87
Views
0
CrossRef citations to date
0
Altmetric
Original Research

A novel anoikis-related signature predicts prognosis risk and treatment responsiveness in diffuse large B-cell lymphoma

, , , , & ORCID Icon
Pages 439-457 | Received 02 Jun 2023, Accepted 05 Mar 2024, Published online: 11 May 2024

References

  • Pasqualucci L, Dalla-Favera R. Genetics of diffuse large B-cell lymphoma. Blood. 2018;131(21):2307–2319. doi: 10.1182/blood-2017-11-764332B1
  • Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–511. doi: 10.1038/35000501
  • Ennishi D, Hsi ED, Steidl C, et al. Toward a new molecular taxonomy of diffuse large B-cell lymphoma. Cancer Discov. 2020;10(9):1267–1281. doi: 10.1158/2159-8290.CD-20-0174
  • Uczkowski D, Ashraf H, Cherry M, et al. Gray zone lymphoma: a case report and comprehensive review of literature. Leuk Res Rep. 2023;19:100372. doi: 10.1016/j.lrr.2023.100372
  • Castillo JJ, Beltran BE, Malpica L, et al. Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK + LBCL): a systematic review of clinicopathological features and management. Leukemia Lymphoma. 2021;62(12):2845–2853. doi: 10.1080/10428194.2021.1941929
  • Patriarca A, Gaidano G. Investigational drugs for the treatment of diffuse large B-cell lymphoma. Expert Opin Investig Drugs. 2021;30(1):25–38. doi: 10.1080/13543784.2021.1855140
  • Miyawaki K, Kato K, Sugio T, et al. A germinal center-associated microenvironmental signature reflects malignant phenotype and outcome of DLBCL. Blood Adv. 2022;6(7):2388–2402. doi: 10.1182/bloodadvances.2021004618
  • Ilic I, Mitrovic Z, Aurer I, et al. Lack of prognostic significance of the germinal-center phenotype in diffuse large B-cell lymphoma patients treated with CHOP-like chemotherapy with and without rituximab. Int J Hematol. 2009;90(1):74–80. doi: 10.1007/s12185-009-0353-y
  • Nyman H, Adde M, Karjalainen-Lindsberg ML, et al. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood. 2007;109(11):4930–4935. doi: 10.1182/blood-2006-09-047068
  • He MY, Kridel R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia. 2021;35(8):2151–2165. doi: 10.1038/s41375-021-01285-3
  • International Non-Hodgkin’s lymphoma prognostic factors P A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–994. doi: 10.1056/NEJM199309303291402
  • Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood. 2014;123(6):837–842. doi: 10.1182/blood-2013-09-524108
  • Montalban C, Diaz-Lopez A, Dlouhy I, et al. Validation of the NCCN-IPI for diffuse large B-cell lymphoma (DLBCL): the addition of beta(2) -microglobulin yields a more accurate GELTAMO-IPI. Br J Haematol. 2017;176(6):918–928. doi: 10.1111/bjh.14489
  • Prochazka KT, Melchardt T, Posch F, et al. NCCN-IPI score-independent prognostic potential of pretreatment uric acid levels for clinical outcome of diffuse large B-cell lymphoma patients. Br J Cancer. 2016;115(10):1264–1272. doi: 10.1038/bjc.2016.325
  • Taddei ML, Giannoni E, Fiaschi T, et al. Anoikis: an emerging hallmark in health and diseases. J Pathol. 2012;226(2):380–393. doi: 10.1002/path.3000
  • Adeshakin FO, Adeshakin AO, Afolabi LO, et al. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Front Oncol. 2021;11:626577. doi: 10.3389/fonc.2021.626577
  • Guadamillas MC, Cerezo A, Del Pozo MA. Overcoming anoikis–pathways to anchorage-independent growth in cancer. J Cell Sci. 2011;124(Pt 19):3189–3197. doi: 10.1242/jcs.072165
  • Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481–3498. doi: 10.1016/j.bbamcr.2013.06.026
  • Tu W, Gong J, Tian D, et al. Hepatitis B virus X protein induces SATB1 expression through activation of ERK and p38MAPK pathways to suppress Anoikis. Dig Dis Sci. 2019;64(11):3203–3214. doi: 10.1007/s10620-019-05681-9
  • Nahand JS, Khanaliha K, Mirzaei H, et al. Possible role of HPV/EBV coinfection in anoikis resistance and development in prostate cancer. BMC Cancer. 2021;21(1):926. doi: 10.1186/s12885-021-08658-y
  • Kakavandi E, Shahbahrami R, Goudarzi H, et al. Anoikis resistance and oncoviruses. J Cell Biochem. 2018;119(3):2484–2491. doi: 10.1002/jcb.26363
  • Wang YN, Zeng ZL, Lu J, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018;37(46):6025–6040. doi: 10.1038/s41388-018-0384-z
  • Zhang T, Wang B, Su F, et al. TCF7L2 promotes anoikis resistance and metastasis of gastric cancer by transcriptionally activating PLAUR. Int J Biol Sci. 2022;18(11):4560–4577. doi: 10.7150/ijbs.69933
  • Meng Q, Lu YX, Wei C, et al. Arginine methylation of MTHFD1 by PRMT5 enhances anoikis resistance and cancer metastasis. Oncogene. 2022;41(32):3912–3924. doi: 10.1038/s41388-022-02387-7
  • Chi H, Jiang P, Xu K, et al. A novel anoikis-related gene signature predicts prognosis in patients with head and neck squamous cell carcinoma and reveals immune infiltration. Front Genet. 2022;13:984273. doi: 10.3389/fgene.2022.984273
  • Cai Z, Zhou F. A novel anoikis and immune-related genes marked prognostic signature for colorectal cancer. Medicine (Baltimore). 2022;101(46):e31127. doi: 10.1097/MD.0000000000031127
  • Chen Z, Liu X, Zhu Z, et al. A novel anoikis-related prognostic signature associated with prognosis and immune infiltration landscape in clear cell renal cell carcinoma. Front Genet. 2022;13:1039465. doi: 10.3389/fgene.2022.1039465
  • Zhao S, Chi H, Ji W, et al. A bioinformatics-based analysis of an anoikis-related gene signature predicts the prognosis of patients with Low-Grade Gliomas. Brain Sci. 2022;12(10):1349. doi: 10.3390/brainsci12101349
  • Nicholas NS, Apollonio B, Ramsay AG. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochim Biophys Acta. 2016;1863(3):471–482. doi: 10.1016/j.bbamcr.2015.11.003
  • Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14(8):517–534. doi: 10.1038/nrc3774
  • Autio M, Leivonen SK, Bruck O, et al. Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma. Haematologica. 2021;106(3):718–729. doi: 10.3324/haematol.2019.243626
  • Rimsza LM, Roberts RA, Miller TP, et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the leukemia and lymphoma molecular profiling project. Blood. 2004;103(11):4251–4258. doi: 10.1182/blood-2003-07-2365
  • Nijland M, Veenstra RN, Visser L, et al. HLA dependent immune escape mechanisms in B-cell lymphomas: implications for immune checkpoint inhibitor therapy? Oncoimmunology. 2017;6(4):e1295202. doi: 10.1080/2162402X.2017.1295202
  • Choy JC, Hung VH, Hunter AL, et al. Granzyme B induces smooth muscle cell apoptosis in the absence of perforin: involvement of extracellular matrix degradation. Arterioscler Thromb Vasc Biol. 2004;24(12):2245–2250. doi: 10.1161/01.ATV.0000147162.51930.b7
  • Gonzalez-Llorente L, Santacatterina F, Garcia-Aguilar A, et al. Overexpression of mitochondrial IF1 prevents metastatic disease of colorectal cancer by enhancing anoikis and tumor infiltration of NK cells. Cancers (Basel). 2019;12(1):22. doi: 10.3390/cancers12010022
  • Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118
  • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–845. doi: 10.2307/2531595
  • Geeleher P, Cox N, Huang RS. pRrophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLOS ONE. 2014;9(9):e107468. doi: 10.1371/journal.pone.0107468
  • Garnett MJ. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570–5. doi: 10.1038/nature11005
  • Wang H, Franco F, Ho P-C. Metabolic Regulation of Tregs in cancer: opportunities for immunotherapy. Trends Cancer. 2017;3(8):583–592. doi: 10.1016/j.trecan.2017.06.005
  • Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl). 2016;94(5):509–522. doi: 10.1007/s00109-015-1376-x
  • Liu X, Zhang Z, Zhao G. Recent advances in the study of regulatory T cells in gastric cancer. Int Immunopharmacol. 2019;73:560–567. doi: 10.1016/j.intimp.2019.05.009
  • Li L, Yu R, Cai T, et al. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol. 2020;88:106939. doi: 10.1016/j.intimp.2020.106939
  • Jones LM, Broz ML, Ranger JJ, et al. STAT3 establishes an immunosuppressive microenvironment during the early stages of breast carcinogenesis to promote tumor growth and metastasis. Cancer Research. 2016;76(6):1416–1428. doi: 10.1158/0008-5472.CAN-15-2770
  • Ruppert AS, Dixon JG, Salles G, et al. International prognostic indices in diffuse large B-cell lymphoma: a comparison of IPI, R-IPI, and NCCN-IPI. Blood. 2020;135(23):2041–2048. doi: 10.1182/blood.2019002729
  • Wu Z, Wang L, Fan L, et al. Exploring the significance of PAK1 through chromosome conformation signatures in ibrutinib-resistant chronic lymphocytic leukaemia. Mol Oncol. 2022;16(16):2920–2935. doi: 10.1002/1878-0261.13281
  • Li B, Jia R, Li W, et al. PAK1 mediates bone marrow stromal cell-induced drug resistance in acute myeloid leukemia via ERK1/2 signaling pathway. Front Cell Dev Biol. 2021;9:686695. doi: 10.3389/fcell.2021.686695
  • Pandolfi A, Stanley RF, Yu Y, et al. PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2015;126(9):1118–1127. doi: 10.1182/blood-2014-12-618801
  • Wang Y, Gu X, Li W, et al. PAK1 overexpression promotes cell proliferation in cutaneous T cell lymphoma via suppression of PUMA and p21. J Dermatol Sci. 2018;90(1):60–67. doi: 10.1016/j.jdermsci.2017.11.019
  • Murugan AK. mTOR: role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019;59:92–111. doi: 10.1016/j.semcancer.2019.07.003
  • Xu ZZ, Xia ZG, Wang AH, et al. Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma: clinical significance and inhibitory effect of rituximab. Ann Hematol. 2013;92(10):1351–1358. doi: 10.1007/s00277-013-1770-9
  • Sebestyen A, Sticz TB, Mark A, et al. Activity and complexes of mTOR in diffuse large B-cell lymphomas–a tissue microarray study. Mod Pathol. 2012;25(12):1623–1628. doi: 10.1038/modpathol.2012.141
  • Xu ZZ, Shen JK, Zhao SQ, et al. Clinical significance of chemokine receptor CXCR4 and mammalian target of rapamycin (mTOR) expression in patients with diffuse large B-cell lymphoma. Leukemia Lymphoma. 2018;59(6):1451–1460. doi: 10.1080/10428194.2017.1379077
  • Xu L, Jiao J, Sun X, et al. Cladribine induces ATF4 mediated apoptosis and synergizes with SAHA in diffuse large B-Cell lymphoma cells. Int J Med Sci. 2020;17(10):1375–1384. doi: 10.7150/ijms.41793
  • Yu Y, Liu B, Li X, et al. ATF4/CEMIP/PKCalpha promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell Death Dis. 2022;13(1):46. doi: 10.1038/s41419-021-04494-x
  • Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 2016;94(12):1313–1326. doi: 10.1007/s00109-016-1475-3
  • Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cellular Physiol. 2009;220(2):292–296. doi: 10.1002/jcp.21791
  • Yi L, Hu L, Huang K, et al. Palbociclib enhances the effect of doxorubicin-induced apoptosis in activated B-cell–like diffuse large B-cell lymphoma cells. Anticancer Drugs. 2022;34(2):257–268. doi: 10.1097/CAD.0000000000001409
  • Wang X, Cao X, Sun R, et al. Clinical significance of PTEN deletion, mutation, and loss of PTEN expression in De novo diffuse large B-Cell lymphoma. Neoplasia. 2018;20(6):574–593. doi: 10.1016/j.neo.2018.03.002
  • Pfeifer M, Grau M, Lenze D, et al. PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA. 2013;110(30):12420–12425. doi: 10.1073/pnas.1305656110
  • Jiang D, Mo Q, Sun X, et al. Pyruvate dehydrogenase kinase 4-mediated metabolic reprogramming is involved in rituximab resistance in diffuse large B-cell lymphoma by affecting the expression of MS4A1/CD20. Cancer Sci. 2021;112(9):3585–3597. doi: 10.1111/cas.15055
  • Tamma R, Ranieri G, Ingravallo G, et al. Inflammatory cells in diffuse large B cell lymphoma. J Clin Med. 2020;9(8). doi: 10.3390/jcm9082418
  • Nam SJ, Go H, Paik JH, et al. An increase of M2 macrophages predicts poor prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. Leuk Lymphoma. 2014;55(11):2466–2476. doi: 10.3109/10428194.2013.879713
  • Chan KF, Duarte JDG, Ostrouska S, et al. Gammadelta T cells in the tumor microenvironment-interactions with other immune cells. Front Immunol. 2022;13:894315. doi: 10.3389/fimmu.2022.894315
  • Xu-Monette ZY, Xiao M, Au Q, et al. Immune profiling and quantitative analysis decipher the clinical role of immune-checkpoint expression in the tumor immune microenvironment of DLBCL. Cancer Immunol Res. 2019;7(4):644–657. doi: 10.1158/2326-6066.CIR-18-0439
  • Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28. doi: 10.1186/s12943-021-01489-2
  • Pascual M, Mena-Varas M, Robles EF, et al. PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas. Blood. 2019;133(22):2401–2412. doi: 10.1182/blood.2018889931
  • Zhao S, Zhang H, Xing Y, et al. CD137 ligand is expressed in primary and secondary lymphoid follicles and in B-cell lymphomas: diagnostic and therapeutic implications. Am J Surg Pathol. 2013;37(2):250–258. doi: 10.1097/PAS.0b013e318268c6ea
  • Murakami K, Miyatake S, Miyamae J, et al. Expression profile of immunoregulatory factors in canine tumors. Vet Immunol Immunopathol. 2022;253:110505. doi: 10.1016/j.vetimm.2022.110505
  • Hong YG, Yang Z, Chen Y, et al. The RNA m6A Reader YTHDF1 is required for acute myeloid leukemia progression. Cancer Research. 2023;83(6):845–860. doi: 10.1158/0008-5472.CAN-21-4249
  • Wang Y, Li W, Zhang Q, et al. Targeting phosphorylation of p21-activated kinase 1 at Thr423 induces cell cycle arrest and apoptosis in Cutaneous T-cell lymphoma cells. Acta Derm Venereol. 2019;99(11):1022–1028. doi: 10.2340/00015555-3263
  • Kuzelova K, Grebenova D, Holoubek A, et al. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells. PLOS ONE. 2014;9(3):e92560. doi: 10.1371/journal.pone.0092560
  • Beck D, Zobel J, Barber R, et al. Synthetic lethal screen demonstrates that a JAK2 inhibitor suppresses a BCL6-dependent IL10RA/JAK2/STAT3 pathway in high grade B-cell lymphoma. J Biol Chem. 2016;291(32):16686–16698. doi: 10.1074/jbc.M116.736868
  • Nowakowski GS, Hong F, Scott DW, et al. Addition of Lenalidomide to R-CHOP improves outcomes in newly diagnosed diffuse large B-Cell lymphoma in a randomized phase II US intergroup study ECOG-ACRIN E1412. JCO. 2021;39(12):1329–1338. doi: 10.1200/JCO.20.01375
  • Shen QD, Zhu HY, Wang L, et al. Gemcitabine-oxaliplatin plus rituximab (R-GemOx) as first-line treatment in elderly patients with diffuse large B-cell lymphoma: a single-arm, open-label, phase 2 trial. Lancet Haematol. 2018;5(6):e261–e269. doi: 10.1016/S2352-3026(18)30054-1
  • Yang C, Lu P, Lee FY, et al. Tyrosine kinase inhibition in diffuse large B-cell lymphoma: molecular basis for antitumor activity and drug resistance of dasatinib. Leukemia. 2008;22(9):1755–1766. doi: 10.1038/leu.2008.163
  • Cann ML, Herring LE, Haar LL, et al. Dasatinib is preferentially active in the activated B-Cell subtype of diffuse large B-Cell Lymphoma. J Proteome Res. 2019;18(1):522–534. doi: 10.1021/acs.jproteome.8b00841

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.