231
Views
0
CrossRef citations to date
0
Altmetric
Review

Faster infection diagnostics for intensive care unit (ICU) patients

&
Pages 347-360 | Received 09 May 2021, Accepted 31 Jan 2022, Published online: 07 Apr 2022

References

  • Mangioni D, Viaggi B, Giani T, et al. Diagnostic stewardship for sepsis: the need for risk stratification to triage patients for fast microbiology workflows. Future Microbiol. 2019;14(3):169–174.
  • Mintzer V, Moran-Gilad J, Simon-Tuval T. Operational models and criteria for incorporating microbial whole genome sequencing in hospital microbiology - a systematic literature review. Clin Microbiol Infect. 2019;25(9):1086–1095.
  • Azar MM, Gaston DC, Kotton CN, et al. Emerging microbiology diagnostics for transplant infections: on the cusp of a paradigm shift. Transplantation. 2020;104(7):1358–1384.
  • Schuetz AN. A laboratory’s guide to the universe of broad-range polymerase chain reactions. Clin Infect Dis. 2020;71(6):1558–1560.
  • Rentschler S, Kaiser L, Deigner HP. Emerging options for the diagnosis of bacterial infections and the characterization of antimicrobial resistance. Int J Mol Sci. 2021;22(1):456.
  • Miller JM, Binnicker MJ, Campbell S, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):e1–e94.
  • Collazos-Blanco A, Perez-Garcia F, Sanchez-Carrillo C, et al. Estimation of missed bloodstream infections without the third blood culture set: a retrospective observational single-centre study. Clin Microbiol Infect. 2019;25(4):469–473.
  • Lamy B, Sundqvist M, Idelevich EA. Bloodstream infections - standard and progress in pathogen diagnostics. Clin Microbiol Infect. 2020;26(2):142–150.
  • Scheer CS, Fuchs C, Grundling M, et al. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: a prospective clinical cohort study. Clin Microbiol Infect. 2019;25(3):326–331.
  • Dien Bard J, McElvania E. Panels and syndromic testing in clinical microbiology. Clin Lab Med. 2020;40(4):393–420.
  • Peker N, Couto N, Sinha B, et al. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. Clin Microbiol Infect. 2018;24(9):944–955.
  • Poole S, Kidd SP, Saeed K. A review of novel technologies and techniques associated with identification of bloodstream infection etiologies and rapid antimicrobial genotypic and quantitative phenotypic determination. Expert Rev Mol Diagn. 2018;18(6):543–555.
  • Dubourg G, Raoult D, Fenollar F. Emerging methodologies for pathogen identification in bloodstream infections: an update. Expert Rev Mol Diagn. 2019;19(2):161–173.
  • Eubank TA, Long SW, Perez KK. Role of rapid diagnostics in diagnosis and management of patients with sepsis. J Infect Dis. 2020;222(Suppl 2):S103–s9.
  • Ramanan P, Bryson AL, Binnicker MJ, et al. Syndromic panel-based testing in clinical microbiology. Clin Microbiol Rev. 2018;31(1). https://doi.org/10.1128/CMR.00024-17
  • D’Onofrio V, Salimans L, Bedenić B, et al. The clinical impact of rapid molecular microbiological diagnostics for pathogen and resistance gene identification in patients with sepsis: a systematic review. Open Forum Infect Dis. 2020;7(10):ofaa352.
  • Quiles MG, Boettger BC, Inoue FM, et al. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry and real-time PCR in a combined protocol for diagnosis of bloodstream infections: a turnaround time approach. Braz J Infect Dis. 2019;23(3):164–172.
  • Idelevich EA, Seifert H, Sundqvist M, et al. Microbiological diagnostics of bloodstream infections in Europe-an ESGBIES survey. Clin Microbiol Infect. 2019;25(11):1399–1407.
  • Scohy A, Noël A, Boeras A, et al. Evaluation of the Bruker® MBT sepsityper IVD module for the identification of polymicrobial blood cultures with MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2018;37(11):2145–2152.
  • Sharma M, Gautam V, Mahajan M, et al. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from positive blood culture bottles: an opportunity to customize growth conditions for fastidious organisms causing bloodstream infections. Indian J Med Res. 2017;146(4):541–544.
  • Vlek AL, Bonten MJ, Boel CH. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PloS one. 2012;7(3):e32589.
  • Clerc O, Prod’hom G, Vogne C, et al. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis. 2013;56(8):1101–1107.
  • Huang AM, Newton D, Kunapuli A, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis. 2013;57(9):1237–1245.
  • Perez KK, Olsen RJ, Musick WL, et al. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect. 2014;69(3):216–225.
  • Wenzler E, Goff DA, Mangino JE, et al. Impact of rapid identification of Acinetobacter baumannii via matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with antimicrobial stewardship in patients with pneumonia and/or bacteremia. Diagn Microbiol Infect Dis. 2016;84(1):63–68.
  • Mizrahi A, Amzalag J, Couzigou C, et al. Clinical impact of rapid bacterial identification by MALDI-TOF MS combined with the bêta-LACTA™ test on early antibiotic adaptation by an antimicrobial stewardship team in bloodstream infections. Infect Dis (Lond). 2018;50(9):668–677.
  • Schneider JG, Wood JB, Schmitt BH, et al. Susceptibility provision enhances effective de-escalation (SPEED): utilizing rapid phenotypic susceptibility testing in Gram-negative bloodstream infections and its potential clinical impact. J Antimicrob Chemother. 2019;74(Suppl 1):i16–i23.
  • Pliakos EE, Andreatos N, Shehadeh F, et al. The cost-effectiveness of rapid diagnostic testing for the diagnosis of bloodstream infections with or without antimicrobial stewardship. Clin Microbiol Rev. 2018;31(3). https://doi.org/10.1128/CMR.00095-17
  • Marco F. Molecular methods for septicemia diagnosis. Enferm Infecc Microbiol Clin. 2017;35(9):586–592.
  • Mangioni D, Peri AM, Rossolini GM, et al. Toward rapid sepsis diagnosis and patient stratification: what’s new from microbiology and omics science. J Infect Dis. 2020;221(7):1039–1047.
  • Ashley BK, Hassan U. Point-of-critical-care diagnostics for sepsis enabled by multiplexed micro and nanosensing technologies. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(5):e1701.
  • Arendrup MC, Andersen JS, Holten MK, et al. Diagnostic performance of T2Candida among ICU patients with risk factors for invasive candidiasis. Open Forum Infect Dis. 2019;6(5):ofz136.
  • Mylonakis E, Zacharioudakis IM, Clancy CJ, et al. Efficacy of T2 magnetic resonance assay in monitoring candidemia after initiation of antifungal therapy: the serial therapeutic and antifungal monitoring protocol (STAMP) trial. J Clin Microbiol. 2018;56(4). https://doi.org/10.1128/JCM.01756-17
  • Muñoz P, Vena A, Machado M, et al. T2MR contributes to the very early diagnosis of complicated candidaemia. A prospective study. J Antimicrob Chemother. 2018;73(suppl_4):iv13–iv9.
  • Muñoz P, Vena A, Machado M, et al. T2Candida MR as a predictor of outcome in patients with suspected invasive candidiasis starting empirical antifungal treatment: a prospective pilot study. J Antimicrob Chemother. 2018;73(suppl_4):iv6–iv12.
  • Nguyen MH, Clancy CJ, Pasculle AW, et al. Performance of the T2Bacteria panel for diagnosing bloodstream infections: a diagnostic accuracy study. Ann Intern Med. 2019;170(12):845–852.
  • Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis. 2016;62(10):e51–77.
  • Salipante SJ, Sengupta DJ, Rosenthal C, et al. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS One. 2013;8(5):e65226.
  • Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clin Infect Dis. 2018;66(5):778–788.
  • Ramachandran PS, Wilson MR. Metagenomics for neurological infections - expanding our imagination. Nat Rev Neurol. 2020;16(10):547–556.
  • Filkins LM, Bryson AL, Miller SA, et al. Navigating clinical utilization of direct-from-specimen metagenomic pathogen detection: clinical applications, limitations, and testing recommendations. Clin Chem. 2020;66(11):1381–1395.
  • Babady NE. clinical metagenomics for bloodstream infections: is the juice worth the squeeze? Clin Infect Dis. 2021;72(2):246–248.
  • Hogan CA, Yang S, Garner OB, et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study. Clin Infect Dis. 2021;72(2):239–245.
  • Hong DK, Blauwkamp TA, Kertesz M, et al. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis. 2018;92(3):210–213.
  • Blauwkamp TA, Thair S, Rosen MJ, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol. 2019;4(4):663–674.
  • Parize P, Muth E, Richaud C, et al. Untargeted next-generation sequencing-based first-line diagnosis of infection in immunocompromised adults: a multicentre, blinded, prospective study. Clin Microbiol Infect. 2017;23(8):574 e1–e6 .
  • McHugh L, Seldon TA, Brandon RA, et al. A molecular host response assay to discriminate between sepsis and infection-negative systemic inflammation in critically ill patients: discovery and validation in independent cohorts. PLoS Med. 2015;12(12):e1001916.
  • Miller RR 3rd, Lopansri BK, Burke JP, et al. Validation of a host response assay, septicyte lab, for discriminating sepsis from systemic inflammatory response syndrome in the ICU. Am J Respir Crit Care Med. 2018;198(7):903–913.
  • Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections. BMC Infect Dis. 2014;14(1):593.
  • Azoulay E, Russell L, Van de Louw A, et al. Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med. 2020;46(2):298–314.
  • Cilloniz C, Liapikou A, Torres A. Advances in molecular diagnostic tests for pneumonia. Curr Opin Pulm Med. 2020;26(3):241–248.
  • Chen J, Zhao Y, Shang Y, et al. The clinical significance of simultaneous detection of pathogens from bronchoalveolar lavage fluid and blood samples by metagenomic next-generation sequencing in patients with severe pneumonia. J Med Microbiol. 2021;70(1). https://doi.org/10.1099/jmm.0.001259
  • Hanson KE, Azar MM, Banerjee R, et al. Molecular testing for acute respiratory tract infections: clinical and diagnostic recommendations from the idsa’s diagnostics committee. Clin Infect Dis. 2020;71(10):2744–2751.
  • Maataoui N, Chemali L, Patrier J, et al. Impact of rapid multiplex PCR on management of antibiotic therapy in COVID-19-positive patients hospitalized in intensive care unit. Eur J Clin Microbiol Infect Dis. 2021;40(10):2227–34.
  • Chao L, Li J, Zhang Y, et al. Application of next generation sequencing-based rapid detection platform for microbiological diagnosis and drug resistance prediction in acute lower respiratory infection. Ann Transl Med. 2020;8(24):1644.
  • Cercenado E, Marin M, Burillo A, et al. Rapid detection of Staphylococcus aureus in lower respiratory tract secretions from patients with suspected ventilator-associated pneumonia: evaluation of the cepheid xpert MRSA/SA SSTI assay. J Clin Microbiol. 2012;50(12):4095–4097.
  • Leone M, Malavieille F, Papazian L, et al. Routine use of Staphylococcus aureus rapid diagnostic test in patients with suspected ventilator-associated pneumonia. Crit Care. 2013;17(4):R170.
  • Palmer MP, Melton-Kreft R, Nistico L, Hiller NL, Kim LH, Altman GT, et al. Polymerase Chain Reaction-Electrospray-Time-of-Flight Mass Spectrometry Versus Culture for Bacterial Detection in Septic Arthritis and Osteoarthritis. Genet Test Mol Biomarkers. 2016;20(12):721–731.
  • Burillo A, Marin M, Cercenado E, et al. Evaluation of the Xpert Carba-R (Cepheid) assay using contrived bronchial specimens from patients with suspicion of ventilator-associated pneumonia for the detection of prevalent carbapenemases. PLoS One. 2016;11(12):e0168473.
  • Cai Z, Tao J, Jia T, et al. Multicenter evaluation of the Xpert Carba-R assay for detection and identification of carbapenemase genes in sputum specimens. J Clin Microbiol. 2020;58(9). DOI:https://doi.org/10.1128/JCM.00644-20
  • van Oort PM, Povoa P, Schnabel R, et al. The potential role of exhaled breath analysis in the diagnostic process of pneumonia-a systematic review. J Breath Res. 2018;12(2):024001.
  • Mok JH, Eom JS, Jo EJ, et al. Clinical utility of rapid pathogen identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in ventilated patients with pneumonia: a pilot study. Respirology. 2016;21(2):321–328.
  • Douglas IS. Pulmonary infections in critical/intensive care - rapid diagnosis and optimizing antimicrobial usage. Curr Opin Pulm Med. 2017;23(3):198–203.
  • Shang YJ, Wang QQ, Zhang JR, et al. Systematic review and meta-analysis of flow cytometry in urinary tract infection screening. Clin Chim Acta. 2013;424:90–95.
  • Lahanas S, Stathopoulos G, Chan RC, et al. Evaluation of the Alfred 60/AST device as a screening test for urinary tract infections. J Clin Microbiol. 2013;51(10):3406–3408.
  • Li W, Sun E, Wang Y, et al. Rapid identification and antimicrobial susceptibility testing for urinary tract pathogens by direct analysis of urine samples using a MALDI-TOF MS-based combined protocol. Front Microbiol. 2019;10:1182.
  • Ilki AA, Ozsoy S, Gelmez G, et al. An alternative for urine cultures: direct identification of uropathogens from urine by MALDI-TOF MS. Acta Microbiol Immunol Hung. 2020;67(3):193–197.
  • Burillo A, Rodriguez-Sanchez B, Ramiro A, et al. Gram-stain plus MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) for a rapid diagnosis of urinary tract infection. PloS one. 2014;9(1):e86915.
  • Riedel S, Halls J, Dutta S, et al. Clinical evaluation of the acuitas(R) AMR gene panel for rapid detection of bacteria and genotypic antibiotic resistance determinants. Diagn Microbiol Infect Dis. 2021;100(4):115383.
  • Bouza E, Aguado JM, Alcala L, Almirante B, Alonso-Fernandez P, Borges M, et al. Recommendations for the diagnosis and treatment of Clostridioides difficile infection: An official clinical practice guideline of the Spanish Society of Chemotherapy (SEQ), Spanish Society of Internal Medicine (SEMI) and the working group of Postoperative Infection of the Spanish Society of Anesthesia and Reanimation (SEDAR). Rev Esp Quimioter. 2020;33(2):151–175.
  • Shakir FA, Thompson D, Marlar R, et al. A novel use of rectal swab to test for Clostridium difficile infection by real-time PCR. Am J Gastroenterol. 2012;107(9):1444–1445.
  • Beal SG, Tremblay EE, Toffel S, et al. A gastrointestinal PCR panel improves clinical management and lowers health care costs. J Clin Microbiol. 2018;56(1). https://doi.org/10.1128/JCM.01457-17
  • Graf EH, Pancholi P. Appropriate use and future directions of molecular diagnostic testing. Curr Infect Dis Rep. 2020;22(2):5.
  • Rader TS 4th, Stevens MP, Bearman G. Syndromic multiplex Polymerase Chain Reaction (mPCR) testing and antimicrobial stewardship: current practice and future directions. Curr Infect Dis Rep. 2021;23(4):5.
  • Wilber E, Baker JM, Rebolledo PA. Clinical implications of multiplex pathogen panels for the diagnosis of acute viral gastroenteritis. J Clin Microbiol. 2021;59(8):e0151319.
  • Wolk DM, Struelens MJ, Pancholi P, et al. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol. 2009;47(3):823–826.
  • Bouza E, Onori R, Semiglia-Chong MA, et al. Fast track SSTI management program based on a rapid molecular test (GeneXpert(R) MRSA/SA SSTI) and antimicrobial stewardship. J Microbiol Immunol Infect. 2020;53(2):328–335.
  • Dubouix-Bourandy A, de Ladoucette A, Pietri V, et al. Direct detection of Staphylococcus osteoarticular infections by use of Xpert MRSA/SA SSTI real-time PCR. J Clin Microbiol. 2011;49(12):4225–30.
  • Titecat M, Loiez C, Senneville E, et al. Evaluation of rapid mecA gene detection versus standard culture in staphylococcal chronic prosthetic joint infections. Diagn Microbiol Infect Dis. 2012;73(4):318–321.
  • Kerkhoff AD, Rutishauser RL, Miller S, Babik JM. Clinical Utility of Universal Broad-Range Polymerase Chain Reaction Amplicon Sequencing for Pathogen Identification: A Retrospective Cohort Study. Clin Infect Dis. 2020;71(6):1554–7.
  • Houlihan CF, Bharucha T, Breuer J. Advances in molecular diagnostic testing for central nervous system infections. Curr Opin Infect Dis. 2019;32(3):244–250.
  • Vetter P, Schibler M, Herrmann JL, et al. Diagnostic challenges of central nervous system infection: extensive multiplex panels versus stepwise guided approach. Clin Microbiol Infect. 2020;26(6):706–712.
  • Broadhurst MJ, Dujari S, Budvytiene I, et al. Yield, and accuracy of the Filmarray meningitis/encephalitis panel with diagnostic stewardship and testing algorithm. J Clin Microbiol. 2020;58(9). https://doi.org/10.1128/JCM.00311-20
  • Hanson KE, Alexander BD, Woods C, et al. Validation of laboratory screening criteria for herpes simplex virus testing of cerebrospinal fluid. J Clin Microbiol. 2007;45(3):721–724.
  • Messacar K, Hamilton SL, Prinzi AM, et al. Rapid identification of nonblood sterile site broth cultures using the Filmarray blood culture identification panel. Diagn Microbiol Infect Dis. 2019;93(1):22–23.
  • Sánchez-Carrillo C, Pescador P, Ricote R, et al. Evaluation of the Alfred AST® system for rapid antimicrobial susceptibility testing directly from positive blood cultures. Eur J Clin Microbiol Infect Dis. 2019;38(9):1665–1670.
  • Van den Poel B, Meersseman P, Debaveye Y, et al. Performance and potential clinical impact of Alfred60(AST) (Alifax®) for direct antimicrobial susceptibility testing on positive blood culture bottles. Eur J Clin Microbiol Infect Dis. 2020;39(1):53–63.
  • Dubourg G, Lamy B, Ruimy R. Rapid phenotypic methods to improve the diagnosis of bacterial bloodstream infections: meeting the challenge to reduce the time to result. Clin Microbiol Infect. 2018;24(9):935–943.
  • Pantel A, Monier J, Lavigne JP. Performance of the Accelerate Pheno™ system for identification and antimicrobial susceptibility testing of a panel of multidrug-resistant Gram-negative bacilli directly from positive blood cultures. J Antimicrob Chemother. 2018;73(6):1546–1552.
  • Lutgring JD, Bittencourt C, McElvania TeKippe E, et al. Evaluation of the Accelerate Pheno System: results from two academic medical centers. J Clin Microbiol. 2018;56(4). https://doi.org/10.1128/JCM.01672-17
  • Henig O, Cooper CC, Kaye KS, et al. The hypothetical impact of Accelerate Pheno™ system on time to effective therapy and time to definitive therapy in an institution with an established antimicrobial stewardship programme currently utilizing rapid genotypic organism/resistance marker identification. J Antimicrob Chemother. 2019;74(Suppl 1):i32–i9.
  • Elliott G, Malczynski M, Barr VO, et al. Evaluation of the impact of the Accelerate Pheno™ system on time to result for differing antimicrobial stewardship intervention models in patients with Gram-negative bloodstream infections. BMC Infect Dis. 2019;19(1):942.
  • Burnham JP, Wallace MA, Fuller BM, et al. Clinical effect of expedited pathogen identification and susceptibility testing for Gram-negative bacteremia and candidemia by use of the accelerate pheno(TM. System. J Appl Lab Med. 2019;3(4):569–579.
  • Giordano C, Piccoli E, Brucculeri V, et al. A prospective evaluation of two rapid phenotypical antimicrobial susceptibility technologies for the diagnostic stewardship of sepsis. Biomed Res Int. 2018;2018:6976923.
  • Boch T, Spiess B, Cornely OA, et al. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1,3-β-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: results of a prospective multicentre study. Clin Microbiol Infect. 2016;22(10):862–868.
  • Martinez-Jimenez MC, Munoz P, Guinea J, et al. Potential role of Candida albicans germ tube antibody in the diagnosis of deep-seated candidemia. Med Mycol. 2014;52(3):270–275.
  • De Pascale G, Tumbarello M. Fungal infections in the ICU: advances in treatment and diagnosis. Curr Opin Crit Care. 2015;21(5):421–429.
  • Rouze A, Loridant S, Poissy J, et al. Biomarker-based strategy for early discontinuation of empirical antifungal treatment in critically ill patients: a randomized controlled trial. Intensive Care Med. 2017;43(11):1668–1677.
  • Chong GM, Maertens JA, Lagrou K, et al. Diagnostic performance of galactomannan antigen testing in cerebrospinal fluid. J Clin Microbiol. 2016;54(2):428–431.
  • Heng SC, Morrissey O, Chen SC, et al. Utility of bronchoalveolar lavage fluid galactomannan alone or in combination with PCR for the diagnosis of invasive aspergillosis in adult hematology patients: a systematic review and meta-analysis. Crit Rev Microbiol. 2015;41(1):124–134.
  • Dichtl K, Wagener J, Tschop J, et al. Analysis of peritoneal galactomannan for the diagnosis of Aspergillus peritonitis. Infection. 2016;44(5):683–686.
  • Duarte RF, Sanchez-Ortega I, Cuesta I, et al. Serum galactomannan-based early detection of invasive aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin Infect Dis. 2014;59(12):1696–1702.
  • Boch T, Reinwald M, Spiess B, et al. Detection of invasive pulmonary aspergillosis in critically ill patients by combined use of conventional culture, galactomannan, 1-3-beta-D-glucan and Aspergillus specific nested polymerase chain reaction in a prospective pilot study. J Crit Care. 2018;47:198–203.
  • Arvanitis M, Ziakas PD, Zacharioudakis IM, et al. PCR in diagnosis of invasive aspergillosis: a meta-analysis of diagnostic performance. J Clin Microbiol. 2014;52(10):3731–3742.
  • Cruciani M, Mengoli C, Loeffler J, et al. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev 2015, 7(9):CD009551.
  • Boch T, Spiess B, Heinz W, et al. Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis. Mycoses. 2019;62(11):1035–1042.
  • White PL, Bretagne S, Caliendo AM, et al. Aspergillus polymerase chain reaction-an update on technical recommendations, clinical applications, and justification for inclusion in the second revision of the EORTC/MSGERC definitions of invasive fungal disease. Clin Infect Dis. 2021;72(Suppl 2):S95–S101.
  • Giacobbe DR, Mora S, Giacomini M, et al. Machine learning and multidrug-resistant Gram-negative bacteria: an interesting combination for current and future research. Antibiotics (Basel). 2020;9(2):54 doi:https://doi.org/10.3390/antibiotics9020054.
  • Giacobbe DR, Signori A, Del Puente F, et al. Early detection of sepsis with machine learning techniques: a brief clinical perspective. Front Med (Lausanne). 2021;8:617486.
  • Rivard KR, Athans V, Lam SW, et al. Impact of antimicrobial stewardship and rapid microarray testing on patients with Gram-negative bacteremia. Eur J Clin Microbiol Infect Dis. 2017;36(10):1879–1887.
  • Verroken A, Despas N, Rodriguez-Villalobos H, et al. The impact of a rapid molecular identification test on positive blood cultures from critically ill with bacteremia: a pre-post intervention study. PLoS One. 2019;14(9):e0223122.
  • Carreno JJ, Eaton R, Itro L, et al. Time to clinical response in sepsis associated with an algorithm for blood-culture pathogen identification using matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. Am J Health Syst Pharm. 2019;76(7):460–469.
  • Grijalva M, De La Torre K, Sánchez N. The clinical impact of a multiplex real-time PCR system for microbiological diagnosis of sepsis: a mortality study. New Microbiol. 2020;43(2):64–69.
  • Jones NK, Conway Morris A, Curran MD, et al. Evaluating the use of a 22-pathogen taqman array card for rapid diagnosis of respiratory pathogens in intensive care. J Med Microbiol. 2020;69(7):971–978.
  • Pickens C, Wunderink RG, Qi C, et al. A multiplex polymerase chain reaction assay for antibiotic stewardship in suspected pneumonia. Diagn Microbiol Infect Dis. 2020;98(4):115179.
  • Guenter S, Gorkiewicz G, Halwachs B, et al. Impact of ITS-based sequencing on antifungal treatment of patients with suspected invasive fungal infections. J Fungi (Basel). 2020;6(2):43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.