375
Views
3
CrossRef citations to date
0
Altmetric
Review

Ultrasensitive techniques and protein misfolding amplification assays for biomarker-guided reconceptualization of Alzheimer’s and other neurodegenerative diseases

, , , , , , , , , , & ORCID Icon show all
Pages 949-967 | Received 27 Apr 2021, Accepted 05 Aug 2021, Published online: 30 Aug 2021

References

  • Deuschl G, Beghi E, Fazekas F, et al. The burden of neurological diseases in Europe: an analysis for the global burden of disease study 2017. Lancet Public Health. . 2020;5(10):e551–e567.
  • Marsh AP. Molecular mechanisms of proteinopathies across neurodegenerative disease: a review. Neurol Res Pract. 2019;1: 1–7.
  • Hermann P, Appleby B, Brandel JP, et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021;20:235–246.
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to alzheimer’s disease: recommendations from The National Institute on Aging-Alzheimer’s Association Workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269.
  • Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014. DOI:https://doi.org/10.1016/S1474-4422(14)70090-0.
  • Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–562.
  • Baldacci F, Mazzucchi S, della Vecchia A, et al. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Review of Molecular Diagnostics. Taylor and Francis Ltd, 2020. p. 421–441.
  • Frisoni GB, Boccardi M, Barkhof F, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017;16:661–676.
  • Espay AJ, Kalia LV, Gan-Or Z, et al. Disease modification and biomarker development in Parkinson disease: revision or reconstruction?. Neurology. 2020;94(11):481–494.
  • Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s disease—preparing for a new era of disease-modifying therapies. Mol Psychiatry. 2021;26(1):296–308.
  • Xia J, Broadhurst DI, Wilson M, et al. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9:280–299.
  • Kovacs GG. Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. Int J Mol Sci. 2016;17(2):189.
  • Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of alzheimer’s disease. Alzheimer’s & Dementia. 2018;14:535–562.
  • Rösler TW, Tayaranian Marvian A, Brendel M, et al. Four-repeat tauopathies. Progress in Neurobiology. 2019;180:101644.
  • Elahi FM, Miller BL. A clinicopathological approach to the diagnosis of dementia. Nat Rev Neurol. 2017;13(8):457–476.
  • Höglinger GU, Respondek G, Stamelou M, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853–864.
  • Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for parkinson’s disease. Mov Disord. 2015;30:1591–1601.
  • Berg D, Postuma RB, Adler CH, et al. MDS research criteria for prodromal parkinson’s disease. Mov Disord. 2015;30:1600–1611.
  • McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies. Neurology. 2017;89 88–100.
  • McKeith IG, Ferman TJ, Thomas AJ, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94(17):743–755.
  • Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–676.
  • Ling S-C, Polymenidou M, Cleveland DW, et al. Converging mechanisms in ALS and FTD: disrupted RNA and Protein homeostasis. Neuron. 2013;79(3):416–438.
  • de Carvalho M, Swash M. Awaji diagnostic algorithm increases sensitivity of el escorial criteria for ALS diagnosis. Amyotrophic Lateral Sclerosis. 2009. ;10(1):53–57.
  • Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011. ;76(11):1006–1014.
  • Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011. ;134(9):2456–2477.
  • Ritchie DL, Barria MA. Prion diseases: a unique transmissible agent or a model for neurodegenerative diseases?. Biomolecules. 2021;11(2):1–23.
  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136–144.
  • Alper T, Cramp WA, Haig DA, et al. Does the agent of scrapie replicate without Nucleic Acid ?. Nature. 1967;214(5090):764–766.
  • Alper T. The nature of the scrapie agent. J Clin Pathol. 1972;25(Suppl 6):154–155.
  • Griffith JS. Nature of the scrapie agent: self-replication and scrapie. Nature. 1967;215(5105):1043–1044.
  • Scheckel C, Aguzzi A. Prions, prionoids and protein misfolding disorders. Nature Reviews Genetics. 2018;19(7):405–418.
  • Orrú CD, Bongianni M, Tonoli G, et al. A test for Creutzfeldt–Jakob disease using nasal brushings. New Engl J Med. 2014;371:519–529.
  • Thompson AGB, Mead SH. Review: fluid biomarkers in the human prion diseases. Molecular and Cellular Neuroscience. 2019;97:81–92.
  • Zanusso G, Monaco S, Pocchiari M, et al. Advanced tests for early and accurate diagnosis of Creutzfeldt–Jakob disease. Nature Reviews Neurology. 2016;12(6):325–333.
  • Hermann P, Appleby B, Brandel JP, et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021;20:235–246.
  • McGuire LI, Peden AH, Orrú CD, et al. Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol. 2012;72(2):278–285.
  • Atarashi R, Satoh K, Sano K, et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nature Medicine. 2011;17(2):175–178.
  • Foutz A, Appleby BS, Hamlin C, et al. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann Neurol. 2017;81 79–92.
  • Orrú CD, Groveman BR, Hughson AG, Zanusso G, Coulthart MB, Caughey B. Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. mBio. 2015 Jan 20;6(1):e02451–14https://doi.org/10.1128/mBio.02451-14. PMID: 25604790; PMCID: PMC4313917
  • Bongianni M, Orrù C, Groveman BR, et al. Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol. 2017;74(2):155–162.
  • Orrú CD, Groveman BR, Foutz A, et al. Ring trial of 2nd generation RT-QuIC diagnostic tests for sporadic CJD. Ann Clin Transl Neurol. 2020;7(11):2262–2271.
  • Orrú CD, Yuan J, Appleby BS, et al. Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease. Sci Transl Med. 2017;9(417):1–11.
  • Goedert M, Clavaguera F, Tolnay M, et al. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends in Neurosciences. 2010;33(7):317–325.
  • Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 2013;5017465:45–51.
  • Aguzzi A. Beyond the prion principle. Nature. 2009;459(7249):924–925.
  • del Prete E, Beatino MF, Campese N, et al. Fluid candidate biomarkers for alzheimer’s disease: a precision medicine approach. J Pers Med. 2020;10(4):1–34.
  • Steinacker P, Anderl-Straub S, Diehl-Schmid J, et al. Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology. 2018;91(15):E1390–E1401.
  • Chen Z, Mengel D, Keshavan A, et al. Learnings about the complexity of extracellular tau aid development of a blood-based screen for alzheimer’s disease. Alzheimer’s and Dementia. 2019;15:487–496.
  • Campese N, Palermo G, Del Gamba C, et al. Progress regarding the context-of-use of tau as biomarker of alzheimer’s disease and other neurodegenerative diseases. Expert Review of Proteomics. 2021;18:27–48.
  • Yang SY, Chiu MJ, Chen TF, et al. Detection of plasma biomarkers using immunomagnetic reduction: a promising method for the early diagnosis of Alzheimer’s disease [internet]. Neurol Ther. Springer Healthcare, 2017. p. 37–56.
  • Nabers A, Perna L, Lange J, et al. Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med. 2018. ; 10.
  • Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249–254.
  • Palmqvist S, Janelidze S, Stomrud E, et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol. 2019. ;76:1060–1069.
  • Lue LF, Sabbagh MN, Chiu MJ, et al. Plasma levels of Aβ42 and tau identified probable alzheimer’s dementia: findings in two cohorts. Frontiers in Aging Neuroscience. 2017. ; 9.
  • Vergallo A, Mégret L, Lista S, et al. Plasma amyloid β 40/42 ratio predicts cerebral amyloidosis in cognitively normal individuals at risk for Alzheimer’s disease. Alzheimers Dement. 2019. ;15:764–775.
  • Chatterjee P, Elmi M, Goozee K, et al. Ultrasensitive detection of plasma Amyloid-β as a biomarker for cognitively normal elderly individuals at risk ofAlzheimer’s disease. J Alzheimer’s Dis. 2019. ;71:775–783.
  • Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019.;93:E1647–E1659.
  • Verberk IMW, Slot RE, Verfaillie SCJ, et al. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes. Ann Neurol. 2018. ;84:648–658.
  • De Wolf F, Ghanbari M, Licher S, et al. Plasma tau, neurofilament light chain and amyloid-b levels and risk of dementia; a population-based cohort study. Brain. 2020.;143:1220–1232.
  • Stocker H, Nabers A, Perna L, et al. Prediction of alzheimer’s disease diagnosis within 14 years through Aβ misfolding in blood plasma compared to APOE4 status, and other risk factors. Alzheimers Dement [Internet]. 2020. ;16:283–291.
  • Stockmann J, Verberk IMW, Timmesfeld N, et al. Amyloid-β misfolding as a plasma biomarker indicates risk for future clinical alzheimer’s disease in individuals with subjective cognitive decline. Alzheimer’s Research and Therapy. 2020.; 12.
  • Chen Z, Mengel D, Keshavan A, et al. Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer’s disease. Alzheimers and Dement. 2019. ;15:487–496.
  • Mielke MM, Hagen CE, Wennberg AMV, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurol. 2017. ;74:1073–1080.
  • Pase MP, Beiser AS, Himali JJ, et al. Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes. JAMA Neurol. 2019. ;76(5):598–606.
  • Karikari TK, Benedet AL, Ashton NJ, et al. Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer’s disease neuroimaging initiative. Mol Psychiatry. 2021;26:429–442.
  • Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–433.
  • Mielke MM, Hagen CE, Xu J, et al. Plasma phospho-tau181 increases with alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimer’s and Dementia. 2018;14:989–997.
  • Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26:379–386.
  • Thijssen EH, la Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020.;26:387–397.
  • Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathologica. 2021. ; 141.
  • Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020. DOI:https://doi.org/10.1001/jama.2020.12134.
  • Barthélemy NR, Horie K, Sato C, et al. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J ExpMed. 2020. ;217.
  • Palermo G, Mazzucchi S, della Vecchia A, et al.Different clinical contexts of use of blood neurofilament light chain Protein in the spectrum of neurodegenerative diseases. Molecular Neurobiology. Springer, 2020. . p. 4667–4691.
  • Hansson O, Janelidze S, Hall S, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology. 2017. ;88(10):930–937.
  • Verde F, Steinacker P, Weishaupt JH, et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019. ;90(2):157–164.
  • Thouvenot E, Demattei C, Lehmann S, et al. Serum neurofilament light chain at time of diagnosis is an independent prognostic factor of survival in amyotrophic lateral sclerosis. Eur J Neurol. 2020. ;27(2):251–257.
  • Gille B, De Schaepdryver M, Goossens J, et al. Serum neurofilament light chain levels as a marker of upper motor neuron degeneration in patients with amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 2019.;45(3):291–304.
  • Mustapic M, Eitan E, Werner JK, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017. ; 11.
  • Fiandaca MS, Kapogiannis D, Mapstone M, et al. Identification of preclinical alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer’s and Dementia. 2015. ;11:600–607. e1.
  • Hill AF. Extracellular vesicles and neurodegenerative diseases [internet]. J Neurosci. NLM (Medline). 2019. ; 9269–9273. DOI:https://doi.org/10.1523/JNEUROSCI.0147-18.2019.
  • Vassileff N, Cheng L, Hill AF, et al. Extracellular vesicles - propagators of neuropathology and sources of potential biomarkers and therapeutics for neurodegenerative diseases. J Cell Sci. Company of Biologists Ltd. 2020.DOI:https://doi.org/10.1242/jcs.243139.
  • Hornung S, Dutta S, Bitan G, et al. CNS-derived blood exosomes as a promising source of biomarkers: opportunities and challenges. Front Mol Neurosci. Frontiers Media S.A, 2020.
  • Bahlakeh G, Gorji A, Soltani H, et al. MicroRNA alterations in neuropathologic cognitive disorders with an emphasis on dementia: lessons from animal models. J Cell Physiol. Wiley-Liss Inc. 2021. ; 806–823. DOI:https://doi.org/10.1002/jcp.29908.
  • Zhao Y, Jaber V, Alexandrov PN, et al. microRNA-based biomarkers in Alzheimer’s disease (AD) [internet]. Front Neurosci. Frontiers Media S.A, 2020.
  • Pegtel DM, Gould SJ. Exosomes. Ann Rev Biochem. 2019. 88(1):487–514.
  • Wang L, Zhang L Circulating exosomal miRNA as diagnostic biomarkers of neurodegenerative diseases. Front Mol Neurosci. Frontiers Media S.A, 2020.
  • Dong X, Zheng D, Nao J, et al. Circulating exosome microRNAs as diagnostic biomarkers of dementia. Front Aging Neurosci. Frontiers Media S.A, 2020.
  • Hampel H, Goetzl EJ, Kapogiannis D, et al. Biomarker-drug and liquid biopsy co-development for disease staging and targeted therapy: cornerstones for Alzheimer’s precision medicine and pharmacology. Front Pharmacol. 2019. ; 10.
  • Goetzl EJ, Schwartz JB, Abner EL, et al. High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann Neurol.2018. cited 2021 Apr 26;83(3):544–552
  • Cai ZY, Xiao M, Quazi S, et al. Exosomes: a novel therapeutic target for Alzheimer’s disease? [internet]. Neural Regeneration Research. Medknow Publications, 2018. p. 930–935.
  • Luo S, Du L, Cui Y, et al. Potential therapeutic applications and developments of exosomes in Parkinson’s disease. Mol Pharm. 2020.;17(5):1447–1457.
  • Green AJE, Zanusso G Prion protein amplification techniques. Handbook ofClinical Neurology, Vol 153 2018. p. 357–370.
  • Saborio GP, Permanne B, Soto C, et al. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001;411(6839):810–813.
  • Paciotti S, Bellomo G, Gatticchi L, et al. Are we ready for detecting α-synuclein prone to aggregation in patients? The case of “Protein-Misfolding cyclic amplification” and “real-time quaking-induced conversion” as diagnostic tools. Front Neurol. 2018;9:415.
  • Candelise N, Baiardi S, Franceschini A, et al. Towards an improved early diagnosis of neurodegenerative diseases: the emerging role of in vitro conversion assays for protein amyloids. Acta Neuropathol Commun. 2020;8(1):1–16.
  • Ferreira NDC, Caughey B. Proteopathic seed amplification assays for neurodegenerative disorders. Clin Lab Med. 2020;40:257–270.
  • Atarashi R, Sano K, Satoh K, et al. Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion. 2011;5(3):150–153.
  • Franceschini A, Baiardi S, Hughson AG, et al. High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions. Sci Rep. 2017;7:3–10.
  • Raymond GJ, Race B, Orrú CD, et al. Transmission of CJD from nasal brushings but not spinal fluid or RT-QuIC product. Ann Clin Transl Neurol. 2020;7(6):932–944.
  • Gao L, Tang H, Nie K, et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: a systematic review and meta-analysis. Int JNeurosci. 2015;125:645–654.
  • Van Rumund A, Green AJE, Fairfoul G, et al. α‐Synuclein real‐time quaking‐induced conversion in the cerebrospinal fluid of uncertain cases of parkinsonism. Ann Neurol. 2019;85:777–781.
  • Bongianni M, Ladogana A, Capaldi S, et al. α‐Synuclein RT‐QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann Clin Transl Neurol. 2019;6:2120–2126.
  • Groveman BR, Orrù CD, Hughson AG, et al. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol Commun. 2018;6(1):1–10.
  • Rossi M, Candelise N, Baiardi S, et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol []. 2020;140(1):49–62.
  • Orrù CD, Ma TC, Hughson AG, et al. A rapid α-synuclein seed assay of parkinson’s disease CSF panel shows high diagnostic accuracy. Ann Clin Transl Neurol. 2021;8(2):374–384.
  • Kang UJ, Boehme AK, Fairfoul G, et al. Comparative study of cerebrospinal fluid α-synuclein seeding aggregation assays for diagnosis of parkinson’s disease. Mov Disord. 2019;34:536–544.
  • Fairfoul G, McGuire LI, Pal S, et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies alpha‐synucleinopathies. Ann Clin Transl Neurol. 2016;3:812–818.
  • Manne S, Kondru N, Hepker M, et al. Ultrasensitive detection of aggregated α-Synuclein in glial cells, human cerebrospinal fluid, and brain tissue using the RT-QuIC assay: new high-throughput neuroimmune biomarker assay for parkinsonian disorders. J Neuroimmune Pharmacol. 2019;14(3):423–435.
  • Ning H, Wu Q, Han D, et al. Baseline concentration of misfolded α‐synuclein aggregates in cerebrospinal fluid predicts risk of cognitive decline in Parkinson’s disease. Neuropathol Appl Neurobiol. 2019;45:398–409.
  • Orrù CD, Ma TC, Hughson AG, et al. A rapid α-synuclein seed assay of parkinson’s disease CSF panel shows high diagnostic accuracy. Ann Clin Transl Neurol. 2021;8(2):374–384.
  • Kalia LV, Lang AE, Hazrati L-N, et al. Clinical correlations with Lewy body pathology in LRRK2 -related Parkinson disease. JAMA Neurology. 2015;72:100.
  • Garrido A, Fairfoul G, Tolosa ES, et al. α ‐synuclein RT‐QuIC in cerebrospinal fluid of LRRK 2‐linked Parkinson’s disease. Ann Clin Translation Neuro. 2019;6:1024–1032.
  • Shahnawaz M, Tokuda T, Waraga M, et al. Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol. 2017;74(2):163–172.
  • Shahnawaz M, Mukherjee A, Pritzkow S, et al., Discriminating α-synuclein strains in parkinson’s disease and multiple system atrophy. Nature. 2020;578(7794): 273–277.
  • Singer W, Schmeichel AM, Shahnawaz M, et al., Alpha-Synuclein oligomers and neurofilament light chain in spinal fluid differentiate multiple system atrophy from Lewy body synucleinopathies. Ann Neurol. 2020;88(3): 503–512.
  • Peng C, Gathagan RJ, Lee VMY, et al. Distinct α-synuclein strains and implications for heterogeneity among α-synucleinopathies. Neurobiol Dis. 2018;109:209–218.
  • Rossi M, Candelise N, Baiardi S, et al., Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 2020;140(1): 49–62.
  • Fairfoul G, McGuire LI, Pal S, et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies alpha‐synucleinopathies. Ann Clin Transl Neurol. 2016;3:812–818.
  • Iranzo A, Fairfoul G, Ayudhaya ACN, et al. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study. The Lancet Neurology. 2021;20:203–212.
  • Singer W, Schmeichel AM, Shahnawaz M, et al. Alpha-Synuclein oligomers and neurofilament light chain predict phenoconversion of pure autonomic failure. Ann Neurol. 2021;89:1212–1220.
  • Saijo E, Ghetti B, Zanusso G, et al. Ultrasensitive and selective detection of 3-repeat tau seeding activity in pick disease brain and cerebrospinal fluid. Acta Neuropathol. 2017;133:751–765.
  • Saijo E, Metrick MA, Koga S, et al. 4-repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol. 2020;139:63–77.
  • Scialò C, Tran TH, Salzano G, et al., TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Comm. 2020;2(2): 1–14.
  • Molinuevo JL, Ayton S, Batrla R, et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018.
  • del Prete E, Beatino MF, Campese N, et al. Fluid candidate biomarkers for Alzheimer’s disease: a precision medicine approach. J Pers Med. 2020;10(4):1–34.
  • Salvadores N, Shahnawaz M, Scarpini E, et al. Detection of misfolded Aβ oligomers for sensitive biochemical diagnosis of Alzheimer’s disease. Cell Reports. 2014;7(1):261–268. .
  • Ausó E, Gómez-Vicente V, Esquiva G, et al. Biomarkers for Alzheimer’s disease early diagnosis. J Pers Med. 2020;10(3):1–27.
  • Tvarijonaviciute A, Zamora C, Ceron JJ, et al. Salivary biomarkers in alzheimer’s disease. Clin Oral Investig. 2020;24(10):3437–3444.
  • Pekeles H, Qureshi HY, Paudel HK, et al. Development and validation of a salivary tau biomarker in alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2018;10:53–60.
  • Rani K, Rastogi S, Vishwakarma P, et al. A novel approach to correlate the salivary exosomes and their protein cargo in the progression of cognitive impairment into alzheimer’s disease. Journal of Neuroscience Methods. 2021;347:108980.
  • Vivacqua G, Suppa A, Mancinelli R, et al. Salivary alpha-synuclein in the diagnosis of parkinson’s disease and progressive supranuclear palsy. Parkinsonism Related Disord. 2019;63:143–148.
  • Cao Z, Wu Y, Liu G, et al. α-Synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson’s disease. Neurosci Lett. 2019;696:114–120.
  • Sun R, Wang H, Shi Y, et al. A pilot study of urinary exosomes in Alzheimer’s disease. Neurodegenerative Diseases. 2019;19(5–6):184–191.
  • Nam D, Kim A, Han SJ, et al. Analysis of α-synuclein levels related to LRRK2 kinase activity: from substantia nigra to urine of patients with parkinson’s disease. Animal Cells and Systems. 2021;25:28–36.
  • Donadio V, Incensi A, Leta V, et al. Skin nerve a-synuclein deposits a biomarker for idiopathic Parkinson disease. Neurology. 2014;82:1362–1369.
  • Donadio V, Incensi A, Rizzo G, et al. Skin biopsy may help to distinguish multiple system Atrophy–Parkinsonism from parkinson’s disease with orthostatic hypotension. Mov Disord. 2020;35:1649–1657.
  • Mammana A, Baiardi S, Quadalti C, Rossi M, Donadio V, Capellari S, Liguori R, Parchi P. RT-QuIC Detection of Pathological α-Synuclein in Skin Punches of Patients with Lewy Body Disease. Mov Disord. 2021 May 18. https://doi.org/10.1002/mds.28651. Epub ahead of print. PMID: 34002890
  • Wang Z, Becker K, Donadio V, et al. Skin α-Synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol. 2021;78(1):30–40.
  • Donadio V, Wang Z, Incensi A, et al. In vivo diagnosis of synucleinopathies: a comparative study of skin biopsy and RT-QuIC. Neurology. 2021;96(20):e2513–e2524.
  • CMG DL, Elia AE, Portaleone SM, et al. Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy. Transl Neurodegener. 2019;8:1–14.
  • Perra D, Bongianni M, Novi G, et al. Alpha-synuclein seeds in olfactory mucosa and cerebrospinal fluid of patients with dementia with Lewy bodies. Brain Comm. 2021;3(2):1–11.
  • Stefani A, Iranzo A, Holzknecht E, et al., Alpha-synuclein seeds in olfactory mucosa of patients with isolated REM sleep behaviour disorder. Brain. 2021;144(4): 1118–1126.
  • Ashton NJ, Leuzy A, Karikari TK, et al. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur J Nucl Med Mol Imaging. 2021. DOI:https://doi.org/10.1007/s00259-021-05253-y.
  • Schmitz M, Cramm M, Llorens F, et al. The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc. 2016;11(11):2233–2242.
  • Groveman BR, Orrù CD, Hughson AG, et al. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol Commun. 2018;6(1):1–10.
  • Zerr I. RT-QuIC for detection of prodromal α-synucleinopathies. Lancet Neurol]. 2021;20(3):165–166.
  • Badhwar AP, Peggy Mcfall G, Sapkota S, et al. A multiomics approach to heterogeneity in alzheimer’s disease: focused review and roadmap. Brain. Oxford University Press, 2020. p. 1315–1331.
  • Andreasson U, Perret-Liaudet A, van Waalwijk van Doorn LJC, et al. A practical guide to immunoassay method validation. Frontiers in Neurology [Internet]. 2015. [ cited 2021 Apr 26]; 6.
  • Hampel H, Lista S, Neri C, et al. Time for the systems-level integration of aging: resilience enhancing strategies to prevent alzheimer’s disease. Progress in Neurobiology. Elsevier Ltd, 2019.
  • Luckett PH, McCullough A, Gordon BA, et al. Modeling autosomal dominant alzheimer’s disease with machine learning. Alzheimer’s and Dementia. 2021.
  • Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer. Nature Reviews Clinical Oncology. Nature Publishing Group, 2017. . p. 531–548.
  • Kang UJ, Boehme AK, Fairfoul G, et al. Comparative study of cerebrospinal fluid α-synuclein seeding aggregation assays for diagnosis of Parkinsons disease. Movement Disorders. ;34:536544.2019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.