112
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Using natural language processing to analyze unstructured patient-reported outcomes data derived from electronic health records for cancer populations: a systematic review

, , , &
Pages 467-475 | Received 02 Sep 2023, Accepted 20 Feb 2024, Published online: 05 Mar 2024

References

  • Silveira A, Sequeira T, Gonçalves J, et al. Patient reported outcomes in oncology: changing perspectives—a systematic review. Health Qual Life Outcomes. 2022;20(1):82. doi:10.1186/s12955-022-01987-x
  • Minvielle E, di Palma M, Mir O, et al. The use of patient-reported outcomes (PROs) in cancer care: a realistic strategy. Ann Oncol. 2022;33(4):357–359. doi:10.1016/j.annonc.2021.12.010
  • Mercieca-Bebber R, King MT, Calvert MJ, et al. The importance of patient-reported outcomes in clinical trials and strategies for future optimization. Patient Relat Outcome Meas. 2018;9:353–367. doi:10.2147/PROM.S156279
  • Basch E, Deal AM, Dueck AC, et al. Overall survival results of a trial assessing patient-reported outcomes for symptom monitoring during routine cancer treatment. JAMA. 2017;318(2):197–198. doi: 10.1001/jama.2017.7156
  • Tian L, Cao X, Feng X, et al. Evaluation of psychometric properties of needs assessment tools in cancer patients: a systematic literature review. PloS One. 2019;14(1):e0210242. doi:10.1371/journal.pone.0210242
  • Foster A, Croot L, Brazier J, et al. The facilitators and barriers to implementing patient reported outcome measures in organisations delivering health related services: a systematic review of reviews. J Patient Rep Outcomes. 2018;2(1):46. doi:10.1186/s41687-018-0072-3
  • Cheung YT, Chan A, Charalambous A, et al. The use of patient-reported outcomes in routine cancer care: preliminary insights from a multinational scoping survey of oncology practitioners. Support Care Cancer. 2022;30(2):1427–1439. doi: 10.1007/s00520-021-06545-7
  • Alzu’bi AA, Watzlaf VJM, Sheridan P. Electronic health record (EHR) abstraction. Perspect Health Inf Manag. 2021;18(Spring):1g.
  • Koleck TA, Dreisbach C, Bourne PE, et al. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J Am Med Inform Assoc. 2019;26(4):364–379.
  • Kong HJ. Managing unstructured big data in healthcare system. Healthc Inform Res. 2019;25(1):1–2. doi:10.4258/hir.2019.25.1.1
  • Juhn Y, Liu H. Artificial intelligence approaches using natural language processing to advance EHR-based clinical research. J Allergy Clin Immunol. 2020;145(2):463–469. doi:10.1016/j.jaci.2019.12.897
  • Schmajuk G, Yazdany J. Leveraging the electronic health record to improve quality and safety in rheumatology. Rheumatol Int. 2017;37(10):1603–1610. doi:10.1007/s00296-017-3804-4
  • Masukawa K, Aoyama M, Yokota S, et al. Machine learning models to detect social distress, spiritual pain, and severe physical psychological symptoms in terminally ill patients with cancer from unstructured text data in electronic medical records. Palliat Med. 2022;36(8):1207–1216. doi: 10.1177/02692163221105595
  • Shuai Z, Xiaolin D, Jing Y, et al. Comparison of different feature extraction methods for applicable automated ICD coding. BMC Med Inform Decis Mak. 2022;22(1):11. doi: 10.1186/s12911-022-01753-5
  • Lindvall C, Deng CY, Agaronnik ND, et al. Deep learning for cancer symptoms monitoring on the basis of electronic health record unstructured clinical notes. JCO Clin Cancer Inform. 2022;6(6):e2100136. doi: 10.1200/CCI.21.00136
  • Banerjee I, Li K, Seneviratne M, et al. Weakly supervised natural language processing for assessing patient-centered outcome following prostate cancer treatment. JAMIA Open. 2019;2(1):150–159. doi: 10.1093/jamiaopen/ooy057
  • DiMartino L, Miano T, Wessell K, et al. Identification of uncontrolled symptoms in cancer patients using natural language processing. J Pain Symptom Manage. 2022;63(4):610–617. doi:10.1016/j.jpainsymman.2021.10.014
  • Forsyth AW, Barzilay R, Hughes KS, et al. Machine learning methods to extract documentation of breast cancer symptoms from electronic health records. J Pain Symptom Manage. 2018;55(6):1492–1499. doi: 10.1016/j.jpainsymman.2018.02.016
  • Hernandez-Boussard T, Kourdis PD, Seto T, et al. Mining electronic health records to extract patient-centered outcomes following prostate cancer treatment. AMIA Annu Symp Proc. 2017;2017:876–882.
  • Lu Z, Sim JA, Wang JX, et al. Natural language processing and machine learning methods to characterize unstructured patient-reported outcomes: validation study. J Med Internet Res. 2021;23(11):e26777. doi: 10.2196/26777
  • Wang L, Fu S, Wen A, et al. Assessment of electronic health record for cancer research and patient care through a scoping review of cancer natural language processing. JCO Clin Cancer Inform. 2022;6(6):e2200006. doi: 10.1200/CCI.22.00006
  • Saha A, Burns L, Kulkarni AM. A scoping review of natural language processing of radiology reports in breast cancer. Front Oncol. 2023;13:1160167. doi:10.3389/fonc.2023.1160167
  • Yim WW, Yetisgen M, Harris WP, et al. Natural language processing in oncology: a review. JAMA Oncol. 2016;2(6):797–804. doi:10.1001/jamaoncol.2016.0213
  • Davidson EM, Poon MTC, Casey A, et al. The reporting quality of natural language processing studies: systematic review of studies of radiology reports. BMC Med Imaging. 2021;21(1):142. doi: 10.1186/s12880-021-00671-8
  • Leis A, Casadevall D, Albanell J, et al. Exploring the association of cancer and depression in electronic health records: combining encoded diagnosis and mining free-text clinical notes. JMIR Cancer. 2022;8(3):e39003. doi: 10.2196/39003
  • Luo X, Gandhi P, Storey S, et al. A computational framework to analyze the associations between symptoms and cancer patient attributes post chemotherapy using EHR data. IEEE J Biomed Health Inform. 2021;25(11):4098–4109. doi:10.1109/JBHI.2021.3117238
  • Luo X, Storey S, Gandhi P, et al. Analyzing the symptoms in colorectal and breast cancer patients with or without type 2 diabetes using EHR data. Health Inform J. 2021;27(1):14604582211000785. doi:10.1177/14604582211000785
  • Oyelade ON, Obiniyi AA, Junaidu SB, et al. Patient symptoms elicitation process for breast cancer medical expert systems: a semantic web and natural language parsing approach. Future Computing Inform J. 2018;3(1):72–81. doi:10.1016/j.fcij.2017.11.003
  • Tamang S, Patel MI, Blayney DW, et al. Detecting unplanned care from clinician notes in electronic health records. J Oncol Pract. 2015;11(3):e313–319. doi: 10.1200/JOP.2014.002741
  • Agaronnik ND, El-Jawahri A, Lindvall C, et al. Exploring the process of cancer care for patients with pre-existing mobility disability. JCO Oncol Pract. 2021;17(1):e53–e61. doi:10.1200/OP.20.00378
  • Becker M, Kasper S, Böckmann B, et al. Natural language processing of German clinical colorectal cancer notes for guideline-based treatment evaluation. Int J Med Inform. 2019;127:141–146. doi:10.1016/j.ijmedinf.2019.04.022
  • Redd DF, Shao Y, Zeng-Treitler Q, et al. Identification of colorectal cancer using structured and free text clinical data. Health Inform J. 2022;28(4):14604582221134406. doi: 10.1177/14604582221134406
  • Heintzelman NH, Taylor RJ, Simonsen L, et al. Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text. J Am Med Inform Assoc. 2013;20(5):898–905. doi: 10.1136/amiajnl-2012-001076
  • Weegar R, Kvist M, Sundström K, et al. Finding cervical cancer symptoms in Swedish clinical text using a machine learning approach and NegEx. AMIA Annu Symp Proc. 2015;2015:1296. doi:10.1016/j.jbi.2014.01.01
  • Hong N, Chang F, Ou Z, et al. Construction of the cervical cancer common terminology for promoting semantic interoperability and utilization of Chinese clinical data. BMC Med Inform Decis Mak. 2021;21(9):309. doi: 10.1186/s12911-021-01672-x
  • Jensen K, Soguero-Ruiz C, Oyvind Mikalsen K, et al. Analysis of free text in electronic health records for identification of cancer patient trajectories. Sci Rep. 2017;7(1):46226. doi: 10.1038/srep46226
  • Sivakumar K, Nithya NS, Revathy O. Phenotype algorithm based big data analytics for cancer diagnose. J Med Syst. 2019;43(8):264. doi:10.1007/s10916-019-1409-z
  • Hong JC, Fairchild AT, Tanksley JP, et al. Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts. JAMIA Open. 2020;3(4):513–517. doi:10.1093/jamiaopen/ooaa064
  • Naseri H, Kafi K, Skamene S, et al. Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases. J Biomed Inform. 2021;120:103864. doi: 10.1016/j.jbi.2021.103864
  • Li K, Banerjee I, Magnani CJ, et al. Clinical documentation to predict factors associated with urinary incontinence following prostatectomy for prostate cancer. Res Rep Urol. 2020;12:7–14. doi:10.2147/RRU.S234178
  • Le Glaz A, Haralambous Y, Kim-Dufor DH, et al. Machine learning and natural language processing in mental health: systematic review. J Med Internet Res. 2021;23(5):e15708. doi: 10.2196/15708
  • Gasparetto A, Marcuzzo M, Zangari A, et al. A survey on text classification algorithms: from text to predictions. Information. 2022;13(2):83. doi:10.3390/info13020083
  • Hu D, Zhang H, Li S, et al. Automatic extraction of lung cancer staging information from computed tomography reports: deep learning approach. JMIR Med Inform. 2021;9(7):e27955. doi:10.2196/27955
  • Zhou S, Wang N, Wang L, et al. CancerBERT: a cancer domain-specific language model for extracting breast cancer phenotypes from electronic health records. J Am Med Inform Assoc. 2022;29(7):1208–1216. doi:10.1093/jamia/ocac040
  • Ren J, Chen L, Xu H, et al. A bi-LSTM and multihead attention-based model incorporating radiomics signatures and radiological features for differentiating the main subtypes of lung adenocarcinoma. Quant Imaging Med Surg. 2023;13(7):4245–4256. doi:10.21037/qims-22-848
  • Tayefi M, Ngo P, Chomutare T, et al. Challenges and opportunities beyond structured data in analysis of electronic health records. WIREs Comput Stat. 2021;13(6):e1549. doi: 10.1002/wics.1549
  • Slaughter L, Ruland C, Rotegård AK. Mapping cancer patients’ symptoms to UMLS concepts. AMIA Annu Symp Proc. 2005;2005:699–703.
  • Silva MC, Eugénio P, Faria D, et al. Ontologies and knowledge graphs in oncology research. Cancers (Basel). 2022;14(8):1906. doi: 10.3390/cancers14081906
  • Ajami S, Arab-Chadegani R. Barriers to implement Electronic Health Records (EHRs). Mater Sociomed. 2013;25(3):213–215. doi:10.5455/msm.2013.25.213-215
  • Martin-Sanchez FJ, Aguiar-Pulido V, Lopez-Campos GH, et al. Secondary use and analysis of big data collected for patient care. Yearb Med Inform. 2017;26(1):28–37. doi:10.15265/IY-2017-008
  • Landolsi MY, Hlaoua L, Ben Romdhane L. Information extraction from electronic medical documents: state of the art and future research directions. Knowl Inf Syst. 2023;65(2):463–516. doi:10.1007/s10115-022-01779-1
  • Schneeweiss S, Brown JS, Bate A, et al. Choosing among common data models for real-world data analyses fit for making decisions about the effectiveness of medical products. Clin Pharmacol Ther. 2020;107(4):827–833. doi:10.1002/cpt.1577
  • Holmes J, Liu Z, Zhang L, et al. Evaluating large language models on a highly-specialized topic, radiation oncology physics. Front Oncol. 2023;13. doi: 10.3389/fonc.2023.1219326
  • Araki K, Matsumoto N, Togo K, et al. Developing artificial intelligence models for extracting oncologic outcomes from Japanese electronic health records. Adv Ther. 2023;40(3):934–950. doi: 10.1007/s12325-022-02397-7
  • Gu Y, Tinn R, Cheng H, et al. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans Comput Healthc. 2021;3(1):1–23. doi: 10.1145/3458754
  • Rasmy L, Xiang Y, Xie Z, et al. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ Digit Med. 2021;4(1):86. doi:10.1038/s41746-021-00455-y
  • Mitchell JR, Szepietowski P, Howard R, et al. A question-and-answer system to extract data from free-text oncological pathology reports (CancerBERT network): development study. J Med Internet Res. 2022;24(3):e27210. doi: 10.2196/27210
  • Tam S, Zatirka T, Neslund-Dudas C, et al. Real time patient-reported outcome measures in patients with cancer: early experience within an integrated health system. Cancer Med. 2023;12(7):8860–8870. doi: 10.1002/cam4.5635

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.