100
Views
1
CrossRef citations to date
0
Altmetric
Review

Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision biomarkers

, , , & ORCID Icon
Pages 745-760 | Received 08 Jun 2022, Accepted 24 Aug 2022, Published online: 05 Sep 2022

References

  • Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983; 3218334:1151–1155.
  • Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 2013;126(3):307–328.
  • Elsayed LEO, et al. Insights into clinical, genetic, and pathological aspects of hereditary spastic paraplegias: a comprehensive overview. Front Mol Biosci. 2021;8:690899.
  • Boutry M, Morais S, Stevanin G. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep. 2019;19(4):18.
  • Shribman S, et al. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol. 2019;18(12):1136–1146.
  • Schwarz GA, Liu CN. Hereditary (familial) spastic paraplegia; further clinical and pathologic observations. AMA Arch Neurol Psychiatry. 1956;75(2):144–162.
  • Deluca GC, Ebers GC, Esiri MM. The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol. 2004;30(6):576–584.
  • Koutsis G, et al. A novel ABCD1 mutation detected by next generation sequencing in presumed hereditary spastic paraplegia: a 30-year diagnostic delay caused by misleading biochemical findings. J Neurol Sci. 2015;355(1–2):199–201.
  • Brugman F, et al. Differentiation of hereditary spastic paraparesis from primary lateral sclerosis in sporadic adult-onset upper motor neuron syndromes. Arch Neurol. 2009;66(4):509–514.
  • Proudfoot M, Bede P, Turner MR. Imaging cerebral activity in amyotrophic lateral sclerosis. Front Neurol. 2018;9 1148.
  • Feron M, et al. Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol. 2018;265(9):2125–2136.
  • Chipika RH, et al. “Switchboard” malfunction in motor neuron diseases: selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Neuroimage Clin. 2020;27:102300.
  • Li Hi Shing S, et al. Increased cerebral integrity metrics in poliomyelitis survivors: putative adaptation to longstanding lower motor neuron degeneration. J Neurol Sci. 2021;424:117361.
  • Bede P, et al. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: a longitudinal neuroimaging study. Neuroimage Clin. 2019;24:102054.
  • Querin G, et al. Biomarkers of spinal and bulbar muscle atrophy (SBMA): a comprehensive review. Front Neurol. 2018;9:844.
  • Querin G, et al. The spinal and cerebral profile of adult spinal-muscular atrophy: a multimodal imaging study. Neuroimage Clin. 2019;21:101618.
  • El Mendili MM, et al. Spinal cord imaging in amyotrophic lateral sclerosis: historical concepts-novel techniques. Front Neurol. 2019;10 350.
  • Querin G, et al. Presymptomatic spinal cord pathology in c9orf72 mutation carriers: a longitudinal neuroimaging study. Ann Neurol. 2019;86(2):158–167.
  • Bede P, et al. Spinal cord markers in ALS: diagnostic and biomarker considerations. Amyotroph Lateral Scler. 2012;13(5):407–415.
  • Servelhere KR, et al., Brain damage and gene expression across hereditary spastic paraplegia subtypes. Mov Disord. 2021;36(7): 1644–1653.
  • Martinuzzi A, et al. Clinical and paraclinical indicators of motor system impairment in hereditary spastic paraplegia: a pilot study. PloS one. 2016;11(4):e0153283. PLoS One.
  • Lin JZ, et al. Cortical damage associated with cognitive and motor impairment in hereditary spastic paraplegia: evidence of a novel spast mutation. Front Neurol. 2020; 11 399. •Imaging signatures of SPG4 with clinico. •Imaging signatures of SPG4 with clinicoradiological correlation
  • Lindig T, et al., Gray and white matter alterations in hereditary spastic paraplegia type SPG4 and clinical correlations. J Neurol. 2015;262(8): 1961–1971.
  • Cardozo-Hernández ALC, Rezende TJR, França MCsJr. Hereditary spastic paraplegia type 11 (SPG11) is associated with obesity and hypothalamic damage. J Neurol Sci. 2020;416:116982.
  • Montanaro D, et al. Multimodal MRI longitudinal assessment of white and gray matter in different SPG types of hereditary spastic paraparesis. Front Neurosci. 2020;14:325.
  • Faber I, et al. SPG11 mutations cause widespread white matter and basal ganglia abnormalities, but restricted cortical damage. Neuroimage Clin. 2018;19:848–857.
  • Faber I, et al. SPG11-related parkinsonism: clinical profile, molecular imaging and l-dopa response. Mov Disord. 2018;33(10):1650–1656.
  • Servelhere KR, et al., Spinal cord gray and white matter damage in different hereditary spastic paraplegia subtypes. AJNR Am J Neuroradiol. 2021;42(3): 610–615.
  • Navas-Sánchez FJ, et al., Thalamic atrophy in patients with pure hereditary spastic paraplegia type 4. J Neurol. 2021;268(7): 2429–2440.
  • Erichsen AK, et al. Proton magnetic resonance spectroscopy and cognition in patients with spastin mutations. J Neurol Sci. 2009;277(1–2):124–129.
  • Kassubek J, et al., Brain atrophy in pure and complicated hereditary spastic paraparesis: a quantitative 3D MRI study. Eur J Neurol.2006;13(8): 880–886.
  • Orlacchio A, et al. Clinical and genetic study of a large SPG4 Italian family. Mov Disord. 2005;20(8):1055–1059.
  • Uttner I, et al. Cognitive performance in pure and complicated hereditary spastic paraparesis: a neuropsychological and neuroimaging study. Neurosci Lett. 2007;419(2):158–161.
  • Agosta F, et al., Hereditary spastic paraplegia: beyond clinical phenotypes toward a unified pattern of central nervous system damage. Radiology. 2015;276(1): 207–218.
  • Scheuer KH, et al. Reduced regional cerebral blood flow in SPG4-linked hereditary spastic paraplegia. J Neurol Sci. 2005;235(1–2):23–32.
  • Tomberg T, et al. Functional MRI of the cortical sensorimotor system in patients with hereditary spastic paraplegia. Spinal Cord. 2012;50(12):885–890.
  • List J, et al. Ascending axonal degeneration of the corticospinal tract in pure hereditary spastic paraplegia: a cross-sectional DTI study. Brain Sci. 2019; 9(10). 10.3390/brainsci9100268
  • Rezende TJ, et al. Multimodal MRI-based study in patients with SPG4 mutations. PloS one. 2015;10(2):e0117666. PLoS One.
  • Nielsen JE, et al. Autosomal dominant pure spastic paraplegia: a clinical, paraclinical, and genetic study. J Neurol Neurosurg Psychiatry. 1998;64(1):61–66.
  • Warnecke T, et al. A novel splice site mutation in the SPG7 gene causing widespread fiber damage in homozygous and heterozygous subjects. Mov Disord. 2010;25(4):413–420.
  • Lan MY, et al. Clinical and genetic analysis of Taiwanese patients with hereditary spastic paraplegia type 5. Eur J Neurol. 2015;22(1):211–214.
  • Liu SG, et al. Clinical and genetic study of SPG6 mutation in a Chinese family with hereditary spastic paraplegia. J Neurol Sci. 2008;266(1–2):109–114.
  • Alber B, Pernauer M, Schwan A, et al. Spastin related hereditary spastic paraplegia with dysplastic corpus callosum. J Neurol Sci. 2005;236(1–2):9–12.
  • Duning T, et al. Specific pattern of early white-matter changes in pure hereditary spastic paraplegia. Mov Disord. 2010;25(12):1986–1992.
  • Masciullo M, et al. Hereditary spastic paraplegia: novel mutations and expansion of the phenotype variability in SPG56. Eur J Paediatr Neurol. 2016;20(3):444–448.
  • Roos P, et al. CYP7B1: novel mutations and magnetic resonance spectroscopy abnormalities in hereditary spastic paraplegia type 5A. Acta Neurol Scand. 2014;129(5):330–334.
  • Sperfeld AD, Baumgartner A, Kassubek J. Magnetic resonance investigation of the upper spinal cord in pure and complicated hereditary spastic paraparesis. Eur Neurol. 2005;54(4):181–185.
  • Krabbe K, et al. MRI of autosomal dominant pure spastic paraplegia. Neuroradiology. 1997;39(10):724–727.
  • Warnecke T, et al. A novel form of autosomal recessive hereditary spastic paraplegia caused by a new SPG7 mutation. Neurology. 2007;69(4):368–375.
  • Schuurs-Hoeijmakers JH, et al. Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet. 2012;91(6):1073–1081.
  • Hsu SL, et al. Clinical and genetic characterization of hereditary spastic paraplegia type 3A in Taiwan. Parkinsonism Relat Disord. 2021;87. 87–91.
  • Orlacchio A, et al. Late-onset hereditary spastic paraplegia with thin corpus callosum caused by a new SPG3A mutation. J Neurol. 2011;258(7):1361–1363.
  • Mahoney CJ, et al. A novel phenotype of hereditary spastic paraplegia type 7 associated with a compound heterozygous mutation in paraplegin. Muscle Nerve. 2020;62(1):E44–e45.
  • Pedroso JL, et al. SPG7 with parkinsonism responsive to levodopa and dopaminergic deficit.Parkinsonism Relat Disord 2018;47. 88–90.
  • Winner B, et al. Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11). Arch Neurol. 2004;61(1):117–121.
  • Hsu SL, et al. Investigating ZFYVE26 mutations in a Taiwanese cohort with hereditary spastic paraplegia. J Formos Med Assoc. 2021.
  • Coarelli G, et al. Novel homozygous GBA2 mutation in a patient with complicated spastic paraplegia. Clin Neurol Neurosurg. 2018;168:60–63.
  • Pascual B, et al. “Ears of the Lynx” MRI Sign Is Associated with SPG11 and SPG15 hereditary spastic paraplegia. AJNR Am J Neuroradiol. 2019;40(1):199–203.
  • Dong Y, et al. Genetic, clinical and neuroimaging profiles of sporadic and autosomal recessive hereditary spastic paraplegia cases in Chinese.Neurosci Lett. 2021;761. 136108.
  • Hehr U, et al. Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann Neurol. 2007;62(6):656–665.
  • Stevanin G, et al. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain. 2008;131(3):772–784.
  • Dosi C, et al. Neuroimaging patterns in paediatric onset hereditary spastic paraplegias. J Neurol Sci. 2021;425:117441.
  • Pensato V, et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain. 2014;137(Pt 7):1907–1920.
  • Wagner F, et al. Subtle imaging findings aid the diagnosis of adolescent hereditary spastic paraplegia and ataxia. Clin Neuroradiol. 2019;29(2):215–221.
  • Orlén H, et al. SPG11 mutations cause Kjellin syndrome, a hereditary spastic paraplegia with thin corpus callosum and central retinal degeneration. Am J Med Genet B Neuropsychiatr Genet. 2009;150(7):984–992.
  • Samaranch L, et al. SPG11 compound mutations in spastic paraparesis with thin corpus callosum. Neurology. 2008;71(5):332–336.
  • Goizet C, et al. SPG15 is the second most common cause of hereditary spastic paraplegia with thin corpus callosum. Neurology. 2009;73(14):1111–1119.
  • Özdemir TR, et al. A case of spastic paraplegia-15 with a novel pathogenic variant in ZFYVE26 gene. Int J Neurosci. 2019;129(12):1198–1202.
  • Chakrabarty S, et al. Spastizin mutation in hereditary spastic paraplegia with thin corpus callosum. J Neurol. 2016;263(10):2130–2132.
  • Simpson MA, et al. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet. 2003;73(5):1147–1156.
  • Dard R, et al. Mutations in DDHD1, encoding a phospholipase A1, is a novel cause of retinopathy and neurodegeneration with brain iron accumulation. Eur J Med Genet. 2017;60(12):639–642.
  • Hotchkiss L, et al. Novel de novo mutations in KIF1A as a cause of hereditary spastic paraplegia with progressive central nervous system involvement. J Child Neurol. 2016;31(9):1114–1119.
  • Landouré G, et al. Hereditary spastic paraplegia type 35 in a family from Mali. Am J Med Genet A. 2019;179(7):1122–1125.
  • Elsaid MF, et al. NT5C2 novel splicing variant expands the phenotypic spectrum of Spastic Paraplegia (SPG45): case report of a new member of thin corpus callosum SPG-subgroup. BMC Med Genet. 2017;18(1):33.
  • Nakamura-Shindo K, et al. A novel mutation in the GBA2 gene in a Japanese patient with SPG46: a case report. eNeurologicalSci. 2020;19. 100238
  • Blumkin L, et al. A new locus (SPG47) maps to 1p13.2-1p12 in an Arabic family with complicated autosomal recessive hereditary spastic paraplegia and thin corpus callosum. J Neurol Sci. 2011;305(1–2):67–70.
  • Nicita F, et al. Defining the clinical-genetic and neuroradiological features in SPG54: description of eight additional cases and nine novel DDHD2 variants. J Neurol. 2019;266(11):2657–2664.
  • Doi H, et al. Late-onset spastic ataxia phenotype in a patient with a homozygous DDHD2 mutation. Sci Rep. 2014;4(1):7132.
  • Gonzalez M, et al. Mutations in phospholipase DDHD2 cause autosomal recessive hereditary spastic paraplegia (SPG54). Eur J Hum Genet. 2013;21(11):1214–1218.
  • Zaidi SA, et al. The “broken wishbone” splenial sign: a diagnostic hallmark for SPG54 spastic ataxia. J Neurol Sci. 2019;403:114–116.
  • Odake Y, et al. Identification of a novel mutation in ATP13A2 associated with a complicated form of hereditary spastic paraplegia. Neurol Genet. 2020;6(5):e514.
  • Okubo S, et al. Neurological and neuroradiological progression in hereditary spastic paraplegia with a thin corpus callosum. Acta Neurol Scand. 2000;102(3):196–199.
  • Finegan E, et al. The clinical and radiological profile of primary lateral sclerosis: a population-based study. J Neurol. 2019;266(11):2718–2733.
  • Finegan E, et al. Evolving diagnostic criteria in primary lateral sclerosis: the clinical and radiological basis of “probable PLS.” J Neurol Sci. 2020;417:117052.
  • Bede P, Chipika RH. Commissural fiber degeneration in motor neuron diseases. Amyotroph Lateral Scler Frontotemporal Degener; 2020. p. 1–3.
  • Finegan E, et al. Extra-motor cerebral changes and manifestations in primary lateral sclerosis. Brain Imaging Behav. 2021;15(5):2283–2296.
  • Boelmans K, et al. Diffusion tensor imaging of the corpus callosum differentiates corticobasal syndrome from Parkinson’s disease. Parkinsonism Relat Disord. 2010;16(8):498–502.
  • Bogdanova-Mihaylova P, et al. Neurophysiological and ophthalmological findings of SPG7-related spastic ataxia: a phenotype study in an Irish cohort. J Neurol. 2021.
  • Hewamadduma CA, et al. Novel genotype-phenotype and MRI correlations in a large cohort of patients with SPG7 mutations. Neurol Genet. 2018;4(6):e279.
  • Klebe S, et al. Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain. 2012;135(Pt 10):2980–2993.
  • Spagnoli C, et al. Long-term follow-up until early adulthood in autosomal dominant, complex SPG30 with a novel KIF1A variant: a case report. Ital J Pediatr. 2019;45(1):155.
  • Rattay TW, et al. FAHN/SPG35: a narrow phenotypic spectrum across disease classifications. Brain. 2019;142(6):1561–1572.
  • Bettencourt C, et al. Genotype-phenotype correlations and expansion of the molecular spectrum of AP4M1-related hereditary spastic paraplegia. Orphanet J Rare Dis. 2017;12(1):172.
  • Estrada-Cuzcano A, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287–305.
  • Scuderi C, et al. Posterior fossa abnormalities in hereditary spastic paraparesis with spastin mutations. J Neurol Neurosurg Psychiatry. 2009;80(4):440–443.
  • Orlacchio A, et al. A new SPG4 mutation in a variant form of spastic paraplegia with congenital arachnoid cysts. Neurology. 2004;62(10):1875–1878.
  • Chipika RH, et al. Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration. Neural Regen Res. 2022;17(11):2335–2341.
  • Bede P, et al. Genotype-associated cerebellar profiles in ALS: focal cerebellar pathology and cerebro-cerebellar connectivity alterations. J Neurol Neurosurg Psychiatry. 2021;92(11):1197–1205.
  • McKenna MC, et al. Infratentorial pathology in frontotemporal dementia: cerebellar grey and white matter alterations in FTD phenotypes. J Neurol. 2021;268(12):4687–4697.
  • Finegan E, et al. Cerebellar degeneration in primary lateral sclerosis: an under-recognized facet of PLS. Amyotroph Lateral Scler Frontotemporal Degener; 2022. p. 1–12.
  • Hourani R, et al. MR imaging findings in autosomal recessive hereditary spastic paraplegia. AJNR Am J Neuroradiol. 2009;30(5):936–940.
  • Orlacchio A, et al. Silver syndrome variant of hereditary spastic paraplegia: a locus to 4p and allelism with SPG4. Neurology. 2008;70(21):1959–1966.
  • Rubegni A, et al. SPG2 mimicking multiple sclerosis in a family identified using next generation sequencing. J Neurol Sci. 2017;375:198–202.
  • Criscuolo C, et al. Two novel CYP7B1 mutations in Italian families with SPG5: a clinical and genetic study. J Neurol. 2009;256(8):1252–1257.
  • Stromillo ML, et al. Structural and metabolic damage in brains of patients with SPG11-related spastic paraplegia as detected by quantitative MRI. J Neurol. 2011;258(12):2240–2247.
  • Pedroso JL, et al. Fatty acid 2-hydroxylase deficiency: clinical features and brain iron accumulation. Neurology. 2015;84(9):960–961.
  • Ebrahimi-Fakhari D, et al. Clinical and genetic characterization of AP4B1-associated SPG47. Am J Med Genet A. 2018;176(2):311–318.
  • Svenstrup K, et al. Hereditary spastic paraplegia caused by the PLP1 ‘rumpshaker mutation.’ J Neurol Neurosurg Psychiatry. 2010;81(6):666–672.
  • Vecchia SD, et al. Monoallelic KIF1A-related disorders: a multicenter cross sectional study and systematic literature review. J Neurol. 2022;269(1):437–450.
  • Della Vecchia S, et al. Correction to: monoallelic KIF1A-related disorders: a multicenter cross sectional study and systematic literature review. J Neurol. 2022;269(1):451.
  • van Gassen KL, et al. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain. 2012;135(Pt 10):2994–3004.
  • de Freitas JL, et al. Ophthalmological changes in hereditary spastic paraplegia and other genetic diseases with spastic paraplegia. J Neurol Sci. 2020;409:116620.
  • Pfeffer G, et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain. 2014;137(Pt 5):1323–1336.
  • Navas-Sánchez FJ, et al., Tract-specific damage at spinal cord level in pure hereditary spastic paraplegia type 4: a diffusion tensor imaging study. J Neurol. 2022;269(6): 3189–3203.
  • França MCsJr., et al. Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum. Mov Disord. 2007;22(11):1556–1562.
  • Kassubek J, et al., Different regional brain volume loss in pure and complicated hereditary spastic paraparesis: a voxel-based morphometric study. Amyotroph Lateral Scler. 2007;8(6): 328–336.
  • França MCsJr., et al. White and grey matter abnormalities in patients with SPG11 mutations. J Neurol Neurosurg Psychiatry. 2012;83(8):828–833.
  • Aghakhanyan G, et al., Brain white matter involvement in hereditary spastic paraplegias: analysis with multiple diffusion tensor indices. AJNR Am J Neuroradiol. 2014;35(8): 1533–1538.
  • Schneider-Gold C, et al. Monozygotic twins with a new compound heterozygous SPG11 mutation and different disease expression. J Neurol Sci. 2017;381:265–268.
  • Oğuz KK, et al. Tract-based spatial statistics of diffusion tensor imaging in hereditary spastic paraplegia with thin corpus callosum reveals widespread white matter changes. Diagn Interv Radiol. 2013;19(3):181–186.
  • Pan MK, et al. Microstructural integrity of cerebral fiber tracts in hereditary spastic paraparesis with SPG11 mutation. AJNR Am J Neuroradiol. 2013;34(5):990–6, s1.
  • Garaci F, et al. Diffusion tensor imaging in SPG11- and SPG4-linked hereditary spastic paraplegia. Int J Neurosci. 2014;124(4):261–270.
  • Chen Q, et al. Diffusion tensor imaging of two unrelated Chinese men with hereditary spastic paraplegia associated with thin corpus callosum. Neurosci Lett. 2008;441(1):21–24.
  • Cao L, et al. Novel SPG11 mutations in Chinese families with hereditary spastic paraplegia with thin corpus callosum. Parkinsonism Relat Disord. 2013;19(3):367–370.
  • Dreha-Kulaczewski S, et al. Cerebral metabolic and structural alterations in hereditary spastic paraplegia with thin corpus callosum assessed by MRS and DTI. Neuroradiology. 2006;48(12):893–898.
  • Muller HP, et al., Neuroanatomical patterns of cerebral white matter involvement in different motor neuron diseases as studied by diffusion tensor imaging analysis. Amyotroph Lateral Scler. 2012;13(3): 254–264.
  • Unrath A, et al., Whole brain-based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging. Hum Brain Mapp. 2010;31(11): 1727–1740.
  • Tahedl M, et al. Evaluation and categorisation of individual patients based on white matter profiles: single-patient diffusion data interpretation in neurodegeneration. J Neurol Sci. 2021;428:117584.
  • Kim JS, et al. Striatal dopaminergic functioning in patients with sporadic and hereditary spastic paraplegias with parkinsonism. J Korean Med Sci. 2013;28(11):1661–1666.
  • Terada T, et al. SPG3A-linked hereditary spastic paraplegia associated with cerebral glucose hypometabolism. Ann Nucl Med. 2013;27(3):303–308.
  • Ma J, et al. Novel mutations c.[5121_5122insAG]+[6859C>T] of the SPG11 gene associated with cerebellum hypometabolism in a Chinese case of hereditary spastic paraplegia with thin corpus callosum. Parkinsonism Relat Disord. 2014;20(2):256–259.
  • Nielsen JE, et al. Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation. Eur J Neurol. 2004;11(12):817–824.
  • Bede P, et al. Degenerative and regenerative processes in amyotrophic lateral sclerosis: motor reserve, adaptation and putative compensatory changes. Neural Regen Res. 2021;16(6):1208–1209.
  • Abidi M, et al. Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur J Neurol. 2020;27(1):121–128.
  • Scheuer KH, et al. Motor activation in SPG4-linked hereditary spastic paraplegia. J Neurol Sci. 2006;244(1–2):31–39.
  • Fraidakis MJ, et al. Novel compound heterozygous spatacsin mutations in a Greek kindred with hereditary spastic paraplegia spg11 and dementia. Neurodegener Dis. 2016;16(5–6):373–381.
  • Lossos A, et al. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain. 2015;138(Pt 9):2521–2536.
  • Thabet F, Tlili-Graiess K, Tabarki B. Distinct neuroimaging features of DDHD2 gene-related spastic paraplegia, a mimicker of cerebral palsy. Arch Dis Child. 2020;105(5):482.
  • Liao X, et al. Resting state fMRI studies in SPG4-linked hereditary spastic paraplegia. J Neurol Sci. 2018;384:1–6.
  • Koritnik B, et al. Functional changes of the cortical motor system in hereditary spastic paraparesis. Acta Neurol Scand. 2009;120(3):182–190.
  • Liguori R, et al. Impairment of brain and muscle energy metabolism detected by magnetic resonance spectroscopy in hereditary spastic paraparesis type 28 patients with DDHD1 mutations. J Neurol. 2014;261(9):1789–1793.
  • Anheim M, et al. SPG11 spastic paraplegia. A new cause of juvenile parkinsonism. J Neurol. 2009;256(1):104–108.
  • Muller HP, et al. A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(6):570–579.
  • Holland D, McEvoy LK, Dale AM. Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI. Hum Brain Mapp. 2012;33(11):2586–2602.
  • Chipika RH, et al. The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol. 2021;268(12):4607–4629.
  • Lulé DE, et al. Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers-a developmental disorder. J Neurol Neurosurg Psychiatry. 2020;91(11):1195–1200.
  • Rattay TW, et al., The prodromal phase of hereditary spastic paraplegia type 4: the preSPG4 cohort study. Brain, 2022.
  • Grollemund V, et al. Development and validation of a 1-year survival prognosis estimation model for amyotrophic lateral sclerosis using manifold learning algorithm UMAP. Sci Rep. 2020;10(1):13378.
  • Grollemund V, et al. Manifold learning for amyotrophic lateral sclerosis functional loss assessment: development and validation of a prognosis model. J Neurol. 2021;268(3):825–850.
  • Bede P, Murad A, Hardiman O. Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features. J Neurol. 2021.
  • Schuster C, Hardiman O, Bede P. Development of an automated MRI-based diagnostic protocol for amyotrophic lateral sclerosis using disease-specific pathognomonic features: a quantitative disease-state classification study. PLoS One. 2016;11(12):e0167331.
  • Bede P, Chang KM, Tan EL. Machine-learning in motor neuron diseases: prospects and pitfalls. Eur J Neurol. 2022;29(9):2555–2556.
  • McKenna MC, et al. The changing landscape of neuroimaging in frontotemporal lobar degeneration: from group-level observations to single-subject data interpretation. Expert Rev Neurother. 2022;22(3):179–207.
  • Bede P, et al. Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes. J Neurol. 2022;269(8):4404–4413.
  • Dukic S, et al. Resting-state EEG reveals four subphenotypes of amyotrophic lateral sclerosis. Brain. 2022;145(2):621–631.
  • Tahedl M, et al. Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use. J Neurol. 2021;268(5):1913–1926.
  • Tahedl M, et al. Propagation patterns in motor neuron diseases: individual and phenotype-associated disease-burden trajectories across the UMN-LMN spectrum of MNDs. Neurobiol Aging2021;109. 78–87.
  • Finegan E, et al. Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. Neuroimage Clin. 2019;24:102089.
  • Finegan E, et al. Thalamic, hippocampal and basal ganglia pathology in primary lateral sclerosis and amyotrophic lateral sclerosis: evidence from quantitative imaging data. Data Brief. 2020;29. 105115.
  • Bede P, et al. Primary lateral sclerosis: clinical, radiological and molecular features. Rev Neurol (Paris). 2021;178(3):196–205.
  • Christidi F, et al. Neurometabolic alterations in motor neuron disease: insights from magnetic resonance spectroscopy. J Integr Neurosci. 2022;21(3):87.
  • Govind V, et al. Comprehensive evaluation of corticospinal tract metabolites in amyotrophic lateral sclerosis using whole-brain 1H MR spectroscopy. PLoS One. 2012;7(4):e35607.
  • Meier JM, et al. Connectome-based propagation model in amyotrophic lateral sclerosis. Ann Neurol. 2020;87(5):725–738.
  • Abidi M, et al. Neural correlates of motor imagery of gait in amyotrophic lateral sclerosis. J Magn Reson Imaging. 2021;53(1):223–233.
  • Conte G, et al. Amyotrophic lateral sclerosis phenotypes significantly differ in terms of magnetic susceptibility properties of the precentral cortex. Eur Radiol. 2021;31(7):5272–5280.
  • Li Hi Shing S, et al. Cerebellar remodelling decades after spinal cord insult: neuroplasticity in poliomyelitis survivors. J Integr Neurosci. 2021.
  • McKenna MC, et al. frontotemporal pathology in motor neuron disease phenotypes: insights from neuroimaging.Front Neurol. 2021; 12. 723450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.