607
Views
16
CrossRef citations to date
0
Altmetric
Review

Acid-base and electrolyte disorders associated with the use of antidiabetic drugs

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1121-1132 | Received 01 Mar 2017, Accepted 19 Jul 2017, Published online: 04 Aug 2017

References

  • American Diabetes Association. Standards of medical care in diabetes - 2017. Diabetes Care. 2017;40(Suppl 1):S1–135.
  • Agouridis AP, Rizos CV, Elisaf MS, et al. Does combination therapy with statins and fibrates prevent cardiovascular disease in diabetic patients with atherogenic mixed dyslipidemia? Rev Diabet Stud. 2013;10:171–190.
  • Filippatos TD, Elisaf MS. Combination drug treatment in obese diabetic patients. World J Diabetes. 2010;1:8–11.
  • Opie LH. Sodium glucose co-transporter 2 (SGLT2) inhibitors: new among antidiabetic drugs. Cardiovasc Drugs Ther. 2014;28:331–334.
  • Agouridis AP, Filippatos TD, Derdemezis CS, et al. Combination of fenofibrate with non-statin drug regimens. Curr Pharm Des. 2010;16:3401–3416.
  • Filippatos T, Milionis HJ. Treatment of hyperlipidaemia with fenofibrate and related fibrates. Expert Opin Investig Drugs. 2008;17:1599–1614.
  • Filippatos TD, Elisaf MS. Fenofibrate plus simvastatin (fixed-dose combination) for the treatment of dyslipidaemia. Expert Opin Pharmacother. 2011;12:1945–1958.
  • Filippatos TD, Elisaf MS. Pitavastatin and carbohydrate metabolism: what is the evidence? Expert Rev Clin Pharmacol. 2016;9:955–960.
  • Filippatos TD, Elisaf MS. Statin-ezetimibe combination therapy in diabetic individuals. Angiology. 2016;67:507–509.
  • Filippatos TD, Florentin M, Georgoula M, et al. Pharmacological management of diabetic dyslipidemia. Expert Rev Clin Pharmacol. 2017;10:187–200.
  • Filippatos TD, Elisaf MS. Safety considerations with fenofibrate/simvastatin combination. Expert Opin Drug Saf. 2015;14:1481–1493.
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128.
  • Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–1844.
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–322.
  • Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–334.
  • Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–2257.
  • Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–242.
  • White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–1335.
  • Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–1326.
  • Filippatos TD, Tsimihodimos V, Elisaf MS. Mechanisms of blood pressure reduction with sodium-glucose co-transporter 2 (SGLT2) inhibitors. Expert Opin Pharmacother. 2016;17:1581–1583.
  • Tsimihodimos V, Filippatos TD, Elisaf MS. Effects of sodium-glucose co-transporter 2 inhibitors on metabolism: unanswered questions and controversies. Expert Opin Drug Metab Toxicol. 2016;13:1–10.
  • Filippatos TD, Athyros VG, Elisaf MS. The pharmacokinetic considerations and adverse effects of DPP-4 inhibitors. Expert Opin Drug Metab Toxicol. 2014;10:787–812.
  • Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud. 2014;11:202–230.
  • Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis. 2008;52:144–153.
  • Liamis G, Filippatos TD, Elisaf MS. Thiazide-associated hyponatremia in the elderly: what the clinician needs to know. J Geriatr Cardiol. 2016;13:175–182.
  • Visconti L, Cernaro V, Ferrara D, et al. Metformin-related lactic acidosis: is it a myth or an underestimated reality? Ren Fail. 2016;38:1560–1565.
  • Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.
  • Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–1589.
  • Ravindran S, Kuruvilla V, Wilbur K, et al. Nephroprotective effects of metformin in diabetic nephropathy. J Cell Physiol. 2017;232:731–742.
  • Klachko D, Whaley-Connell A. Use of metformin in patients with kidney and cardiovascular diseases. Cardiorenal Med. 2011;1:87–95.
  • Kooy A, De Jager J, Lehert P, et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch Intern Med. 2009;169:616–625.
  • National Institute for Health and Clinical Excellence. Type 2 diabetes: the management of type 2 diabetes. NG28. cited 2017 Jan 30. Available from: https://www.nice.org.uk/guidance/ng28/chapter/1-Recommendations-blood-glucose-management-2.
  • Moioli A, Maresca B, Manzione A, et al. Metformin associated lactic acidosis (MALA): clinical profiling and management. J Nephrol. 2016;29:783–789.
  • Chowdhury TA, Srirathan D, Abraham G, et al. Could metformin be used in patients with diabetes and advanced chronic kidney disease? Diabetes Obes Metab. 2017;19:156–161.
  • Lalau JD. Lactic acidosis induced by metformin: incidence, management and prevention. Drug Saf. 2010;33:727–740.
  • Lalau JD, Kajbaf F, Protti A, et al. Metformin-associated lactic acidosis (MALA): moving towards a new paradigm. Diabetes Obes Metab. 2017. Epub ahead of print. Doi: 10.1111/dom.12974
  • Bicsak TA, Walsh B, Fineman M. Metformin-associated lactic acidosis (MALA): moving towards a new paradigm? Diabetes Obes Metab. 2017. Epub ahead of print. Doi: 10.1111/dom.12994.
  • Eppenga WL, Lalmohamed A, Geerts AF, et al. Risk of lactic acidosis or elevated lactate concentrations in metformin users with renal impairment: a population-based cohort study. Diabetes Care. 2014;37:2218–2224.
  • Richy FF, Sabido-Espin M, Guedes S, et al. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study. Diabetes Care. 2014;37:2291–2295.
  • Salpeter SR, Greyber E, Pasternak GA, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;CD002967.
  • Lalau JD, Lacroix C, Compagnon P, et al. Role of metformin accumulation in metformin-associated lactic acidosis. Diabetes Care. 1995;18:779–784.
  • Vecchio S, Giampreti A, Petrolini VM, et al. Metformin accumulation: lactic acidosis and high plasmatic metformin levels in a retrospective case series of 66 patients on chronic therapy. Clin Toxicol (Phila). 2014;52:129–135.
  • Stades AM, Heikens JT, Erkelens DW, et al. Metformin and lactic acidosis: cause or coincidence? A review of case reports. J Intern Med. 2004;255:179–187.
  • Connelly PJ, Lonergan M, Soto-Pedre E, et al. Acute kidney injury, plasma lactate concentrations and lactic acidosis in metformin users: A GoDarts study. Diabetes Obes Metab. 2017. Epub ahead of print. doi: 10.1111/dom.12978
  • Rocha A, Almeida M, Santos J, et al. Metformin in patients with chronic kidney disease: strengths and weaknesses. J Nephrol. 2013;26:55–60.
  • Spiller HA, Quadrani DA. Toxic effects from metformin exposure. Ann Pharmacother. 2004;38:776–780.
  • Al-Abri SA, Hayashi S, Thoren KL, et al. Metformin overdose-induced hypoglycemia in the absence of other antidiabetic drugs. Clin Toxicol (Phila). 2013;51:444–447.
  • Perrone J, Phillips C, Gaieski D. Occult metformin toxicity in three patients with profound lactic acidosis. J Emerg Med. 2011;40:271–275.
  • Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–1174.
  • Viollet B, Guigas B, Sanz Garcia N, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122:253–270.
  • Protti A, Lecchi A, Fortunato F, et al. Metformin overdose causes platelet mitochondrial dysfunction in humans. Crit Care. 2012;16:R180.
  • Bando K, Ochiai S, Kunimatsu T, et al. Comparison of potential risks of lactic acidosis induction by biguanides in rats. Regul Toxicol Pharmacol. 2010;58:155–160.
  • Semely D, Bennett E, Vallejo C, et al. Can an early diagnostic procedure of metformin-associated lactic acidosis in an emergency unit reduce mortality? Therapie. 2016;71:605–612.
  • Lalau JD, Lacroix C. Measurement of metformin concentration in erythrocytes: clinical implications. Diabetes Obes Metab. 2003;5:93–98.
  • Pan LT, MacLaren G. Continuous venovenous haemodiafiltration for metformin-induced lactic acidosis. Anaesth Intensive Care. 2009;37:830–832.
  • Liamis G, Milionis HJ, Elisaf M. Pharmacologically-induced metabolic acidosis: a review. Drug Saf. 2010;33:371–391.
  • Liamis G, Liberopoulos E, Alexandridis G, et al. Hypomagnesemia in a department of internal medicine. Magnes Res. 2012;25:149–158.
  • Liamis G, Liberopoulos E, Barkas F, et al. Diabetes mellitus and electrolyte disorders. World J Clin Cases. 2014;2:488–496.
  • Liamis G, Rodenburg EM, Hofman A, et al. Electrolyte disorders in community subjects: prevalence and risk factors. Am J Med. 2013;126:256–263.
  • Peters KE, Chubb SA, Davis WA, et al. The relationship between hypomagnesemia, metformin therapy and cardiovascular disease complicating type 2 diabetes: the Fremantle Diabetes Study. PLoS One. 2013;8:e74355.
  • Kurstjens S, De Baaij JH, Bouras H, et al. Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2017;176:11–19.
  • McBain AM, Brown IR, Menzies DG, et al. Effects of improved glycaemic control on calcium and magnesium homeostasis in type II diabetes. J Clin Pathol. 1988;41:933–935.
  • Chakraborty A, Chowdhury S, Bhattacharyya M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract. 2011;93:56–62.
  • Svare A. A patient presenting with symptomatic hypomagnesemia caused by metformin-induced diarrhoea: a case report. Cases J. 2009;2:156.
  • Dosa MD, Hangan LT, Crauciuc E, et al. Influence of therapy with metformin on the concentration of certain divalent cations in patients with non-insulin-dependent diabetes mellitus. Biol Trace Elem Res. 2011;142:36–46.
  • Gorelik O, Efrati S, Berman S, et al. Effect of various clinical variables on total intracellular magnesium in hospitalized normomagnesemic diabetic patients before discharge. Biol Trace Elem Res. 2007;120:102–109.
  • Alon I, Berman S, Shteinshnaider M, et al. Total cellular calcium and magnesium content of cultured human peripheral blood mononuclear cells following exposure to antidiabetic drugs. Acta Diabetol. 2006;43:46–51.
  • Ewis SA, Abdel-Rahman MS. Effect of metformin on glutathione and magnesium in normal and streptozotocin-induced diabetic rats. J Appl Toxicol. 1995;15:387–390.
  • Niranjan G, Mohanavalli V, Srinivasan AR, et al. Serum lipid peroxides and magnesium levels following three months of treatment with pioglitazone in patients with type-2 diabetes mellitus. Diabetes Metab Syndr. 2013;7:35–37.
  • Guerrero-Romero F, Rodriguez-Moran M. Pioglitazone increases serum magnesium levels in glucose-intolerant subjects. A randomized, controlled trial. Exp Clin Endocrinol Diabetes. 2003;111:91–96.
  • Nadler J, Scott S. Evidence that pioglitazone increases intracellular free magnesium concentration in freshly isolated rat adipocytes. Biochem Biophys Res Commun. 1994;202:416–421.
  • Da Silva CA, De Braganca AC, Shimizu MH, et al. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression. Am J Physiol Renal Physiol. 2009;297:F916–F922.
  • Kitabchi AE, Umpierrez GE, Murphy MB, et al. Hyperglycemic crises in adult patients with diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29:2739–2748.
  • Wang ZH, Kihl-Selstam E, Eriksson JW. Ketoacidosis occurs in both type 1 and type 2 diabetes–a population-based study from northern Sweden. Diabet Med. 2008;25:867–870.
  • Chiasson JL, Aris-Jilwan N, Belanger R, et al. Diagnosis and treatment of diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Cmaj. 2003;168:859–866.
  • Yanai H, Katsuyama H, Hamasaki H, et al. Sodium-glucose cotransporter 2 inhibitors: possible anti-atherosclerotic effects beyond glucose lowering. J Clin Med Res. 2016;8:10–14.
  • Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev. 2017. Epub ahead of print. Doi: 10.1002/dmrr.2886
  • Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–426.
  • Fukao T, Mitchell G, Sass JO, et al. Ketone body metabolism and its defects. J Inherit Metab Dis. 2014;37:541–551.
  • Turner J, Begum T, Smalligan RD. Canagliflozin-induced diabetic ketoacidosis: case report and review of the literature. J Investig Med High Impact Case Rep. 2016;4:2324709616663231.
  • Clement M, Senior P. Euglycemic diabetic ketoacidosis with canagliflozin: not-so-sweet but avoidable complication of sodium-glucose cotransporter-2 inhibitor use. Can Fam Physician. 2016;62:725–728.
  • Taylor SI, Blau JE, Rother KI. SGLT2 inhibitors may predispose to ketoacidosis. J Clin Endocrinol Metab. 2015;100:2849–2852.
  • Kalra S, Sahay R, Gupta Y. Sodium glucose transporter 2 (SGLT2) inhibition and ketogenesis. Indian J Endocrinol Metab. 2015;19:524–528.
  • Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38:1638–1642.
  • Peters AL, Buschur EO, Buse JB, et al. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38:1687–1693.
  • Hayami T, Kato Y, Kamiya H, et al. Case of ketoacidosis by a sodium-glucose cotransporter 2 inhibitor in a diabetic patient with a low-carbohydrate diet. J Diabetes Investig. 2015;6:587–590.
  • Bloomgarden ZT. Sodium-glucose cotransporter 2 inhibitors and diabetic ketoacidosis. J Diabetes. 2016;8:175–176.
  • European Medicines Agency. Review of diabetes medicines called SGLT2 inhibitors started. 2015 [cited 2017 Jan 21]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/SGLT2_inhibitors__20/Procedure_started/WC500187926.pdf.
  • U.S. Food and Drug Administration 2015. FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood. [cited 2017 Jan 21]. Available from: http://www.fda.gov/downloads/Drugs/DrugSafety/UCM446954.pdf.
  • Goldenberg RM, Berard LD, Cheng AY, et al. SGLT2 inhibitor-associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis. Clin Ther. 2016;38:2654–2664 e1.
  • Erondu N, Desai M, Ways K, et al. Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program. Diabetes Care. 2015;38:1680–1686.
  • Lund S, Solimando F, Kohler S. Effect of empagliflozin (EMPA) on diabetic ketoacidosis (DKA) in patients with type 2 diabetes (T2DM): pooled clinical trial data. Diabetologia. 2016;59(Suppl. 1):S26–S7abstract 50. Available from: http://doi.org/10.1007/s00125-016-4046-9
  • Tang H, Li D, Wang T, et al. Effect of sodium-glucose cotransporter 2 inhibitors on diabetic ketoacidosis among patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2016;39:e123–e124.
  • West K, WEebb L, Fenech M, et al. Possible risk factors for the development of sodium-glucose co-transporter 2 inhibitor- associated diabetic ketoacidosis in type 2 diabetes. Br J Diabetes. 2016;16:78–81.
  • Abdul-Ghani MA, Norton L, DeFronzo RA. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. Am J Physiol Renal Physiol. 2015;309:F889–F900.
  • Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21:512–517.
  • Merovci A, Solis-Herrera C, Daniele G, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest. 2014;124:509–514.
  • Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508.
  • Palmer BF, Clegg DJ, Taylor SI, et al. Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney. J Diabetes Complications. 2016;30:1162–1166.
  • Pieber TR, Famulla S, Eilbracht J, et al. Empagliflozin as adjunct to insulin in patients with type 1 diabetes: a 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Obes Metab. 2015;17:928–935.
  • Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–1195.
  • Yabe D, Iwasaki M, Kuwata H, et al. SGLT2 inhibitor use and dietary carbohydrate intake in Japanese individuals with type 2 diabetes: a randomized, open-label, 3-arm parallel comparative exploratory study. Diabetes Obes Metab. 2016;19:739–743.
  • Abdul-Ghani M, Del Prato S, Chilton R, et al. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care. 2016;39:717–725.
  • Marx N, McGuire DK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J. 2016;37:3192–3200.
  • Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: A “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–1114.
  • Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39:1115–1122.
  • Tsimihodimos V, Filippatos TD, Fillippas-Ntekouan S, et al. Renoprotective effects of SGLT2 inhibitors: beyond glucose reabsorption inhibition. Curr Vasc Pharmacol. 2016;15:96–102.
  • Tang H, Zhang X, Zhang J, et al. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials. Diabetologia. 2016;59:2546–2551.
  • Yale J-F, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab. 2014;16:1016–1027.
  • Weir MR, Kline I, Xie J, et al. Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr Med Res Opin. 2014;30:1759–1768.
  • Kimura G. Importance of inhibiting sodium-glucose cotransporter and its compelling indication in type 2 diabetes: pathophysiological hypothesis. J Am Soc Hypertens. 2016;10:271–278.
  • Yavin Y, Mansfield TA, Ptaszynska A, et al. Effect of the SGLT2 inhibitor dapagliflozin on potassium levels in patients with type 2 diabetes mellitus: a pooled analysis. Diabetes Ther. 2016;7:125–137.
  • Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 2015;3:8–10.
  • Bode B, Stenlöf K, Harris S, et al. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab. 2015;17:294–303.
  • Bilezikian JP, Watts NB, Usiskin K, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab. 2016;101:44–51.
  • Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101:157–166.
  • Alba M, Xie J, Fung A, et al. The effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on mineral metabolism and bone in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32:1375–1385.
  • Ljunggren O, Bolinder J, Johansson L, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2012;14:990–999.
  • Egger A, Kraenzlin ME, Meier C. Effects of incretin-based therapies and SGLT2 inhibitors on skeletal health. Curr Osteoporos Rep. 2016;14:345–350.
  • Tang HL, Li DD, Zhang JJ, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2016;18:1199–1206.
  • Minaker KL, Rowe JW. Potassium homeostasis during hyperinsulinemia: effect of insulin level, beta-blockade, and age. Am J Physiol. 1982;242:E373–E377.
  • Kamel KS, Schreiber M, Carlotti AP, et al. Approach to the treatment of diabetic ketoacidosis. Am J Kidney Dis. 2016;68:967–972.
  • Wu D, Kraut JA. Role of NHE1 in the cellular dysfunction of acute metabolic acidosis. Am J Nephrol. 2014;40:36–42.
  • Van der Meulen JA, Klip A, Grinstein S. Possible mechanism for cerebral oedema in diabetic ketoacidosis. Lancet. 1987;2:306–308.
  • Petersen KG, Schlüter KJ, Kerp L. Regulation of serum potassium during insulin-induced hypoglycemia. Diabetes. 1982;31:615–617.
  • Carlotti AP, St George-Hyslop C, Bohn D, et al. Hypokalemia during treatment of diabetic ketoacidosis: clinical evidence for an aldosterone-like action of insulin. J Pediatr. 2013;163:207–212 e1.
  • Clausen T, Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int. 1989;35:1–13.
  • Murthy K, Harrington JT, Siegel RD. Profound hypokalemia in diabetic ketoacidosis: a therapeutic challenge. Endocr Pract. 2005;11:331–334.
  • Arora S, Cheng D, Wyler B, et al. Prevalence of hypokalemia in ED patients with diabetic ketoacidosis. Am J Emerg Med. 2012;30:481–484.
  • Kanwal SK, Bando A, Kumar V. Clinical profile of diabetic ketoacidosis in Indian children. Indian J Pediatr. 2012;79:901–904.
  • Gosmanov AR, Gosmanova EO, Dillard-Cannon E. Management of adult diabetic ketoacidosis. Diabetes Metab Syndr Obes. 2014;7:255–264.
  • Liamis G, Liberopoulos E, Barkas F, et al. Spurious electrolyte disorders: a diagnostic challenge for clinicians. Am J Nephrol. 2013;38:50–57.
  • Matsumura M, Nakashima A, Tofuku Y. Electrolyte disorders following massive insulin overdose in a patient with type 2 diabetes. Intern Med. 2000;39:55–57.
  • Paolisso G, Sgambato S, Passariello N, et al. Insulin induces opposite changes in plasma and erythrocyte magnesium concentrations in normal man. Diabetologia. 1986;29:644–647.
  • Xu LH, Maalouf NM. Effect of acute hyperinsulinemia on magnesium homeostasis in humans. Diabetes Metab Res Rev. 2017;33(2). doi: 10.1002/dmrr.2844.
  • Nair AV, Hocher B, Verkaart S, et al. Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc Natl Acad Sci U S A. 2012;109:11324–11329.
  • Takayanagi K, Shimizu T, Tayama Y, et al. Downregulation of transient receptor potential M6 channels as a cause of hypermagnesiuric hypomagnesemia in obese type 2 diabetic rats. Am J Physiol Renal Physiol. 2015;308:F1386–F1397.
  • Liamis G, Milionis HJ, Elisaf M. Medication-induced hypophosphatemia: a review. Qjm. 2010;103:449–459.
  • Kebler R, McDonald FD, Cadnapaphornchai P. Dynamic changes in serum phosphorus levels in diabetic ketoacidosis. Am J Med. 1985;79:571–576.
  • Felsenfeld AJ, Levine BS. Approach to treatment of hypophosphatemia. Am J Kidney Dis. 2012;60:655–661.
  • Beukhof CM, Hoorn EJ, Lindemans J, et al. Novel risk factors for hospital-acquired hyponatraemia: a matched case-control study. Clin Endocrinol (Oxf). 2007;66:367–372.
  • Bustamante M, Hasler U, Kotova O, et al. Insulin potentiates AVP-induced AQP2 expression in cultured renal collecting duct principal cells. Am J Physiol Renal Physiol. 2005;288:F334–F344.
  • Liamis G, Milionis H, Elisaf M. Blood pressure drug therapy and electrolyte disturbances. Int J Clin Pract. 2008;62:1572–1580.
  • Filippatos TD, Elisaf MS. Hyponatremia in patients with heart failure. World J Cardiol. 2013;5:317–328.
  • Filippatos TD, Liamis G, Christopoulou F, et al. Ten common pitfalls in the evaluation of patients with hyponatremia. Eur J Intern Med. 2016;29:22–25.
  • Filippatos TD, Liamis G, Elisaf MS. Ten pitfalls in the proper management of patients with hyponatremia. Postgrad Med. 2016;128:516–522.
  • Liamis G, Filippatos TD, Elisaf MS. Electrolyte disorders associated with the use of anticancer drugs. Eur J Pharmacol. 2016;777:78–87.
  • Liamis G, Filippatos TD, Liontos A, et al. Hyponatremia in patients with liver diseases: not just a cirrhosis-induced hemodynamic compromise. Hepatol Int. 2016;10:762–772.
  • Liamis G, Filippatos TD, Liontos A, et al. Management of endocrine disease: hypothyroidism-associated hyponatremia: mechanisms, implications and treatment. Eur J Endocrinol. 2017;176:R15–R20.
  • Liamis G, Milionis HJ, Elisaf M. Hyponatremia in patients with infectious diseases. J Infect. 2011;63:327–335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.