72
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical utilization of airway inflammatory biomarkers in the prediction and monitoring of clinical outcomes in patients with chronic obstructive pulmonary disease

, & ORCID Icon
Pages 409-421 | Received 13 Jan 2024, Accepted 15 Apr 2024, Published online: 17 May 2024

References

  • Singh D, Agusti A, Anzueto A et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J. 2019 May;53(5):1900164.
  • Stockley RA, Halpin DMG, Celli BR, et al. Chronic obstructive pulmonary disease biomarkers and their interpretation. Am J Respir Crit Care Med. 2019 May;199(10):1195–1204. doi: 10.1164/RCCM.201810-1860SO
  • Agustí A, Celli BR, Criner GJ, et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur Respir J. 2023 Apr;61(4):2300239.
  • Varmaghani M, Dehghani M, Heidari E, et al. Global prevalence of chronic obstructive pulmonary disease: systematic review and meta-analysis. East Mediterr Health J. 2019;25(1):47–57. doi:10.26719/EMHJ.18.014
  • Viegi G, Maio S, Fasola S, et al. Global burden of chronic respiratory diseases. J Aerosol Med Pulmonary Drug Delivery. 2020 Jul;33(4):171–177. doi: 10.1089/JAMP.2019.1576
  • Jones TPW, Brown J, Hurst JR, et al. COPD exacerbation phenotypes in a real-world five year hospitalisation cohort. Respir med. 2020 Jun;167:105979. doi: 10.1016/J.RMED.2020.105979
  • Donaldson GC, Seemungal TAR, Bhowmik A, et al. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002 Oct;57(10):847–852. doi: 10.1136/THORAX.57.10.847
  • Spencer S, Calverley PMA, Burge PS, et al. Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004 May;23(5):698–702. doi: 10.1183/09031936.04.00121404
  • Lapperre T, Bodtger, U, Klein, DK et al. Dysfunctional breathing impacts symptom burden in Chronic Obstructive Pulmonary Disease (COPD). Eur Respir J. 2020 Sep;56(suppl 64):124. doi: 10.1183/13993003.CONGRESS-2020.124
  • Lewthwaite H, Jensen D, Ekström M. How to assess breathlessness in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2021;16:1581–1598. doi: 10.2147/COPD.S277523
  • O’Donnell DE, Milne KM, James MD, et al. Dyspnea in COPD: new mechanistic insights and management implications. Adv Ther. 2020 Jan;37(1):41–60. doi: 10.1007/S12325-019-01128-9
  • Carter JA, Burke HB. CRP-Guided antibiotic therapy for acute COPD exacerbation: a randomized control trial. J Gen Intern Med. 2021 Jul;36(7):2194–2196. doi: 10.1007/S11606-020-06053-0
  • Celli BR, Locantore, N, Yates J. et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012 May;185(10):1065–1072. doi: 10.1164/RCCM.201110-1792OC
  • Mirza S, Benzo R. Chronic obstructive pulmonary disease phenotypes: implications for care. Mayo Clin Proc. 2017 Jul;92(7):1104–1112. doi: 10.1016/J.MAYOCP.2017.03.020
  • Szalontai K, Gémes N, Furák J, et al. Chronic obstructive pulmonary disease: epidemiology, biomarkers, and paving the way to lung cancer. J Clin Med. 2021 Jul;10(13):2889.
  • Saetta M, Di stefano A, TURATO G, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(3):822–826. doi: 10.1164/AJRCCM.157.3.9709027
  • Di Stefano A, Capelli A, Lusuardi M, et al. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med. 1998;158(4):1277–1285. doi: 10.1164/AJRCCM.158.4.9802078
  • George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis. 2016;7(1):34–51. doi: 10.1177/2040622315609251
  • Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir. Aug 2019;54(2). doi: 10.1183/13993003.00651-2019
  • Tilley AE, Walters MS, Shaykhiev R, et al. Cilia dysfunction in lung disease. Annu Rev Physiol. 2015 Feb;77:379–406. doi: 10.1146/ANNUREV-PHYSIOL-021014-071931
  • Bosken CH, Wiggs BR, Pare PD, et al. Small airway dimensions in smokers with obstruction to airflow. Am Rev Respir Dis. 1990;142(3):563–570. doi: 10.1164/AJRCCM/142.3.563
  • Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004 Jun;350(26):2645–2653.
  • Paplińska-Goryca M, Nejman-Gryz P, Górska K, et al. Expression of Inflammatory Mediators in Induced Sputum: Comparative Study in Asthma and COPD. Adv Exp Med Biol. 2018;1040:101–112. doi: 10.1007/5584_2016_165
  • Siva R, Green RH, Brightling CE, et al. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J. 2007 May;29(5):906–913.
  • Wang Y, Xu J, Meng Y, et al. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:3341–3348. doi: 10.2147/COPD.S176122
  • Proboszcz M, Mycroft K, Paplinska-Goryca M, et al. Relationship between blood and induced sputum eosinophils, bronchial hyperresponsiveness and reversibility of airway obstruction in mild-to-moderate chronic obstructive pulmonary disease. COPD: J Chronic Obstructive Pulmonary Dis. 2019 Nov;16(5–6):354–361.
  • Brightling CE. Chronic obstructive pulmonary disease phenotypes, biomarkers, and prognostic indicators. Allergy asthma proc. 2016 Nov;37(6):432–438. doi: 10.2500/AAP.2016.37.3996
  • Scambler T, Holbrook J, Savic S, et al. Autoinflammatory disease in the lung. Immunology. 2018 Aug;154(4):563–573. doi: 10.1111/IMM.12937
  • Alobaidi N, Stockley J, Stockley R, et al. An overview of exacerbations of chronic obstructive pulmonary disease: can tests of small airways’ function guide diagnosis and management?. Ann Thorac Med. 2020 Apr;15(2):54. doi: 10.4103/ATM.ATM_323_19
  • P. Jones P Jones W, and Forde Y, ST george’s respiratory questionnaire for copd patients (SGRQ-C) Manual. 2023 [cited 2024 Jan 11]. Available from: http://chestjournal.chestpubs.org/content/132/2/456.full.html
  • Jones PW, Harding G, Berry P, et al. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009 Sep;34(3):648–654. doi: 10.1183/09031936.00102509
  • Jones PW, Shahrour N, Nejjari C, et al. Psychometric evaluation of the COPD assessment test: data from the BREATHE study in the Middle East and North Africa region. Respir med. 2012 Dec;106(SUPPL. 2):S86–S99.
  • Jones PW, Brusselle G, Dal Negro RW, et al. Properties of the COPD assessment test in a cross-sectional European study. Eur Respir J. 2011 Jul;38(1):29–35.
  • Il Gil H, Zo S, Jones PW, et al. Clinical characteristics of COPD patients according to COPD assessment test (CAT) score level: cross-sectional study. Int J Chron Obstruct Pulmon Dis. 2021;16:1509–1517. doi: 10.2147/COPD.S297089
  • Kelly JL, Bamsey O, Smith C, et al. Health status assessment in routine clinical practice: the chronic obstructive pulmonary disease assessment test score in outpatients. Respiration. 2012 Aug;84(3):193–199.
  • Pothirat C, Chaiwong W, Deesomchok A, et al. Detection of acute deterioration in health status visit among COPD patients by monitoring COPD assessment test score. Int J Chron Obstruct Pulmon Dis. 2015 Feb;10:277–282. doi: 10.2147/COPD.S76128
  • Corlateanu A, Plahotniuc A, Corlateanu O, et al. Multidimensional indices in the assessment of chronic obstructive pulmonary disease. Respir med. 2021 Aug;185:106519. doi: 10.1016/J.RMED.2021.106519
  • Celli B, Tetzlaff K, Criner G, et al. The 6-Minute-Walk Distance Test as a Chronic Obstructive Pulmonary Disease Stratification Tool. Insights from the COPD Biomarker Qualification Consortium. Am J Respir Crit Care Med. 2016 Dec;194(12):1483–1493.
  • Pinto-Plata VM, Cote C, Cabral H, et al. The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. Eur Respir J. 2004 Jan;23(1):28–33. doi: 10.1183/09031936.03.00034603
  • Casanova C, Cote C, Marin JM, et al. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest. 2008;134(4):746–752. doi: 10.1378/CHEST.08-0520
  • McDonald VM, Gibson PG. Treatable Traits in Asthma and COPD. Arch Bronconeumol. 2022 Aug;58(8):583–585. doi: 10.1016/J.ARBRES.2021.07.003
  • Papi A, ROMAGNOLI M, BARALDO S, et al. Partial reversibility of airflow limitation and increased exhaled NO and sputum eosinophilia in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162(5):1773–1777. doi: 10.1164/AJRCCM.162.5.9910112
  • Caramori G, Casolari P, Barczyk A, et al. COPD immunopathology. Semin Immunopathol. 2016 Jul;38(4):497–515. doi: 10.1007/S00281-016-0561-5
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016 Jul;138(1):16–27. doi: 10.1016/J.JACI.2016.05.011
  • Antus B, Paska C, Barta I. Predictive Value of Exhaled Nitric Oxide and Blood Eosinophil Count in the Assessment of Airway Eosinophilia in COPD. Int J Chron Obstruct Pulmon Dis. 2020;15:2025–2035. doi:10.2147/COPD.S257965
  • Eickmeier O, Huebner M, Herrmann E, et al. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine. 2010 May;50(2):152–157.
  • Esther CR, O’Neal WK, Anderson WH, et al. Identification of sputum biomarkers predictive of pulmonary exacerbations in COPD. Chest. 2022 May;161(5):1239–1249.
  • Blood and sputum biomarkers in COPD and asthma: a review - PubMed. [cited 2024 Jan 11]. Available from: https://pubmed.ncbi.nlm.nih.gov/26957273/
  • Simpson JL, Scott R, Boyle MJ, et al. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology. 2006 Jan;11(1):54–61. doi: 10.1111/J.1440-1843.2006.00784.X
  • Brightling CE, Bleecker ER, Panettieri RA, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. The Lancet Respiratory Medicine. 2014;2(11):891–901. doi: 10.1016/S2213-2600(14)70187-0
  • Eltboli O, Bafadhel M, Hollins F, et al. COPD exacerbation severity and frequency is associated with impaired macrophage efferocytosis of eosinophils. BMC Pulm Med. 2014 Jul;14(1). doi: 10.1186/1471-2466-14-112
  • Chen M, Xu K, He Y, et al. CC16 as an inflammatory biomarker in induced sputum reflects chronic obstructive pulmonary disease (COPD) severity. Int J Chron Obstruct Pulmon Dis. 2023;18:705–717. doi: 10.2147/COPD.S400999
  • Ghebre MA, Bafadhel M, Desai D, et al. Biological clustering supports both “Dutch” and “British” hypotheses of asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015 Jan;135(1):63–72.e10.
  • Kim YW, Kwon BS, Lim SY, et al. Diagnostic value of bronchoalveolar lavage and bronchial washing in sputum-scarce or smear-negative cases with suspected pulmonary tuberculosis: a randomized study. Clin Microbiol Infect. 2020 Jul;26(7):911–916.
  • Patel PH, Antoine MH, Ullah S, Bronchoalveolar Lavage StatPearls. 2022 Aug [cited 2024 Jan 11]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430762/
  • Rutgers SR, Timens W, Kaufmann HF, et al. Comparison of induced sputum with bronchial wash, bronchoalveolar lavage and bronchial biopsies in COPD. Eur Respir J. 2000 Jan;15(1):109–115. doi: 10.1183/09031936.00.15110900
  • Yang H, Wen X, Wu F, et al. Inter-relationships among neutrophilic inflammation, air trapping and future exacerbation in COPD: an analysis of ECOPD study. BMJ Open Respir Res. 2023 Apr;10(1):e001597.
  • Sharma K, Neutrophil-Lymphocyte Ratio as a Section Predictor of COPD Exacerbations: A Cross-sectional Study. [cited 2024 Jan 11]. Available from: https://jcdr.net/articles/PDF/17337/59293_CE(AD)_F(IS)_PF1(SC_KM)_PFA(SC_KM)_PN(KM).pdf
  • Ryu MH, Yun JH, Morrow JD, et al. Blood gene expression and immune cell subtypes associated with chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2023 Aug;208(3):247–255.
  • Singh R, Belchamber KBR, Fenwick PS, et al. Defective monocyte-derived macrophage phagocytosis is associated with exacerbation frequency in COPD. Respir Res. 2021 Dec;22(1):1–11.
  • Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5(SEP). doi: 10.3389/FIMMU.2014.00435
  • Frankenberger M, Eder C, Hofer TPJ, et al. Chemokine expression by small sputum macrophages in COPD. Mol Med. 2011 Jul;17(7–8):762–770.
  • Papi A, Bellettato CM, Braccioni F, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006 May;173(10):1114–1121.
  • Tinè M, Neri T, Biondini D, et al. Do Circulating extracellular vesicles strictly reflect bronchoalveolar lavage extracellular vesicles in COPD? Int J Mol Sci. 2023 Feb;24(3):2966.
  • Tan WC, Bourbeau J, Nadeau G, et al. High eosinophil counts predict decline in FEV1: results from the CanCOLD study. Eur Respir J. 2021 May;57(5):2000838.
  • Zhang Y, Liang L-R, Zhang S, et al. Blood eosinophilia and Its stability in hospitalized COPD exacerbations are associated with lower risk of all-cause mortality. Int J COPD. 2020;15:1123–1134. doi: 10.2147/COPD.S245056
  • Kersul AL, Iglesias A, Ríos Á, et al. Mecanismos moleculares de inflamación durante las agudizaciones de la enfermedad pulmonar obstructiva crónica. Arch Bronconeumol. 2011 Apr;47(4):176–183.
  • Li J, Liang L, Feng L, et al. The prognostic value of blood eosinophil level in AECOPD is influenced by corticosteroid treatment during hospitalization. J Inflamm Res. 2023;16:3233–3243. doi: 10.2147/JIR.S421605
  • Cui Y, Chen Y. Blood eosinophils in chronic obstructive pulmonary disease: A potential biomarker. J Transl Int Med. 2023 Sep;11(3):193–197. doi: 10.2478/JTIM-2023-0096
  • Bafadhel M, McKenna S, Terry S, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011 Sep;184(6):662–671.
  • Bafadhel M, McKenna S, Terry S, et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am J Respir Crit Care Med. 2012 Jul;186(1):48–55.
  • Singh D, Kolsum U, Brightling CE, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014 Dec;44(6):1697–1700. doi: 10.1183/09031936.00162414
  • Christenson SA, Steiling K, van den Berge M, et al. Asthma–COPD Overlap. clinical relevance of genomic signatures of Type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015 Apr;191(7):758–766.
  • Fujimoto K, Yasuo M, Urushibata K, et al. Airway inflammation during stable and acutely exacerbated chronic obstructive pulmonary disease. Eur Respir J. 2005 Apr;25(4):640–646. doi: 10.1183/09031936.05.00047504
  • Hastie AT, Martinez FJ, Curtis JL, et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017 Dec;5(12):956–967.
  • Negewo NA, McDonald V, Baines K, et al. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD. Int J Chron Obstruct Pulmon Dis. 2016 Jul;11(1):1495–1504.
  • Ho CMG, Milne S, Li X, et al. Airway eosinophilia on bronchoalveolar lavage and the risk of exacerbations in COPD. Biomedicines. 2022 Jun;10(6):1412.
  • Safwat T, El-Sheikh M, El-Sayed A, et al. Peripheral blood eosinophil count as a biomarker of exacerbation in stable chronic obstructive pulmonary disease outpatients: a prospective observational study. Egypt J Chest Dis Tuberc. 2023;72(3):313. doi:10.4103/ECDT.ECDT_120_22
  • Zanini A, Cherubino F, Zampogna E, et al. Bronchial hyperresponsiveness, airway inflammation, and reversibility in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015 Jun;10:1155–1161. doi: 10.2147/COPD.S80992
  • Brutsche MH, Downs, SH, Schindler, C et al. Bronchial hyperresponsiveness and the development of asthma and COPD in asymptomatic individuals: SAPALDIA Cohort Study. Thorax. 2006 Aug;61(8):671–677. doi: 10.1136/THX.2005.052241
  • Nerpin E, Ferreira DS, Weyler J, et al. Bronchodilator response and lung function decline: Associations with exhaled nitric oxide with regard to sex and smoking status. World Allergy Organ J. 2021 May;14(5):100544.
  • Hancox RJ, Pavord ID, Sears MR. Associations between blood eosinophils and decline in lung function among adults with and without asthma. Eur Respir J. 2018 Apr;51(4). doi: 10.1183/13993003.02536-2017
  • Vedel-Krogh S, Nielsen SF, Lange P, et al. Blood eosinophils and exacerbations in chronic obstructive pulmonary disease. the copenhagen general population Study. Am J Respir Crit Care Med. 2016 May;193(9):965–974. doi: 10.1164/RCCM.201509-1869OC
  • Yun JH, Lamb A, Chase R, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018 Jun;141(6):2037–2047.e10.
  • Komura M, Sato T, Suzuki Y, et al. Blood eosinophil count as a predictive biomarker of chronic obstructive pulmonary disease exacerbation in a real-world setting. Can Respir J. 2023;2023:1–8. doi: 10.1155/2023/3302405
  • Cui Y, Zhang W, Ma Y, et al. Stability of blood eosinophils in acute exacerbation of chronic obstructive pulmonary disease and its relationship to clinical outcomes: a prospective cohort study. Respir Res. 2021 Dec;22(1). doi: 10.1186/S12931-021-01888-5
  • Alcázar-Navarrete B, Díaz-Lopez JM, García-Flores P, et al. T2 Biomarkers as predictors of exacerbations of chronic obstructive pulmonary disease. Arch Bronconeumol. 2022 Aug;58(8):595–600.
  • Csoma B, Bikov A, Tóth F, et al. Blood eosinophils on hospital admission for COPD exacerbation do not predict the recurrence of moderate and severe relapses. ERJ Open Res. 2021;7(1):1–8. doi: 10.1183/23120541.00543-2020
  • Lázár Z, Kelemen A, Gálffy G, et al. Central and peripheral airway nitric oxide in patients with stable and exacerbated chronic obstructive pulmonary disease. J Breath Res. 2018 May;12(3):036017. doi: 10.1088/1752-7163/AAC10A
  • Kostakou E, Kaniaris, E., Filiou, E et al. Acute severe asthma in adolescent and adult patients: current perspectives on assessment and management. J Clin Med. 2019 Sep;8(9):1283.
  • Busse WW, Wenzel SE, Casale TB, et al. Baseline FeNO as a prognostic biomarker for subsequent severe asthma exacerbations in patients with uncontrolled, moderate-to-severe asthma receiving placebo in the LIBERTY ASTHMA QUEST study: a post-hoc analysis. Lancet Respir Med. 2021 Oct;9(10):1165–1173.
  • Ricciardolo FLM, Sorbello V, Ciprandi G. A pathophysiological approach for FeNO: A biomarker for asthma. Allergol Immunopathol (Madr). 2015 Nov;43(6):609–616. doi: 10.1016/J.ALLER.2014.11.004
  • Gulati K, Thokchom SK, Ray A, et al. Nitric oxide as a diagnostic and therapeutic tool in respiratory diseases. Adv Biochem Health Disease. 2023;22:223–248. doi: 10.1007/978-3-031-24778-1_11
  • Malerba M, Radaeli A, Olivini A, et al. Exhaled nitric oxide as a biomarker in COPD and related comorbidities. Biomed Res Int. 2014;2014:1–7. doi: 10.1155/2014/271918
  • Ragnoli B, Radaeli A, Pochetti P, et al. Fractional nitric oxide measurement in exhaled air (FeNO): perspectives in the management of respiratory diseases. Ther Adv Chronic Dis. 2023 Jan;14. doi: 10.1177/20406223231190480
  • Ruzsics I, Nagy L, Keki S, et al. L-Arginine pathway in COPD patients with acute exacerbation: a new potential biomarker. COPD: J Chronic Obstructive Pulmonary Dis. 2016 Mar;13(2):139–145.
  • Zhou A, Zhou Z, Deng D, et al. The value of FENO measurement for predicting treatment response in patients with acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2020;15:2257–2266. doi: 10.2147/COPD.S263673
  • Río Ramírez MT, Juretschke Moragues MA, Fernández González R, et al. Value Of exhaled nitric oxide (FeNO) and eosinophilia during the exacerbations of chronic obstructive pulmonary disease requiring hospital admission. COPD: J Chronic Obstructive Pulmonary Dis. 2018 Jul;15(4):369–376.
  • Bafadhel M, Peterson S, De Blas MA, et al. Predictors of exacerbation risk and response to budesonide in patients with chronic obstructive pulmonary disease: a post-hoc analysis of three randomised trials. Lancet Respir Med. 2018 Feb;6(2):117–126.
  • Liu Y, Ma G, Mou Y, et al. The combined value of Type2 inflammatory markers in chronic obstructive pulmonary disease. J Clin Med. 2022 May;11(10):2791.
  • Alcázar-Navarrete B, Rodríguez OR, Baena PC, et al. Persistently elevated exhaled nitric oxide fraction is associated with increased risk of exacerbation in COPD. Eur Respir J. 2018;51(1). doi: 10.1183/13993003.01457-2017
  • Schumann DM, Papakonstantinou E, Kostikas K, et al. Variability of fractional exhaled nitric oxide is associated with the risk and aetiology of COPD exacerbations. Respirology. 2023 May;28(5):445–454. doi: 10.1111/RESP.14439
  • Högman M, Thornadtsson A, Bröms K, et al. Different relationships between FENO and COPD characteristics in smokers and ex-smokers. COPD: J Chronic Obstructive Pulmonary Dis. 2019 Jul;16(3–4):227–233.
  • Gong S, Pu Y, Xie L, et al. Fraction of exhaled nitric oxide is elevated in patients with stable chronic obstructive pulmonary disease: a meta-analysis. Am J Med Sci. 2020 Aug;360(2):166–175. doi: 10.1016/J.AMJMS.2020.04.038
  • Chan MC, Yeung YC, Yu ELM, et al. Blood eosinophil and risk of exacerbation in chronic obstructive pulmonary disease patients: a retrospective cohort analysis. Int J Chron Obstruct Pulmon Dis. 2020;15:2869–2877. doi:10.2147/COPD.S268018
  • Siddiqui SH, Guasconi A, Vestbo J, et al. Blood Eosinophils: a biomarker of response to extrafine beclomethasone/formoterol in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015 Aug;192(4):523–525.
  • Pascoe S, Locantore N, Dransfield MT, et al. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med. 2015 Jun;3(6):435–442. doi: 10.1016/S2213-2600(15)00106-X
  • Chou KT, Su K-C, Huang S-F, et al. Exhaled nitric oxide predicts eosinophilic airway inflammation in COPD. Lung. 2014;192(4):499–504. doi: 10.1007/S00408-014-9591-8
  • Kostikas K, Papathanasiou E, Papaioannou AI, et al. Blood eosinophils as predictor of outcomes in patients hospitalized for COPD exacerbations: a prospective observational study. Biomarkers. 2021;26(4):354–362. doi: 10.1080/1354750X.2021.1903998
  • Soter S, Barta I, Antus B. Predicting sputum eosinophilia in exacerbations of COPD using exhaled nitric oxide. Inflammation. 2013 Oct;36(5):1178–1185. doi: 10.1007/S10753-013-9653-8
  • Barnes NC, Sharma R, Lettis S, et al. Blood eosinophils as a marker of response to inhaled corticosteroids in COPD. Eur Respir J. 2016 May;47(5):1374–1382. doi: 10.1183/13993003.01370-2015
  • Brightling CE, McKenna, S, Hargadon, B et al. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax. 2005 Mar;60(3):193–198. doi: 10.1136/THX.2004.032516
  • Singh D, Wedzicha JA, Siddiqui S, et al. Blood eosinophils as a biomarker of future COPD exacerbation risk: pooled data from 11 clinical trials. Respir Res. 2020 Sep;21(1). doi: 10.1186/S12931-020-01482-1
  • Mathioudakis AG, Bikov A, Foden P, et al. Change in blood eosinophils following treatment with inhaled corticosteroids may predict long-term clinical response in COPD. Eur Respir J. 2020 Apr;55(5):1902119.
  • Vincken S, Sylvia V, Daniel S, et al. The role of FeNO in stable COPD patients with eosinophilic airway inflammation. Respir med. 2021 May;181. doi: 10.1016/J.RMED.2021.106377
  • Yamaji Y, Oishi K, Hamada K, et al. Detection of type2 biomarkers for response in COPD. J Breath Res. 2020;14(2):026007. doi: 10.1088/1752-7163/AB71A4
  • Kunisaki KM, Rice KL, Janoff EN, et al. Exhaled nitric oxide, systemic inflammation, and the spirometric response to inhaled fluticasone propionate in severe chronic obstructive pulmonary disease: a prospective study. Ther Adv Respir Dis. 2008;2(2):55–64. doi: 10.1177/1753465808088902
  • Akamatsu K, Matsunaga K, Sugiura H, et al. Improvement of airflow limitation by fluticasone propionate/salmeterol in chronic obstructive pulmonary disease: what is the specific marker?. Front Pharmacol. 2011;2. doi: 10.3389/FPHAR.2011.00036
  • Pavord, ID, Chanez, P, Criner, GJ et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med. 2017 Jan;377(10):986–987.
  • Criner GJ, Celli BR, Brightling CE, et al. Benralizumab for the prevention of COPD exacerbations. N Engl J Med. 2019 Sep;381(11):1023–1034.
  • Bhatt SP, Rabe KF, Hanania NA, et al. Dupilumab for COPD with type 2 inflammation indicated by eosinophil counts. N Engl J Med. 2023 Jul;389(3):205–214. doi: 10.1056/NEJMOA2303951
  • Press Release: Dupixent® significantly reduced COPD exacerbations in second positive Phase 3 trial, accelerating FDA submission and confirming potential to become first approved biologic for this serious disease. [cited 2024 Jan 12]. Available from: https://www.sanofi.com/en/media-room/press-releases/2023/2023-11-27-06-30-00-2785836
  • 2023 GINA Main Report - Global Initiative for Asthma - GINA. [cited 2024 Mar 3]. Available from: https://ginasthma.org/2023-gina-main-report/
  • Barrecheguren M, Pinto L, Mostafavi‐Pour‐Manshadi SMY, et al. Identification and definition of asthma–COPD overlap: The CanCOLD study. Respirology. 2020 Aug;25(8):836–849.
  • Sin DD, Miravitlles M, Mannino DM, et al. What is asthma−COPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur Respir J. 2016 Sep;48(3):664–673.
  • Leung C, Sin DD. Asthma-COPD overlap: what are the important questions?. Chest. 2022 Feb;161(2):330–344. doi: 10.1016/j.chest.2021.09.036
  • Alsayed AR, Abu-Samak MS, Alkhatib M. Asthma-COPD Overlap in clinical practice (ACO_CP 2023): toward precision medicine. J Pers Med. 2023 Apr;13(4):677. doi: 10.3390/JPM13040677
  • Andreeva E, Pokhaznikova M, Lebedev A, et al. Spirometry is not enough to diagnose COPD in epidemiological studies: a follow-up study. NPJ Prim Care Respir Med. 2017 Dec;27(1). doi: 10.1038/S41533-017-0062-6
  • Park J, Hobbs BD, Crapo JD, et al. Subtyping COPD by using visual and quantitative CT imaging features. Chest. 2020 Jan;157(1):47–60.
  • Singla S, Gong M, Riley C, et al. Improving clinical disease subtyping and future events prediction through a chest CT-based deep learning approach. Med Phys. 2021 Mar;48(3):1168–1181. doi: 10.1002/MP.14673
  • Telenga ED, Oudkerk M, van Ooijen PMA, et al. Airway wall thickness on HRCT scans decreases with age and increases with smoking. BMC Pulm Med. 2017 Feb;17(1). doi: 10.1186/S12890-017-0363-0
  • Grydeland TB, Dirksen A, Coxson HO, et al. Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J. 2009 Oct;34(4):858–865.
  • Kahnert K, Jörres RA, Kauczor H-U, et al. Standardized airway wall thickness Pi10 from routine CT scans of COPD patients as imaging biomarker for disease severity, lung function decline, and mortality. Ther Adv Respir Dis. 2023 Jan;17:175346662211486. doi: 10.1177/17534666221148663
  • Charbonnier JP, Pompe E, Moore C, et al. Airway wall thickening on CT: relation to smoking status and severity of COPD. Respir med. 2019 Jan;146:36. doi: 10.1016/J.RMED.2018.11.014
  • Arakawa H, Fujimoto K, Fukushima Y, et al. Thin-section CT imaging that correlates with pulmonary function tests in obstructive airway disease. Eur J Radiol. 2011 Nov;80(2). doi: 10.1016/J.EJRAD.2010.06.010
  • Nakano Y, Muro S, Sakai H, et al. Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med. 2000;162(3):1102–1108. doi: 10.1164/AJRCCM.162.3.9907120
  • Hasegawa M, Nasuhara Y, Onodera Y, et al. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006 Jun;173(12):1309–1315.
  • Lynch DA, Austin JHM, Hogg JC, et al. CT-Definable subtypes of chronic obstructive pulmonary disease: a statement of the fleischner society. Radiology. 2015 May;277(1):192–205.
  • Johannessen A, Skorge TD, Bottai M, et al. Mortality by level of emphysema and airway wall thickness. Am J Respir Crit Care Med. 2013 Mar;187(6):602–608.
  • Crossley D, Renton M, Khan M, et al., CT densitometry in emphysema: a systematic review of its clinical utility. Int J Chron Obstruct Pulmon Dis. 2018 Feb;13:547–563. doi: 10.2147/COPD.S143066
  • Schroeder JD, McKenzie AS, Zach JA, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol. 2013 Sep;201(3):W460–W470.
  • Grydeland TB, Thorsen E, Dirksen A, et al. Quantitative CT measures of emphysema and airway wall thickness are related to D(L)CO. Respir med. 2011 Mar;105(3):343–351.
  • Nambu A, Zach J, Kim SS, et al. Significance of low-attenuation cluster analysis on quantitative CT in the evaluation of chronic obstructive pulmonary disease. Korean J Radiol. 2018 Jan;19(1):139–146.
  • Mohamed Hoesein FAA, Schmidt M, Mets OM, et al. Discriminating dominant computed tomography phenotypes in smokers without or with mild COPD. Respir med. 2014 Jan;108(1):136–143.
  • Galbán CJ, Han MK, Boes JL, et al. Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012 Nov;18(11):1711–1715.
  • Bodduluri S, Reinhardt JM, Hoffman EA, et al. Signs of gas trapping in normal lung density regions in smokers. Am J Respir Crit Care Med. 2017 Dec;196(11):1404–1410.
  • Chung KF, Cytokines in chronic obstructive pulmonary disease - pubMed. [cited 2024 Jan 11]. Available from: https://pubmed.ncbi.nlm.nih.gov/12392035/
  • Bhowmik A, Seemungal TAR, Sapsford RJ, et al. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax. 2000;55(2):114–120. doi:10.1136/THORAX.55.2.114
  • Mercer PF, Shute JK, Bhowmik A, et al. MMP-9, TIMP-1 and inflammatory cells in sputum from COPD patients during exacerbation. Respir Res. 2005 Dec;6(1):1–9.
  • Wells JM, Parker MM, Oster RA, et al. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight. 2018 Nov;3(22). doi: 10.1172/JCI.INSIGHT.123614
  • Dasgupta A, Chakraborty R, Saha B, et al. Sputum protein biomarkers in airway diseases: a pilot study. Int J Chron Obstruct Pulmon Dis. 2021 Jul;16:2203–2215. doi: 10.2147/COPD.S306035
  • Mallia-Milanes B, Dufour A, Philp C, et al. TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations. Am J Physiol Lung Cell Mol Physiol. 2018 Dec;315(6):L1003–L1014.
  • Fang H, Liu Y, Yang Q, et al. Prognostic biomarkers based on proteomic technology in COPD: a recent review. Int J COPD. 2023;18:1353–1365. doi: 10.2147/COPD.S410387
  • Broeckaert F, Bernard A. Clara cell secretory protein (CC16): characteristics and perspectives as lung peripheral biomarker. Clin Exp Immunol. 2000 Apr;30(4):469–475. doi: 10.1046/J.1365-2222.2000.00760.X
  • Shijubo N, Itoh Y, Yamaguchi T, et al. Serum and BAL Clara cell 10 kDa protein (CC10) levels and CC10-positive bronchiolar cells are decreased in smokers. Eur Respir J. 1997;10(5):1108–1114. doi: 10.1183/09031936.97.10051108
  • Ravi AK, Khurana S, Lemon J, et al. Increased levels of soluble interleukin-6 receptor and CCL3 in COPD sputum. Respir Res. 2014 Sep;15(1). doi: 10.1186/S12931-014-0103-4
  • Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008 Jun;31(6):1334–1356. doi: 10.1183/09031936.00018908
  • Gernez Y, Tirouvanziam R, Chanez P. Neutrophils in chronic inflammatory airway diseases: can we target them and how? Eur Respir J. 2010;35(3):467–469. doi: 10.1183/09031936.00186109
  • Jacob F, Novo CP, Bachert C, et al. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal. 2013 Sep;9(3):285–306. doi: 10.1007/S11302-013-9357-4
  • Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006 Mar;440(7081):228–232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.