390
Views
5
CrossRef citations to date
0
Altmetric
Review

Current perspectives on the benefits, risks, and limitations of noninvasive brain stimulation (NIBS) for post-stroke dysphagia

ORCID Icon & ORCID Icon
Pages 1135-1146 | Received 02 Jun 2021, Accepted 27 Aug 2021, Published online: 17 Sep 2021

References

  • Arnold M, Liesirova K, Broeg-Morvay A, et al. Dysphagia in acute stroke: incidence, burden and impact on clinical outcome. PLoS One. 2016;11(2):e0148424.
  • Bath PM, Lee HS, Everton LF. Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst Rev. 2018 Oct 30;10:CD000323.
  • Smithard DG, O’Neill PA, Parks C, et al. Complications and outcome after acute stroke. Does dysphagia matter? Stroke. 1996 Jul;27(7):1200–1204.
  • Altman KW, Yu GP, Schaefer SD. Consequence of dysphagia in the hospitalized patient: impact on prognosis and hospital resources. Arch Otolaryngol Head Neck Surg. 2010 Aug;136(8):784–789.
  • Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985 May 11;1(8437):1106–1107.
  • Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation, June 5- 7,1996. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1–16.
  • Pascual-Leone A, Tormos JM, Keenan J, et al. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol. 1998 Jul;15(4):333–343.
  • Hamdy S, Aziz Q, Rothwell JC, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996 Nov;2(11):1217–1224.
  • Hamdy S, Aziz Q, Rothwell JC, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998 Nov;115(5):1104–1112.
  • Hoogendam JM, Ramakers GM, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010 Apr;3(2):95–118.
  • Stefan K, Kunesch E, Benecke R, et al. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol. 2002 Sep 1;543(Pt 2):699–708.
  • Huang YZ, Chen RS, Rothwell JC, et al. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007 May;118(5):1028–1032.
  • Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006 Dec;117(12):2584–2596.
  • Hamada M, Murase N, Hasan A, et al. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex. 2013 Jul;23(7):1593–1605.
  • Mistry S, Verin E, Singh S, et al. Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. J Physiol. 2007 Dec 1;585(Pt 2):525–538.
  • Gow D, Rothwell J, Hobson A, et al. Induction of long-term plasticity in human swallowing motor cortex following repetitive cortical stimulation. Clin Neurophysiol. 2004 May;115(5):1044–1051.
  • Jefferson S, Mistry S, Michou E, et al. Reversal of a virtual lesion in human pharyngeal motor cortex by high frequency contralesional brain stimulation. Gastroenterology. 2009 Sep;137(3):841–9, 849 e1.
  • Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527(Pt 3):633–639.
  • Nitsche MA, Fricke K, Henschke U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003 Nov 15;553(Pt 1):293–301.
  • Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001 Nov 27;57(10):1899–1901.
  • Jefferson S, Mistry S, Singh S, et al. Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex. Am J Physiol Gastrointest Liver Physiol. 2009 Dec;297(6):G1035–40.
  • Suntrup S, Teismann I, Wollbrink A, et al. Magnetoencephalographic evidence for the modulation of cortical swallowing processing by transcranial direct current stimulation. Neuroimage. 2013 Dec;83:346–354.
  • Vasant DH, Mistry S, Michou E, et al. Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing. J Physiol. 2014 Feb 15;592(4):695–709.
  • Kobayashi M, Hutchinson S, Theoret H, et al. Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology. 2004 Jan 13;62(1):91–98.
  • Shimizu T, Hosaki A, Hino T, et al. Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain. 2002 Aug;125(Pt 8):1896–1907.
  • Sumi T. Some properties of cortically-evoked swallowing and chewing in rabbits. Brain Res. 1969 Sep;15(1):107–120.
  • Hamdy S, Aziz Q, Rothwell JC, et al. Sensorimotor modulation of human cortical swallowing pathways. J Physiol. 1998 Feb 1;506((Pt 3)(3)):857–866.
  • Liao X, Xing G, Guo Z, et al. Repetitive transcranial magnetic stimulation as an alternative therapy for dysphagia after stroke: a systematic review and meta-analysis. Clin Rehabil. 2017 Mar;31(3):289–298.
  • Chiang CF, Lin MT, Hsiao MY, et al. Comparative efficacy of noninvasive neurostimulation therapies for acute and subacute poststroke dysphagia: a systematic review and network meta-analysis. Arch Phys Med Rehabil. 2019 Apr;100(4):739–750 e4.
  • Pisegna JM, Kaneoka A, Pearson WG Jr., et al. Effects of non-invasive brain stimulation on post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. Clin Neurophysiol. 2016 Jan;127(1):956–968.
  • Marchina S, Pisegna JM, Massaro JM, et al. Transcranial direct current stimulation for post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. J Neurol. 2021 Jan;268(1):293–304.
  • Cheng I, Sasegbon A, Hamdy S. Effects of neurostimulation on poststroke dysphagia: a synthesis of current evidence from randomized controlled trials. Neuromodulation. 2020 Dec 10. Epub ahead of print.
  • Yang SN, Pyun SB, Kim HJ, et al. Effectiveness of non-invasive brain stimulation in dysphagia subsequent to stroke: a systemic review and meta-analysis. Dysphagia. 2015 Aug;30(4):383–391.
  • Cohen J. Statistical power analysis for the behavioral sciences. New York: Academic press; 2013.
  • Group GW. Grading quality of evidence and strength of recommendations. Bmj. 2004;328(7454):1490.
  • Park JW, Oh JC, Lee JW, et al. The effect of 5Hz high-frequency rTMS over contralesional pharyngeal motor cortex in post-stroke oropharyngeal dysphagia: a randomized controlled study. Neurogastroenterol Motil. 2013 Apr;25(4):324–e250.
  • Michou E, Mistry S, Jefferson S, et al. Characterizing the mechanisms of central and peripheral forms of neurostimulation in chronic dysphagic stroke patients. Brain Stimul. 2014 Jan-Feb;7(1):66–73.
  • Cabib C, Nascimento W, Rofes L, et al. Short-term neurophysiological effects of sensory pathway neurorehabilitation strategies on chronic poststroke oropharyngeal dysphagia. Neurogastroenterol Motil. 2020 Sep;32(9):e13887.
  • Valero-Cabre A, Pascual-Leone A, Rushmore RJ. Cumulative sessions of repetitive transcranial magnetic stimulation (rTMS) build up facilitation to subsequent TMS-mediated behavioural disruptions. Eur J Neurosci. 2008 Feb;27(3):765–774.
  • Lomarev MP, Kanchana S, Bara-Jimenez W, et al. Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord. 2006 Mar;21(3):325–331.
  • Du J, Yang F, Liu L, et al. Repetitive transcranial magnetic stimulation for rehabilitation of poststroke dysphagia: a randomized, double-blind clinical trial. Clin Neurophysiol. 2016 Mar;127(3):1907–1913.
  • Kim L, Chun MH, Kim BR, et al. Effect of repetitive transcranial magnetic stimulation on patients with brain injury and dysphagia. Ann Rehabil Med. 2011 Dec;35(6):765–771.
  • Lim KB, Lee HJ, Yoo J, et al. Effect of low-frequency rTMS and NMES on subacute unilateral hemispheric stroke with dysphagia. Ann Rehabil Med. 2014 Oct;38(5):592–602.
  • Tarameshlu M, Ansari NN, Ghelichi L, et al. The effect of repetitive transcranial magnetic stimulation combined with traditional dysphagia therapy on poststroke dysphagia: a pilot double-blinded randomized-controlled trial. Int J Rehabil Res. 2019 Jun;42(2):133–138.
  • Unluer NO, Temucin CM, Demir N, et al. Effects of low-frequency repetitive transcranial magnetic stimulation on swallowing function and quality of life of post-stroke patients. Dysphagia. 2019 Jun;34(3):360–371.
  • Zhang C, Zheng X, Lu R, et al. Repetitive transcranial magnetic stimulation in combination with neuromuscular electrical stimulation for treatment of post-stroke dysphagia. J Int Med Res. 2019 Feb;47(2):662–672.
  • Cheng IKY, Chan KMK, Wong CS, et al. Neuronavigated high-frequency repetitive transcranial magnetic stimulation for chronic post-stroke dysphagia: a randomized controlled study. J Rehabil Med. 2017 Jun 28;49(6):475–481.
  • Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand. 2009 Mar;119(3):155–161.
  • Lee JH, Kim SB, Lee KW, et al. Effect of repetitive transcranial magnetic stimulation according to the stimulation site in stroke patients with dysphagia. Ann Rehabil Med. 2015 Jun;39(3):432–439.
  • Park E, Kim MS, Chang WH, et al. Effects of bilateral repetitive transcranial magnetic stimulation on post-stroke dysphagia. Brain Stimul. 2017 Jan - Feb;10(1):75–82.
  • Khedr EM, Abo-Elfetoh N. Therapeutic role of rTMS on recovery of dysphagia in patients with lateral medullary syndrome and brainstem infarction. J Neurol Neurosurg Psychiatry. 2010 May;81(5):495–499.
  • Suntrup-Krueger S, Ringmaier C, Muhle P, et al. Randomized trial of transcranial direct current stimulation for poststroke dysphagia. Ann Neurol. 2018 Feb;83(2):328–340.
  • Kumar S, Wagner CW, Frayne C, et al. Noninvasive brain stimulation may improve stroke-related dysphagia: a pilot study. Stroke. 2011;42(4):1035–1040.
  • Mao H, Lyu Y, Li Y, et al. Clinical study on swallowing function of brainstem stroke by tDCS. Neurol Sci. 2021;11:1–8.
  • Yang EJ, Baek SR, Shin J, et al. Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia. Restor Neurol Neurosci. 2012;30(4):303–311.
  • Shigematsu T, Fujishima I, Ohno K. Transcranial direct current stimulation improves swallowing function in stroke patients. Neurorehabil Neural Repair. 2013 May;27(4):363–369.
  • Ahn YH, Sohn HJ, Park JS, et al. Effect of bihemispheric anodal transcranial direct current stimulation for dysphagia in chronic stroke patients: a randomized clinical trial. J Rehabil Med. 2017 Jan 19;49(1):30–35.
  • Pingue V, Priori A, Malovini A, et al. Dual transcranial direct current stimulation for poststroke dysphagia: a randomized controlled trial. Neurorehabil Neural Repair. 2018 Jun;32(6–7):635–644.
  • Wang ZY, Chen JM, Lin ZK, et al. Transcranial direct current stimulation improves the swallowing function in patients with cricopharyngeal muscle dysfunction following a brainstem stroke. Neurol Sci. 2020 Mar;41(3):569–574.
  • Di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014 Oct;10(10):597–608.
  • Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014 May-Jun;7(3):468–475.
  • Horvath JC, Vogrin SJ, Carter O, et al. Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions. Exp Brain Res. 2016;234(9):2629–2642.
  • Cheeran B, Talelli P, Mori F, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol. 2008 Dec 1;586(23):5717–5725.
  • Jayasekeran V, Pendleton N, Holland G, et al. Val66Met in brain-derived neurotrophic factor affects stimulus-induced plasticity in the human pharyngeal motor cortex. Gastroenterology. 2011 Sep;141(3):827–836 e1-3.
  • Raginis-Zborowska A, Cheng I, Pendleton N, et al. Genetic influences on the variability of response to repetitive transcranial magnetic stimulation in human pharyngeal motor cortex. Neurogastroenterol Motil. 2019 Jul;31(7):e13612.
  • Hordacre B, Goldsworthy MR, Vallence AM, et al. Variability in neural excitability and plasticity induction in the human cortex: a brain stimulation study. Brain Stimul. 2017 May - Jun;10(3):588–595.
  • Hordacre B, Ridding MC, Mr G. Response variability to non-invasive brain stimulation protocols. Clin Neurophysiol. 2015 Dec;126(12):2249–2250.
  • Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982 Jan;2(1):32–48.
  • Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996 Apr;19(4):126–130.
  • Hassanzahraee M, Zoghi M, Jaberzadeh S. How different priming stimulations affect the corticospinal excitability induced by noninvasive brain stimulation techniques: a systematic review and meta-analysis. Rev Neurosci. 2018;29(8):883.
  • Cassidy JM, Chu H, Anderson DC, et al. A comparison of primed low-frequency repetitive transcranial magnetic stimulation treatments in chronic stroke. Brain Stimul. 2015 Nov-Dec;8(6):1074–1084.
  • Abraham WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci. 2008 May;9(5):387.
  • Cheng I, Scarlett H, Zhang M, et al. Preconditioning human pharyngeal motor cortex enhances directional metaplasticity induced by repetitive transcranial magnetic stimulation. J Physiol. 2020 Nov;598(22):5213–5230.
  • Rossi S, Hallett M, Rossini PM, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–2039.
  • Rossi S, Antal A, Bestmann S, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines. 2020.
  • Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774–1809.
  • Fregni F, Nitsche M, Loo C, et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Affairs. 2015;32(1):22–35.
  • Russo C, Souza Carneiro MI, Bolognini N, et al. Safety review of transcranial direct current stimulation in stroke. Neuromodulation. 2017 Apr;20(3):215–222.
  • Lisanby SH, Gutman D, Luber B, et al. Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry. 2001 Mar 1;49(5):460–463.
  • Holtzheimer PE, McDonald W. A clinical guide to transcranial magnetic stimulation. Oxford: Oxford University Press; 2014.
  • Loo CK, Taylor JL, Gandevia SC, et al. Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some “sham” forms active? Biol Psychiatry. 2000;47(4):325–331.
  • Kessler SK, Turkeltaub PE, Benson JG, et al. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul. 2012 Apr;5(2):155–162.
  • Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845–850.
  • Ambrus GG, Al-Moyed H, Chaieb L, et al. The fade-in–short stimulation–fade out approach to sham tDCS–reliable at 1 mA for naive and experienced subjects, but not investigators. Brain Stimul. 2012;5(4):499–504.
  • Bodenheimer T. Uneasy alliance–clinical investigators and the pharmaceutical industry. N Engl J Med. 2000 May 18;342(20):1539–1544.
  • Hamdy S, Mikulis DJ, Crawley A, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol Gastrointest Liver Physiol. 1999 Jul;277(1):G219–G225.
  • Mosier K, Patel R, Liu WC, et al. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope. 1999 Sep;109(9):1417–1423.
  • Suzuki M, Asada Y, Ito J, et al. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003 Spring;18(2):71–77.
  • Jayasekeran V, Rothwell J, Hamdy S. Non-invasive magnetic stimulation of the human cerebellum facilitates cortico-bulbar projections in the swallowing motor system. Neurogastroenterol Motil. 2011 Sep;23(9):831–e341.
  • Vasant DH, Michou E, Mistry S, et al. High-frequency focal repetitive cerebellar stimulation induces prolonged increases in human pharyngeal motor cortex excitability. J Physiol. 2015 Nov 15;593(22):4963–4977.
  • Sasegbon A, Watanabe M, Simons A, et al. Cerebellar repetitive transcranial magnetic stimulation restores pharyngeal brain activity and swallowing behaviour after disruption by a cortical virtual lesion. J Physiol. 2019 May;597(9):2533–2546.
  • Sasegbon A, Smith CJ, Bath P, et al. The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity and swallowing behavior. Exp Brain Res. 2020 Aug;238(7–8):1719–1733.
  • Sasegbon A, Niziolek N, Zhang M, et al. The effects of midline cerebellar rTMS on human pharyngeal cortical activity in the intact swallowing motor system. Cerebellum. 2021 Feb;20(1):101–115.
  • Erfmann KLC, Macrae PR, Jones RD, et al. Effects of cerebellar transcranial direct current stimulation (tDCS) on motor skill learning in swallowing. Disabil Rehabil. 2020 Oct;1:1–9.
  • Vasant DH, Sasegbon A, Michou E, et al. Rapid improvement in brain and swallowing behavior induced by cerebellar repetitive transcranial magnetic stimulation in poststroke dysphagia: a single patient case-controlled study. Neurogastroenterol Motil. 2019 Jul;31(7):e13609.
  • Veniero D, Vossen A, Gross J, et al. Lasting EEG/MEG after effects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front Cell Neurosci. 2015;9:477.
  • Inukai Y, Saito K, Sasaki R, et al. Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability. Front Hum Neurosci. 2016;10:668.
  • Antal A, Boros K, Poreisz C, et al. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008 Apr;1(2):97–105.
  • Zhang M, Cheng I, Sasegbon A, et al. Exploring parameters of gamma transcranial alternating current stimulation (tACS) and full-spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability. Neurogastroenterol Motil. 2021 Jun 3;In press:e14173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.