, Weishaupt JH, Andersen PM, et al. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Medizinische Genet. 2018;30:252–258.
  • Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev Neurol. 2011;603–615. DOI:10.1038/nrneurol.2011.150
  • Byrne S, Elamin M, Bede P, et al. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2012;83:365–367.
  • van Blitterswijk M, van Es M, Hennekam E, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21:3776–3784.
  • Cronin S, Hardiman O, Traynor BJ. Ethnic variation in the incidence of ALS: a systematic review. Neurology. 2007;68:1002–1007.
  • Zaldivar T, Gutierrez J, Lara G, et al. Reduced frequency of ALS in an ethnically mixed population: a population-based mortality study. Neurology. 2009;72:1640–1645.
  • Zou Z-Y, Zhou Z-R, Che C-H, et al. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88:540–549.
  • Alsultan AA, Waller R, Heath PR, et al. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis. 2016;6:49–64.
  • Taylor JP, Brown Jr RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539:197–206.
  • Oskarsson B, Gendron TF, Staff NP. Amyotrophic Lateral Sclerosis: an Update for 2018. Mayo Clin Proc. 2018;93:1617–1628.
  • Al-Chalabi A, van den Berg LH, Veldink J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol. 2017;13:96–104.
  • Nguyen HP, Van Broeckhoven C, van der Zee J. ALS Genes in the Genomic Era and their Implications for FTD. Trends Genet. 2018;34:404–423.
  • Rosen DR, Diddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.
  • Chio A, Restagno G, Brunetti M, et al. ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations. J Neurol Neurosurg Psychiatry. 2012;83:730–733.
  • Millecamps S, Boillée S, Le Ber I, et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet. 2012;49:258–263.
  • Conforti FL, Spataro R, Sproviero W, et al. Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology. 2012;79:2315–2320.
  • Lattante S, Pompoini M, Conte A, et al. ATXN1 intermediate-length polyglutamine expansions are associated with amyotrophic lateral sclerosis. Neurobiol Aging. 2018;64:157.e1-157.e5.
  • Renton AE, Chio A. and Traynor B J, State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17:17–23.
  • Marangi G, Traynor BJ. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res. 2015;1607:75–93.
  • Lamp M, Origone P, Geroldi A, et al. Twenty years of molecular analyses in amyotrophic lateral sclerosis: genetic landscape of Italian patients. Neurobiol Aging. 2018;66:179.e5-179.e16.
  • Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed. 2013;98:236–238.
  • Roggenbuck J, Quick A, Kolb SJ. Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians. Genet Med. 2017;19:267–274.
  • Chio A, Traynor B, Lombardo F, et al. Prevalence of SOD1 mutations in the Italian ALS population. Neurology. 2008;70:533–537.
  • Hitchler MJ, Domann FE. Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis. Antioxid Redox Signal. 2014;20:590–1598.
  • Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol. 2011;7:639–649.
  • Milani P, Gagliardi S, Cova E, et al. SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS. Neurol Res Int. 2011;2011:458427.
  • Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene. 2016;577:109–118.
  • Gellera C. Genetics of ALS in Italian families. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2:S43–6.
  • Eisen A, Mezei MM, Stewart HG, et al. SOD1 gene mutations in ALS patients from British Columbia, Canada: clinical features, neurophysiology and ethical issues in management. Amyotroph Lateral Scler. 2008;9:108–119.
  • Hand CK, Mayeux-Portas V, Khoris J, et al. Compound heterozygous D90A and D96N SOD1 mutations in a recessive amyotrophic lateral sclerosis family. Ann Neurol. 2001;49:267–271.
  • Jackson M, Al-Chalabi A, Enayat ZE, et al. Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of a novel insertion mutation. Ann Neurol. 1997;42:803–807.
  • Andersen PM, SpytsinV A, Makarov SV, et al. The geographical and ethnic distribution of the D90A CuZn-SOD mutation in the Russian Federation. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2:63–69.
  • Aguirre T, Matthijs G, Robberecht W, et al. Mutational analysis of the Cu/Zn superoxide dismutase gene in 23 familial and 69 sporadic cases of amyotrophic lateral sclerosis in Belgium. Eur J Hum Genet. 1999;7:599–602.
  • Blain CRV, Brunton S, Williams VC, et al. Differential corticospinal tract degeneration in homozygous ‘D90A’ SOD-1 ALS and sporadic ALS. J Neurol Neurosurg Psychiatry. 2011;82:843–849.
  • Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006;7:710–723.
  • Prudencio M, Belzil V, Batra R, et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci. 2015;18:1175–1182.
  • Valentine JS, Hart PJ. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2003;100:3617–3622.
  • Yamashita S, Ando Y. Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Transl Neurodegener. 2015;4:13.
  • Battistini S, Giannini F, Greco G, et al. SOD1 mutations in amyotrophic lateral sclerosis. Results from a multicenter Italian study. J Neurol. 2005;252:782–788.
  • Battistini S, Ricci C, Giannini F, et al. G41S SOD1 mutation: A common ancestor for six ALS Italian families with an aggressive phenotype. Amyotroph Lateral Scler. 2010;11:210–215.
  • Millecamps S, Boillee S, Le Ber I, et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet. 2010;47:554–560.
  • Aoki M, Ogasawara M, Matsubara Y, et al. Familial amyotrophic lateral sclerosis (ALS) in Japan associated with H46R mutation in Cu/Zn superoxide dismutase gene: a possible new subtype of familial ALS. J Neurol Sci. 1994;126(1):77–83.
  • Tang L, Ma Y, Liu XL, et al. Better survival in female SOD1-mutant patients with ALS: a study of SOD1-related natural history. Transl Neurodegener. 2019;8:2.
  • Pfister T, Sekhon R, White M, et al. Familial amyotrophic lateral sclerosis in Alberta, Canada. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:273–277.
  • Brown JA, Min J, Staropoli JF, et al. SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience. Amyotroph Lateral Scler. 2012;13:217–222.
  • Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351:602–611.
  • Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci. 2018;21:1332–1340.
  • Takeuchi R, Tada M, Shiga A, et al. Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: evidence for clinico-pathologic subtypes. Acta Neuropathol Commun. 2016;4:61.
  • Hergesheimer RC, Chami A, de Assis D, et al. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight? Brain. 2019;142(5):1176–1194.
  • Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet. 2010;19:R46–64.
  • Lukavsky PJ, Daujotyte D, Tollervey J, et al. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol. 2013;20:1443–1449.
  • Mackenzie IRA, Rademakers R. The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol. 2008;21(6):693–700.
  • Prasad A, Bharathi V, Sivalingam V, et al. Molecular mechanisms of TDP-43 Misfoldingand pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12:25.
  • Dewey CM, Cenik B, Sephton CF, et al. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 2012;1462:16–25.
  • Polymenidou M, Cleveland DW. Biological spectrum of amyotrophic lateral sclerosis prions. Cold Spring Harb Perspect Med. 2017;7:11.
  • Kabashi E, Valdmains P, Dion P, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40:572–574.
  • Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013;34(6):812–826.
  • Kanouchi T, Ohkubo T, Yokota T. Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry Res. 2012;83:739–745.
  • Buratti E. Functional significance of TDP-43 mutations in disease. Adv Genet. 2015;91:1–53.
  • Luisa CF, Sprovieri T, Mazzei R, et al. Further evidence that D90A-SOD1 mutation is recessively inherited in ALS patients in Italy. Amyotroph Lateral Scler. 2009;10(1):58–60.
  • Bertolin C, D’Ascenzo C, Querin G, et al. Improving the knowledge of amyotrophic lateral sclerosis genetics: novel SOD1 and FUS variants. Neurobiol Aging. 2014;35(5):1212.e7-1212.e1.
  • Corrado L, Ratti A, Gellera C, et al. High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum Mutat. 2009;30(4):688–694.
  • Chio A, Borghero G, Pugliatti M, et al. Large proportion of amyotrophic lateral sclerosis cases in Sardinia due to a single founder mutation of the TARDBP gene. Arch Neurol. 2011;68(5):594–598.
  • Kirby J, Goodall E, Smith W, et al. Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis. Neurogenetics. 2010;11(2):217–225.
  • Soong BW, Lin K, Guo Y, et al. Extensive molecular genetic survey of Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2014;35(10):2423.e1–6.
  • Rutherford NJ, Zhang T, Baker M, et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 2008;4(9):e1000193.
  • G R X, Hu W, Zhan L, et al. High frequency of the TARDBP p.M337 V mutation among south-eastern Chinese patients with familial amyotrophic lateral sclerosis. BMC Neurol. 2018;18(1):35.
  • Muller K, Brenner D, Weydt P, et al. Comprehensive analysis of the mutation spectrum in 301 German ALS families. J Neurol Neurosurg Psychiatry. 2018;89(8):817–827.
  • Daoud H, Valdmanis P, Kabashi E, et al. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet. 2009;46(2):112–114.
  • Del Bo R, Ghezzi S, Corti S, et al. TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS: identification of two novel mutations. Eur J Neurol. 2009;16(6):727–732.
  • Khani M, Alavi A, Shamshiri H, et al. Mutation screening of SLC52A3, C19orf12, and TARDBP in Iranian ALS patients. Neurobiol Aging. 2019;75:225.e9-225.e14.
  • Kwiatkowski TJJ, Bosco D, Leclerc A, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–1208.
  • Blair IP, Wlliams K, Warraich S, et al. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J Neurol Neurosurg Psychiatry. 2010;81(6):639–645.
  • Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol. 2014;10(6):337–348.
  • Shang Y, Huang EJ. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res. 2016;1647:65–78.
  • Baumer D, Hilton D, Paine S, et al. Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology. 2010;75(7):611–618.
  • Mochizuki Y, Isozaki E, Takao M, et al. Familial ALS with FUS P525L mutation: two Japanese sisters with multiple systems involvement. J Neurol Sci. 2012;323(1–2):85–92.
  • Leblond CS, Webber A, Gan-Or Z, et al. De novo FUS P525L mutation in Juvenile amyotrophic lateral sclerosis with dysphonia and diplopia. Neurol Genet. 2016;2(2):e63.
  • Belzil VV, Valmanis PN, Dion PA, et al. Mutations in FUS cause FALS and SALS in French and French Canadian populations. Neurology. 2009;73:1176–1179.
  • Drepper C, Herrmann T, Wessig C, et al. C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging. 2011;32:548.e1–4.
  • Groen EJN, Fumoto K, Blokuis AM, et al. ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum Mol Genet. 2013;22:3690–3704.
  • Hou L, Jiao B, Xiao T, et al. Screening of SOD1, FUS and TARDBP genes in patients with amyotrophic lateral sclerosis in central-southern China. Sci Rep. 2016;6:32478.
  • Sproviero W, La Bella V, Mazzei R, et al. FUS mutations in sporadic amyotrophic lateral sclerosis: clinical and genetic analysis. Neurobiol Aging. 2012;33(4):837.
  • Ticozzi N, Silani V, LeClerc A, et al. Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort. Neurology. 2009;73:1180–1185.
  • Van Langenhove T, van der Zee J, Sleegers K, et al. Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology. 2010;74:366–371.
  • Dejesus-Hernandez M, Rayaprolu S, Soto-Ortolaza AI, et al. Analysis of the C9orf72 repeat in Parkinson’s disease, essential tremor and restless legs syndrome. Parkinsonism Relat. 2013;19(2):198–201.
  • Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–268.
  • Laaksovirta H, Peuralinna T, Schymick J, et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol. 2010;9(10):978–985.
  • van Es MA, Veldink J, Saris C, et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet. 2009;41(10):1083–1087.
  • Shatunov A, Mok K, Newhouse S, et al. Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurol. 2010;9(10):986–994.
  • Ji A-L, Zhang X, Chen -W-W, et al. Genetics insight into the amyotrophic lateral sclerosis/frontotemporal dementia spectrum. J Med Genet. 2017;54(3):145–154.
  • Hsiung G-Y, DeJesus-Hernandez R, Feldman H, et al. Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain. 2012;13:709–722.
  • Cruts M, Engelborghs S, van der Zee J, et al. C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia. In: Adam MP, Ardinger HH, Pagon RA et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993-2020.
  • Gijselinck I, Van L, van Der Z, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 2012;11(1):54–65.
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–256.
  • Iacoangeli A, Al Khleifat A, Jones A, et al. C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathol. 2019;7(1):115.
  • Gami P, Murray C, Schottlaender L, et al. A 30-unit hexanucleotide repeat expansion in C9orf72 induces pathological lesions with dipeptide-repeat proteins and RNA foci, but not TDP-43 inclusions and clinical disease. Acta Neuropathol. 2015;130(4):599–601.
  • Xi, Zinman L, Grinberg T, et al. Investigation of c0orf72 in 4 neurodegenerative disorders. Arch Neurol. 2012;69(12):1583–1590.
  • Xi Z, Zinman L, Grinberg Y, et al. Investigation of C9orf72 in neurodegenerative disorders. Arch Neurol. 2012;69(12):1583–1590.
  • Mejzini R, Flynn LL, Pitout IL, et al. ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci. 2019;13:1310.
  • Farg MA, Sundaramoorthy V, Sultana J, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23(13):3579–3595.
  • Mancuso M, Filoto M, Naini A, et al. A screening for superoxide dismutase-1 D90A mutation in Italian patients with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2002;3(4):215–218.
  • Volk AE, Kubisch C. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases. Curr Opin Neurol. 2017;30(5):523–528.
  • Nakken O, Sorum L, Holmoy T. Genetic testing in amyotrophic lateral sclerosis. Tidsskr Nor Laegeforen. 2018;138:13.
  • Chio A, Battistini S, Calvo A, et al. Genetic counselling in ALS: facts, uncertainties and clinical suggestions. J Neurol Neurosurg Psychiatry. 2014;85(5):478–485.
  • Akimoto C, Volk A, van Blitterswijk M, et al. A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories. J Med Genet. 2014;51:419–424.
  • Cleary EM, Pal S, Azam T, et al. Improved PCR based methods for detecting C9orf72 hexanucleotide repeat expansions. Mol Cell Probes. 2016;30:218–224.
  • Suh E, Grando K, Van Deerlin VM. Validation of a Long-Read PCR Assay for Sensitive Detection and Sizing of C9orf72 Hexanucleotide Repeat Expansions. J Mol Diagn. 2018;20:871–882.
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–5467.
  • Gomes A, Korf B. Genetic testing techniques. In N. H. Robin & M. B. Farmer editors. Pediatr Cancer Genet. 2018;47–64.
  • Kchouk M, Gibrat J-F, Elloumi M. Generations of sequencing technologies: from first to next generation. Biol Med. 2017;09. DOI:10.4172/0974-8369.1000395.
  • Paul AJ, Lawrence D, Song M, et al. Using apache spark on genome assembly for scalable overlap-graph reduction. Hum Genomics. 2019;13:48.
  • Cameron DL, Di Stefano L, Papenfuss AT. Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software. Nat Commun. 2019;10:3240.
  • Gajecka M. Unrevealed mosaicism in the next-generation sequencing era. Mol Genet Genomics. 2016;291:513–530.
  • Klepek H, Goutman SA, Quick A, et al. Variable reporting of C9orf72 and a high rate of uncertain results in ALS genetic testing. Neurol Genet. 2019;5:e301.
  • Kenna KP, McLaughlin R, Byrne S, et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet. 2013;50:776–783.
  • Cady J, Allred P, Bali T, et al. Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes. Ann Neurol. 2015;77:100–113.
  • Goutman SA, Chen KS, Paez-Colasante X, et al. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. Handb Clin Neurol. 2018;148:603–623.
  • Kumar V, Hasan GM, Hassan MI. Unraveling the role of RNA mediated toxicity of C9orf72 repeats in C9-FTD/ALS. Front Neurosci. 2017;11:711.
  • Morgan S, Shatunov A, Sproviero W, et al. A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain. 2017;140:1611–1618.
  • Hagemann IS. Overview of technical aspects and chemistries of next-generation sequencing. In: Kulkarni S, Pfeifer JBT-CG, editors. Clinical Genomics 1st Edition. Boston: Academic Press; 2015. p. 3–19.
  • Eid J, Fehr A, Gray J, et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science. 2009;323:133–138.
  • Al-Chalabi A, Hardiman O, Kiernan MC, et al. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 2016;15:1182–1194.
  • Morello G, Guarnaccia M, Spampinato AG, et al. Copy number variations in amyotrophic lateral sclerosis: piecing the mosaic tiles together through a systems biology approach. Mol Neurobiol. 2018;55:1299–1322.
  • Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11:323–330.
  • Andersen PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci. 2006;6:37–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.