226
Views
30
CrossRef citations to date
0
Altmetric
Review

Protective effects of pharmacological agents against aminoglycoside-induced nephrotoxicity: A systematic review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 167-186 | Received 11 Sep 2019, Accepted 03 Jan 2020, Published online: 15 Jan 2020

References

  • Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol. 2011;2011:937861.
  • Yarlagadda V, Wright GD. Membrane-Active Rhamnolipids Overcome Aminoglycoside Resistance. Cell Chem Biol. 2019;26(10):1333–1334.
  • McSorley FR, Johnson JW, Wright GD. Antimicrobial Resistance in the 21st Century. Springer International Publishing. Second ed. University of Toronto, Toronto, Canada. 2018. p. 533–562.
  • Kudo F, Eguchi T. Aminoglycoside antibiotics: new insights into the biosynthetic machinery of old drugs. Chem Rec. 2016;16(1):4–18.
  • Rutka J. Aminoglycoside Vestibulotoxicity. Adv Otorhinolaryngol. 2019;82:101–110.
  • Hong H, Dooley KE, Starbird LE, et al. Adverse outcome pathway for aminoglycoside ototoxicity in drug-resistant tuberculosis treatment. Arch Toxicol. 2019;93(5):1385–1399.
  • Ali BH, Bashir AA. Effect of fish oil treatment on gentamicin nephrotoxicity in rats. Ann Nutr Metab. 1994;38(6):336–339.
  • Silan C, Ö U, NÜ Ç, et al. Gentamicin-induced nephrotoxicity in rats ameliorated and healing effects of resveratrol. Biol Pharm Bull. 2007;30(1):79–83.
  • Soliman KM, Abdul-Hamid M, Othman AI. Effect of carnosine on gentamicin-induced nephrotoxicity. Med Sci Monit. 2007;13(3):BR73–83.
  • Becker B, Cooper MA. Aminoglycoside antibiotics in the 21st century. ACS Chem Biol. 2012;8(1):105–115.
  • Poehlsgaard J, Douthwaite S. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol. 2005;3(11):870–881.
  • Tahbaz SV, Azimi L, Lari AR. Characterization of aminoglycoside resistance mechanisms in Acinetobacter Baumannii isolates from burn wound colonization. Ann Burns Fire Disasters. 2019;32(2):115–121.
  • Krause KM, Serio AW, Kane TR, et al. Aminoglycosides: an Overview. Cold Spring Harb Perspect Med. 2016;6:a027029.
  • Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000;44(12):3249–3256.
  • Carter AP, Clemons WM, Brodersen DE, et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000;407(6802):340–348.
  • Pfister P, Hobbie S, Vicens Q, et al. The molecular basis for A‐site mutations conferring aminoglycoside resistance: relationship between ribosomal susceptibility and X‐ray crystal structures. Chembiochem. 2003;4(10):1078–1088.
  • Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151–171.
  • Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12(1):35–48.
  • Oliveira JF, Silva CA, Barbieri CD, et al. Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob Agents Chemother. 2009;53(7):2887–2891.
  • Brummett RE, Morrison RB. The incidence of aminoglycoside antibiotic-induced hearing loss. Arch Otolaryngol Head Neck Surg. 1990;116(4):406–410.
  • Usami S, Abe S, Shinkawa H, et al. Sensorineural hearing loss caused by mitochondrial DNA mutations: special reference to the A1555G mutation. J Commun Disord. 1998;31(5):423–434. quiz 434-5.
  • Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics. 2005;6(1):27–36.
  • Aithal G, Watkins P, Andrade R, et al. Case definition and phenotype standardization in drug‐induced liver injury. Clin Pharmacol Ther. 2011;89(6):806–815.
  • McWilliam SJ, Antoine DJ, Jorgensen AL, et al. Urinary Biomarkers of Aminoglycoside-Induced Nephrotoxicity in Cystic Fibrosis: kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin. Sci Rep. 2018;8(1):5094.
  • Barnett LMA, Cummings BS. Cellular and Molecular Mechanisms of Kidney Toxicity. Semin Nephrol. 2019;39(2):141–151.
  • M-P M-L, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43(5):1003–1012.
  • Sandoval RM, Molitoris B. Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum. Am J Physiol Renal Physiol. 2004;286(4):F617–F624.
  • Schmitz C, Hilpert J, Jacobsen C, et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem. 2002;277(1):618–622.
  • Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol. 2001;280(4):F562–F573.
  • Antoine DJ, Srivastava A, Pirmohamed M, et al. Statins inhibit aminoglycoside accumulation and cytotoxicity to renal proximal tubule cells. Biochem Pharmacol. 2010;79(4):647–654.
  • McWilliam SJ, Antoine DJ, Smyth RL, et al. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol. 2017;32(11):2015–2025.
  • Regec AL, Trump BF, Trifilis A. Effect of gentamicin on the lysosomal system of cultured human proximal tubular cells: endocytotic activity, lysosomal pH and membrane fragility. Biochem Pharmacol. 1989;38(15):2527–2534.
  • Servais H, Van Der Smissen P, Thirion G, et al. Gentamicin-induced apoptosis in LLC-PK1 cells: involvement of lysosomes and mitochondria. Toxicol Appl Pharmacol. 2005;206(3):321–333.
  • Lopez-Novoa JM, Quiros Y, Vicente L, et al. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79(1):33–45.
  • Chwieralski C, Welte T, Bühling F. Cathepsin-regulated apoptosis. Apoptosis. 2006;11(2):143–149.
  • Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007;32(1):37–43.
  • Peyrou M, Hanna PE, Cribb AE. Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci. 2007;99(1):346–353.
  • Baliga R, Zhang Z, Baliga M, et al. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int. 1998;53(2):394–401.
  • Rao M, Kumar MM, Rao MA. In vitro and in vivo effects of phenolic antioxidants against cisplatin-induced nephrotoxicity. J Biochem. 1999;125(2):383–390.
  • Smetana S, Khalef S, Nitsan Z, et al. Enhanced urinary trypsin inhibitory activity in gentamicin-induced nephrotoxicity in rats. Clin Chim Acta. 1988;176(3):333–342.
  • Longoni B, Migliori M, Ferretti A, et al. Melatonin prevents cyclosporine-induced nephrotoxicity in isolated and perfused rat kidney. Free Radic Res. 2002;36(3):357–363.
  • Piotrowski WJ, Pietras T, Kurmanowska Z, et al. Effect of paraquat intoxication and ambroxol treatment on hydrogen peroxide production and lipid peroxidation in selected organs of rat. J Appl Toxicol. 1996;16(6):501–507.
  • Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613–1621.
  • Wargo KA, Edwards JD. Aminoglycoside-induced nephrotoxicity. J Pharm Pract. 2014;27(6):573–577.
  • Bertino JS Jr, Booker LA, Franck PA, et al. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J Infect Dis. 1993;167(1):173–179.
  • Corcoran GB, Salazar DE, Schentag JJ. Excessive aminoglycoside nephrotoxicity in obese patients. Am J Med. 1988;85(2):279.
  • Flegal KM, Carroll MD, Ogden CL. Trends in obesity and extreme obesity among US adults—reply. JAMA. 2010;303(17):1695–1696.
  • Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999-2000. JAMA. 2002;288(14):1723–1727.
  • Humes HD. Aminoglycoside nephrotoxicity. Kidney Int. 1988;33(4):900–911.
  • Milton K. Micronutrient intakes of wild primates: are humans different?. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59.
  • Nabavi SF, Nabavi SM, Moghaddam AH, et al. Protective effects of Allium paradoxum against gentamicin-induced nephrotoxicity in mice. Food Funct. 2012;3(1):28–29.
  • Krest I, Glodek J, Keusgen M, et al. Cysteine sulfoxides and alliinase activity of some Allium species. J Agric Food Chem. 2000;48(8):3753–3760.
  • Ebrahimzadeh MA, Nabavi SF, Nabavi SM, et al. Antihemolytic and antioxidant activities of Allium paradoxum. cent.eur.j.biol. 2010;5(3):338–345.
  • Giardino I, Fard AK, Hatchell DL, et al. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes. 1998;47(7):1114–1120.
  • Mansour MA, Mostafa AM, Nagi MN, et al. Protective effect of aminoguanidine against nephrotoxicity induced by cisplatin in normal rats. Comp Biochem Physiol C Toxicol Pharmacol. 2002;132(2):123–128.
  • Parlakpinar H, Koc M, Polat A, et al. Protective effect of aminoguanidine against nephrotoxicity induced by amikacin in rats. Urol Res. 2004;32(4):278–282.
  • Váli L, É S-B, Szentmihályi K, et al. Liver-protecting effects of table beet (Beta vulgaris var rubra) during ischemia-reperfusion. Nutrition. 2007;23(2):172–178.
  • El Gamal AA, AlSaid MS, Raish M, et al. Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediators Inflamm. 2014;2014:983952.
  • Winkler C, Wirleitner B, Schroecksnadel K, et al. In vitro effects of beet root juice on stimulated and unstimulated peripheral blood mononuclear cells. Am J Biochem Biotechnol. 2005;1(4):180–185.
  • Özyurt H, Irmak MK, Ö A, et al. Caffeic acid phenethyl ester changes the indices of oxidative stress in serum of rats with renal ischaemia–reperfusion injury. Cell Biochem Funct. 2001;19(4):259–263.
  • Sud’Ina G, Mirzoeva O, Pushkareva M, et al. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett. 1993;329(1–2):21–24.
  • Bhimani RS, Troll W, Grunberger D, et al. Inhibition of oxidative stress in HeLa cells by chemopreventive agents. Cancer Res. 1993;53(19):4528–4533.
  • Özen S, Ö A, Iraz M, et al. Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin‐induced nephrotoxicity in rats. J Appl Toxicol. 2004;24(1):27–35.
  • Parlakpinar H, Tasdemir S, Polat A, et al. Protective role of caffeic acid phenethyl ester (cape) on gentamicin-induced acute renal toxicity in rats. Toxicology. 2005;207(2):169–177.
  • Boonla O, Kukongviriyapan U, Pakdeechote P, et al. Curcumin improves endothelial dysfunction and vascular remodeling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide. 2014;42:44–53.
  • Wu W, Geng H, Liu Z, et al. Effect of curcumin on rats/mice with diabetic nephropathy: a systematic review and meta-analysis of randomized controlled trials. J Tradit Chin Med. 2014;34(4):419–429.
  • Trujillo J, Chirino YI, Molina-Jijón E, et al. Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol. 2013;1(1):448–456.
  • Hatcher H, Planalp R, Cho J, et al. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–1652.
  • Tirkey N, Kaur G, Vij G, et al. Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol. 2005;5(1):15.
  • El-Zawahry BH, Abu E, EM K. The protective effect of curcumin against gentamicin-induced renal dysfunction and oxidative stress in male albino rats. Egypt J Hosp Med. 2007;29:546–556.
  • He L, Peng X, Zhu J, et al. Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats. Can J Physiol Pharmacol. 2015;93(4):275–282.
  • Ali B, Al‐Wabel N, Mahmoud O, et al. Curcumin has a palliative action on gentamicin‐induced nephrotoxicity in rats. Fundam Clin Pharmacol. 2005;19(4):473–477.
  • Farombi E, Ekor M. Curcumin attenuates gentamicin-induced renal oxidative damage in rats. Food Chem Toxicol. 2006;44(9):1443–1448.
  • Azab A, Fetouh FA, Albasha MO. Nephro-protective effects of curcumin, rosemary and propolis against gentamicin induced toxicity in guinea pigs: morphological and biochemical study. AJCEM. 2014;2(2):28–35.
  • Said MM, Ogawa K, Pitchakarn P, et al. Cyclooxygenase 2 and prostaglandin E2 are not involved in N-nitrosodiethylamine-initiated early rat hepatocarcinogenesis. J Toxicol Pathol. 2009;22(4):263–271.
  • Gupta AD, Bansal VK, Babu V, et al. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol. 2013;11(1):25–31.
  • Wahyuni D, Yulianto B. Basil leaf (Ocimmum basillum form citratum) Extract Spray in Controling Aedes aegepty. jurnal kesehatan masyarakat. 2018;14(2):147–156.
  • Zhao X, Chen D, Gao P, et al. Synthesis of ibuprofen eugenol ester and its microemulsion formulation for parenteral delivery. Chem Pharm Bull (Tokyo). 2005;53(10):1246–1250.
  • Nagababu E, Lakshmaiah N. Inhibition of microsomal lipid peroxidation and monooxygenase activities by eugenol. Free Radic Res. 1994;20(4):253–266.
  • Kumaravelu P, Dakshinamoorthy DP, Subramaniam S, et al. Effect of eugenol on drug-metabolizing enzymes of carbon tetrachloride-intoxicated rat liver. Biochem Pharmacol. 1995;49(11):1703–1707.
  • Said MM. The protective effect of eugenol against gentamicin‐induced nephrotoxicity and oxidative damage in rat kidney. Fundam Clin Pharmacol. 2011;25(6):708–716.
  • Qadir MI, Tahir M, Lone KP, et al. Protective role of ginseng against gentamicin induced changes in kidney of albino mice. J Ayub Med Coll Abbottabad. 2011;23(4):53–57.
  • Lee YK, Chin YW, Choi YH. Effects of Korean red ginseng extract on acute renal failure induced by gentamicin and pharmacokinetic changes by metformin in rats. Food Chem Toxicol. 2013;59:153–159.
  • Karakus E, Karadeniz A, Simsek N, et al. Protective effect of Panax ginseng against serum biochemical changes and apoptosis in liver of rats treated with carbon tetrachloride (CCl4). J Hazard Mater. 2011;195:208–213.
  • Shin HS, Yu M, Kim M, et al. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury. Lab Invest. 2014;94(10):1147.
  • Alschuler L. Green tea: healing tonic. Am J Nat Med. 1998;5:28–31.
  • Khan N, Afaq F, Saleem M, et al. Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res. 2006;66(5):2500–2505.
  • Mukhtar H, Ahmad N. Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr. 2000;71(6):1698S–1702S.
  • McKenna DJ, Hughes K, KJAtih J, et al. Green tea monograph. Altern Ther Health Med. 2000;6(3):61.
  • Dulloo AG, Duret C, Rohrer D, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70(6):1040–1045.
  • Abdel-Raheem IT, El-Sherbiny GA, Taye A. Green tea ameliorates renal oxidative damage induced by gentamicin in rats. Pak J Pharm Sci. 2010;23(1):21–28.
  • Khan SA, Priyamvada S, Farooq N, et al. Protective effect of green tea extract on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Pharmacol Res. 2009;59(4):254–262.
  • Hedberg I., Edwards S., Nemomissa S. Flora of Ethiopia and Eritrea. Volume 4, part 1. Apiaceae to Dipsacaceae. Uppsala: the National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany; 2003.
  • Wondimu T, Asfaw Z, Kelbessa E. Ethnobotanical study of medicinal plants around ‘Dheeraa’town, Arsi Zone, Ethiopia. J Ethnopharmacol. 2007;112(1):152–161.
  • Feyissa T, Asres K, Engidawork E. Renoprotective effects of the crude extract and solvent fractions of the leaves of Euclea divinorum Hierns against gentamicin-induced nephrotoxicity in rats. J Ethnopharmacol. 2013;145(3):758–766.
  • Gupta SK, Trivedi D, Srivastava S, et al. Lycopene attenuates oxidative stress induced experimental cataract development: an in vitro and in vivo study. Nutrition. 2003;19(9):794–799.
  • Heber D, Lu QY. Overview of mechanisms of action of lycopene. Exp Biol Med (Maywood). 2002;227(10):920–923.
  • McClain RM, Bausch J. Summary of safety studies conducted with synthetic lycopene. Regul Toxicol Pharmacol. 2003;37(2):274–285.
  • Wertz K, Siler U, Goralczyk R. Lycopene: modes of action to promote prostate health. Arch Biochem Biophys. 2004;430(1):127–134.
  • Matos HR, Di Mascio P, Medeiros MH. Protective effect of lycopene on lipid peroxidation and oxidative DNA damage in cell culture. Arch Biochem Biophys. 2000;383(1):56–59.
  • Reifen R, Nissenkorn A, Matas Z, et al. 5-ASA and lycopene decrease the oxidative stress and inflammation induced by iron in rats with colitis. J Gastroenterol. 2004;39(6):514–519.
  • Tapiero H, Townsend D, Tew KD. The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother. 2004;58(2):100–110.
  • Karahan I, Ateşşahin A, Yılmaz S, et al. Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology. 2005;215(3):198–204.
  • Soliva C, Kreuzer M, Foidl N, et al. Feeding value of whole and extracted Moringa oleifera leaves for ruminants and their effects on ruminal fermentation in vitro. Anim Feed Sci Technol. 2005;118(1–2):47–62.
  • Jaiswal D, Rai PK, Kumar A, et al. Effect of Moringa oleifera Lam leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol. 2009;123(3):392–396.
  • Babu R, Chaudhuri M. Home water treatment by direct filtration with natural coagulant. J Water Health. 2005;3(1):27–30.
  • Verma AR, Vijayakumar M, Mathela CS, et al. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol. 2009;47(9):2196–2201.
  • Ouédraogo M, Lamien-Sanou A, Ramdé N, et al. Protective effect of Moringa oleifera leaves against gentamicin-induced nephrotoxicity in rabbits. Exp Toxicol Pathol. 2013;65(3):335–339.
  • Singh D, Chander V, Chopra K. Protective effect of naringin, a bioflavonoid on ferric nitrilotriacetate-induced oxidative renal damage in rat kidney. Toxicology. 2004;201(1–3):1–8.
  • Amudha K, Pari L. Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats. Chem Biol Interact. 2011;193(1):57–64.
  • Badary OA, Abdel-Maksoud S, Ahmed WA, et al. Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci. 2005;76(18):2125–2135.
  • Sahu BD, Tatireddy S, Koneru M, et al. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: possible mechanism of nephroprotection. Toxicol Appl Pharmacol. 2014;277(1):8–20.
  • Al-Ghamdi MS. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J Ethnopharmacol. 2001;76(1):45–48.
  • Yaman İ, Balikci E. Protective effects of Nigella sativa against gentamicin-induced nephrotoxicity in rats. Exp Toxicol Pathol. 2010;62(2):183–190.
  • Samarghandian S, Azimi-Nezhad M, Mehrad-Majd H, et al. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology. 2015;96(3–4):112–117.
  • Sayed‐Ahmed MM, Nagi MN. Thymoquinone supplementation prevents the development of gentamicin‐induced acute renal toxicity in rats. Clin Exp Pharmacol Physiol. 2007;34(5‐6):399–405.
  • Saleem U, Ahmad B, Rehman K, et al. Nephro-protective effect of vitamin C and Nigella sativa oil on gentamicin associated nephrotoxicity in rabbits. Pak J Pharm Sci. 2012;25(4):727–730.
  • Jemai H, Fki I, Bouaziz M, et al. Lipid-lowering and antioxidant effects of hydroxytyrosol and its triacetylated derivative recovered from olive tree leaves in cholesterol-fed rats. J Agric Food Chem. 2008;56(8):2630–2636.
  • Capasso R, Evidente A, Avolio S, et al. A highly convenient synthesis of hydroxytyrosol and its recovery from agricultural waste waters. J Agric Food Chem. 1999;47(4):1745–1748.
  • Benavente-Garcıa O, Castillo J, Lorente J, et al. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. J Med Food. 2000;68(4):457–462.
  • Tavafi M, Ahmadvand H, Toolabi P. Inhibitory effect of olive leaf extract on gentamicin-induced nephrotoxicity in rats. Iran J Kidney Dis. 2012;6(1):25–32.
  • Tsuda T, Horio F, Cyanidin OT. 3-O-β-D-glucoside suppresses nitric oxide production during a zymosan treatment in rats. J Nutr Sci Vitaminol (Tokyo). 2002;48(4):305–310.
  • Sineh Sepehr K, Baradaran B, Mazandarani M, et al. Growth-Inhibitory and Apoptosis-Inducing Effects of Punica granatum L var. spinosa (Apple Punice) on Fibrosarcoma Cell Lines. Adv Pharm Bull. 2014;4(Suppl 2):583–590.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77.
  • De Nigris F, Williams-Ignarro S, Lerman LO, et al. Beneficial effects of pomegranate juice on oxidation-sensitive genes and endothelial nitric oxide synthase activity at sites of perturbed shear stress. Proc Natl Acad Sci U S A. 2005;102(13):4896–4901.
  • Aviram M, Dornfeld L, Kaplan M, et al. Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp Clin Res. 2002;28(2–3):49–62.
  • Sancaktutar AA, Bodakci MN, Hatipoglu NK, et al. The protective effects of pomegranate extracts against renal ischemia-reperfusion injury in male rats. Urol Ann. 2014;6(1):46.
  • Cekmen M, Otunctemur A, Ozbek E, et al. Pomegranate extract attenuates gentamicin-induced nephrotoxicity in rats by reducing oxidative stress. Ren Fail. 2013;35(2):268–274.
  • Sharma S, Ali A, Ali J, et al. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs. 2013;22(8):1063–1079.
  • Adeneye AA, Benebo AS. Protective effect of the aqueous leaf and seed extract of Phyllanthus amarus on gentamicin and acetaminophen-induced nephrotoxic rats. J Ethnopharmacol. 2008;118(2):318–323.
  • Kandemir FM, Ozkaraca M, Yildirim BA, et al. Rutin attenuates gentamicin-induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Ren Fail. 2015;37(3):518–525.
  • Petersen M, Abdullah Y, Benner J, et al. Evolution of rosmarinic acid biosynthesis. Phytochemistry. 2009;70(15–16):1663–1679.
  • Bakırel T, Bakırel U, OÜ K, et al. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol. 2008;116(1):64–73.
  • Huang -S-S, Zheng R-L. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett. 2006;239(2):271–280.
  • Lee HJ, Cho HS, Park E, et al. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology. 2008;250(2–3):109–115.
  • Tavafi M, Ahmadvand H. Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats. Tissue Cell. 2011;43(6):392–397.
  • Křen V, Walterova D. Silybin and silymarin–new effects and applications. Biomed Pap. 2005;149(1):29–41.
  • Abenavoli L, Capasso R, Milic N, et al. Milk thistle in liver diseases: past, present, future. Phytother Res. 2010;24(10):1423–1432.
  • Roozbeh J, Shahriyari B, Akmali M, et al. Comparative effects of silymarin and vitamin E supplementation on oxidative stress markers, and hemoglobin levels among patients on hemodialysis. Ren Fail. 2011;33(2):118–123.
  • Naji Al-shawi N. Effects of silymarin on renal levels of free calcium and trace elements in gentamicin-induced nephrotoxicity in rats. J Fac Med Baghdad. 2006;48(2):194–197.
  • Varzi H, Esmailzadeh S, Morovvati H, et al. Effect of silymarin and vitamin E on gentamicin‐induced nephrotoxicity in dogs. J Vet Pharmacol Ther. 2007;30(5):477–481.
  • Mashayekhi M. Renoprotective effect of silymarin on gentamicin-induced nephropathy. Afr J Pharm Pharmacol. 2012;6(29):2241–2246.
  • Ruiz Flores LE, Madrigal-Bujaidar E, Salazar M, et al. Anticlastogenic effect of Spirulina maxima extract on the micronuclei induced by maleic hydrazide in Tradescantia. Life Sci. 2003;72(12):1345–1351.
  • Hirahashi T, Matsumoto M, Hazeki K, et al. Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int Immunopharmacol. 2002;2(4):423–434.
  • Belay A. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. JANA. 2002;5:27–48.
  • Miranda MS, Cintra RG, Barros SB, et al. Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res. 1998;31(8):1075–1079.
  • Upasani C, Balaraman R. Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. Phytother Res. 2003;17(4):330–334.
  • Avdagić N, Ćosović E, Nakaš-Ićindić E, et al. Spirulina platensis protects against renal injury in rats with gentamicin-induced acute tubular necrosis. Bosn J Basic Med Sci. 2008;8(4):331.
  • Karadeniz A, Yildirim A, Simsek N, et al. Spirulina platensis protects against gentamicin‐induced nephrotoxicity in rats. Phytother Res. 2008;22(11):1506–1510.
  • Banerjee R. Hydrogen sulfide: redox metabolism and signaling. Antioxid Redox Signal. 2011;15(2):339–341.
  • Fiorucci S, Distrutti E, Cirino G, et al. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology. 2006;131(1):259–271.
  • Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids. 2011;41(1):113–121.
  • Bracht H, Scheuerle A, Gröger M, et al. Effects of intravenous sulfide during resuscitated porcine hemorrhagic shock. Crit Care Med. 2012;40(7):2157–2167.
  • Whiteman M, Moore PK. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability?. J Cell Mol Med. 2009;13(3):488–507.
  • Chávez-Piña AE, Tapia-Álvarez GR, Navarrete A. Inhibition of endogenous hydrogen sulfide synthesis by PAG protects against ethanol-induced gastric damage in the rat. Eur J Pharmacol. 2010;630(1–3):131–136.
  • Collin M, Anuar FB, Murch O, et al. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol. 2005;146(4):498–505.
  • Della Coletta Francescato H, Cunha FQ, Costa RS, et al. Inhibition of hydrogen sulphide formation reduces cisplatin-induced renal damage. Nephrol Dial Transplant. 2010;26(2):479–488.
  • Dam VP, Scott JL, Ross A, et al. Inhibition of cystathionine gamma-lyase and the biosynthesis of endogenous hydrogen sulphide ameliorates gentamicin-induced nephrotoxicity. Eur J Pharmacol. 2012;685(1–3):165–173.
  • Otunctemur A, Ozbek E, Dursun M, et al. Protective effect of hydrogen sulfide on gentamicin-induced renal injury. Ren Fail. 2014;36(6):925–931.
  • Liao F. Herbs of activating blood circulation to remove blood stasis. Clin Hemorheol Microcirc. 2000;23(2–4):127–131.
  • Liu SY, Sylvester DM. Antiplatelet structure-activity relationship of tetramethylpyrazine. Life Sci. 1994;55(17):1317–1326.
  • Liu CF, Lin MH, Lin CC, et al. Protective effect of tetramethylpyrazine on absolute ethanol-induced renal toxicity in mice. J Biomed Sci. 2002;9(4):299–302.
  • Wang Y, Tong J, Tang R, et al. Inhibitory effects of ligustrazine, a modulator of thromboxane-prostacycline-nitric oxide balance, on renal injury in rats with passive Heyman nephritis. Nephron Physiol. 2004;98(3):p80–p88.
  • Feng L, Xiong Y, Cheng F, et al. Effect of ligustrazine on ischemia-reperfusion injury in murine kidney in Transplantation. Proceedings Transplant Proc. 2004;36(7):1949–1951.
  • Juan SH, Chen CH, Hsu YH, et al. Tetramethylpyrazine protects rat renal tubular cell apoptosis induced by gentamicin. Nephrol Dial Transplant. 2006;22(3):732–739.
  • Kelly GS. Clinical applications of N-acetylcysteine. Altern Med Rev. 1998;3(2):114–127.
  • Karimzadeh I, Khalili H, Sagheb MM, et al. A double-blinded, placebo-controlled, multicenter clinical trial of N-acetylcysteine for preventing amphotericin B-induced nephrotoxicity. Expert Opin Drug Metab Toxicol. 2015;11(9):1345–1355.
  • Karimzadeh I, Khalili H, Dashti-Khavidaki S, et al. N-acetyl cysteine in prevention of amphotericin- induced electrolytes imbalances: a randomized, double-blinded, placebo-controlled, clinical trial. Eur J Clin Pharmacol. 2014;70(4):399–408.
  • Duru M, Nacar A, Yönden Z, et al. Protective effects of N-acetylcysteine on cyclosporine-A-induced nephrotoxicity. Ren Fail. 2008;30(4):453–459.
  • Ali B, Al–Salam S, Al‐Husseini I, et al. Comparative protective effect of N‐acetyl cysteine and tetramethylpyrazine in rats with gentamicin nephrotoxicity. J Appl Toxicol. 2009;29(4):302–307.
  • Gong X, Celsi G, Carlsson K, et al. Protective effects of N-acetylcysteine amide (NACA) on gentamicin-induced apoptosis in LLC-PK1 cells. Ren Fail. 2012;34(4):487–494.
  • Davila-Esqueda M, Martinez-Morales F. Pentoxifylline diminishes the oxidative damage to renal tissue induced by streptozotocin in the rat. Exp Diabesity Res. 2004;5(4):245–251.
  • Usta Y, Ismailoglu UB, Bakkaloglu A, et al. Effects of pentoxifylline in adriamycin-induced renal disease in rats. Pediatr Nephrol. 2004;19(8):840–843.
  • Lin SL, Chen YM, Chiang WC, et al. Pentoxifylline: a potential therapy for chronic kidney disease. Nephrology (Carlton). 2004;9(4):198–204.
  • Weithmann KU. Reduced platelet aggregation by pentoxifylline stimulated prostacyclin release. Vasa. 1981;10(3):249–252.
  • Churchill PC, Bidani AK. Hypothesis: adenosine mediates hemodynamic changes in renal failure. Med Hypotheses. 1982;8(3):275–285.
  • Stojiljković N, Veljković S, Mihailović D, et al. Pentoxifylline ameliorates glomerular basement membrane ultrastructural changes caused by gentamicin administration in rats. Bosn J Basic Med Sci. 2009;9(3):239.
  • Kasap B, Turkmen M, Kiray M, et al. Effects of pentoxifylline on gentamicin-induced nephrotoxicity. Ren Fail. 2013;35(10):1376–1381.
  • Wilson SK. Role of oxygen-derived free radicals in acute angiotensin II–induced hypertensive vascular disease in the rat. Circ Res. 1990;66(3):722–734.
  • Baas AS, Berk BC. Differential activation of mitogen-activated protein kinases by H2O2 and O2- in vascular smooth muscle cells. Circ Res. 1995;77(1):29–36.
  • Zalba G, Beaumont FJ, San José G, et al. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension. 2000;35(5):1055–1061.
  • Kobori H, Mori H, Masaki T, et al. Angiotensin II blockade and renal protection. Curr Pharm Des. 2013;19(17):3033–3042.
  • Ibrahim MA, Ashour OM, Ibrahim YF, et al. Angiotensin-converting enzyme inhibition and angiotensin AT1-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity. Pharmacol Res. 2009;60(5):373–381.
  • Heeba GH. Angiotensin II receptor blocker, losartan, ameliorates gentamicin-induced oxidative stress and nephrotoxicity in rats. Pharmacology. 2011;87(3–4):232–240.
  • Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998;19(1):26–37.
  • Aviram M, Rosenblat M, Bisgaier CL, et al. Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis. 1998;138(2):271–280.
  • Ozbek E, Cekmen M, Ilbey YO, et al. Atorvastatin prevents gentamicin-induced renal damage in rats through the inhibition of p38-MAPK and NF-kB pathways. Ren Fail. 2009;31(5):382–392.
  • Heydari B, Khalili H, Dashti-Khavidaki S, et al. Atorvastatin for Prevention of Amikacin-induced Electrolytes Imbalances; a Randomized Clinical Trial. Iran J Pharm Res. 2016;15(2):627–634.
  • Heydari B, Khalili H, Beigmohammadi MT, et al. Effects of atorvastatin on biomarkers of acute kidney injury in amikacin recipients: A pilot, randomized, placebo-controlled, clinical trial. J Res Med Sci. 2017;22:39.
  • Sies H, Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite, in Advances in pharmacology. Adv Pharmacol. 1996;38:229–246.
  • Noiri E, Nakao A, Uchida K, et al. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol. 2018;281(5):F948–57.
  • Shaaban S, Negm A, Sobh MA, et al. Organoselenocyanates and symmetrical diselenides redox modulators: design, synthesis and biological evaluation. Eur J Med Chem. 2015;97:190–201.
  • Zhao R, Masayasu H, Holmgren A. Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proc Natl Acad Sci U S A. 2002;99(13):8579–8584.
  • Lameynardie S, Chiavaroli C, Travo P, et al. Inhibition of choroidal angiogenesis by calcium dobesilate in normal Wistar and diabetic GK rats. Eur J Pharmacol. 2005;510(1–2):149–156.
  • Baldew GS, McVie JG, van der Valk MA, et al. Selective reduction of cis-diamminedichloroplatinum (II) nephrotoxicity by ebselen. Cancer Res. 1990;50(21):7031–7036.
  • Dhanarajan R, Abraham P, Isaac B, et al. Protective effect of ebselen, a selenoorganic drug, against gentamicin‐induced renal damage in rats. Basic Clin Pharmacol Toxicol. 2006;99(3):267–272.
  • Bonnefont‐Rousselot D, Collin F, Jore D, et al. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. J Pineal Res. 2011;50(3):328–335.
  • Mousavi SS, Shohrati M, Vahedi E, et al. Effect of Melatonin Administration on Sleep Quality in Sulfur Mustard Exposed Patients with Sleep Disorders. Iran J Pharm Res. 2018;17(Suppl):136–144.
  • Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51(1):1–16.
  • Pozo D, Reiter RJ, Calvo JR, et al. Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci. 1994;55(24):PL455–PL460.
  • Bettahi I, Pozo D, Osuna C, et al. Melatonin reduces nitric oxide synthase activity in rat hypothalamus. J Pineal Res. 1996;20(4):205–210.
  • Lee IC, Kim SH, Lee SM, et al. Melatonin attenuates gentamicin-induced nephrotoxicity and oxidative stress in rats. Arch Toxicol. 2012;86(10):1527–1536.
  • Kalden DH, Scholzen T, Brzoska T, et al. Mechanisms of the antiinflammatory effects of α‐msh: role of transcription factor NF‐κB and adhesion molecule expression. Ann N Y Acad Sci. 1999;885(1):254–261.
  • Bhardwaj RS, Schwarz A, Becher E, et al. Pro-opiomelanocortin-derived peptides induce IL-10 production in human monocytes. J Immunol. 1996;156(7):2517–2521.
  • Chiao H, Kohda Y, McLeroy P, et al. Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J Clin Invest. 1997;99(6):1165–1172.
  • Kohda Y, Chiao H, Star RA, et al. alpha-Melanocyte-stimulating hormone and acute renal failure. Curr Opin Nephrol Hypertens. 1998;7(4):413–417.
  • Miyaji T, Hu X, Star RA. α-Melanocyte-simulating hormone and interleukin-10 do not protect the kidney against mercuric chloride-induced injury. Am J Physiol Renal Physiol. 2002;282(5):F795–F801.
  • Kolgazi M, Arbak S, Alican I. The effect of α‐melanocyte stimulating hormone on gentamicin‐induced acute nephrotoxicity in rats. J Appl Toxicol. 2007;27(2):183–188.
  • Akindele AJ, Adeneye AA, Olatoye F, et al. Protective effect of selected calcium channel blockers and prednisolone, a phospholipase-A2 inhibitor, against gentamicin and carbon tetrachloride-induced nephrotoxicity. Hum Exp Toxicol. 2014;33(8):831–846.
  • Schram MT, Stam F, De Jongh RT, et al. The effect of calcium dobesilate on vascular endothelial function, blood pressure, and markers of oxidation in obese male smokers: a placebo-controlled randomised clinical trial. Atherosclerosis. 2003;170(1):59–72.
  • Haritoglou C, Gerss J, Sauerland C, et al. Effect of calcium dobesilate on occurrence of diabetic macular oedema (CALDIRET study): randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2009;373(9672):1364–1371.
  • Leal EC, Martins J, Voabil P, et al. Calcium dobesilate inhibits the alterations in tight junction proteins and leukocyte adhesion to retinal endothelial cells induced by diabetes. Diabetes. 2010;59(10):2637–2645.
  • Jafarey M, Changizi Ashtiyani S, Najafi H. Calcium dobesilate for prevention of gentamicin-induced nephrotoxicity in rats. Iran J Kidney Dis. 2014;8(1):46–52.
  • Stojiljkovic N, Stoiljkovic M, Mihailovic D, et al. Beneficial effects of calcium oral coadministration in gentamicin-induced nephrotoxicity in rats. Ren Fail. 2012;34(5):622–627.
  • Tinggi U. Selenium: its role as antioxidant in human health. Environ Health Prev Med. 2008;13(2):102.
  • Shaaban S, Ashmawy AM, Negm A, et al. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur J Med Chem. 2019;179:515–526.
  • Shaaban S, Vervandier-Fasseur D, Andreoletti P, et al. Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes. Bioorg Chem. 2018;80:43–56.
  • Shaaban S, Negm A, Ashmawy AM, et al. Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma. Eur J Med Chem. 2016;122:55–71.
  • Randjelovic P, Veljkovic S, Stojiljkovic N, et al. Protective effect of selenium on gentamicin-induced oxidative stress and nephrotoxicity in rats. Drug Chem Toxicol. 2012;35(2):141–148.
  • Tahira A, Saleem U, Mahmood S, et al. Evaluation of protective and curative role of α-lipoic acid and selenium in gentamicin-induced nephrotoxicity in rabbits. Pak J Pharm Sci. 2012;25(1):103–110.
  • Teleanu RI, Chircov C, Grumezescu AM, et al. Antioxidant therapies for neuroprotection-a review. J Clin Med. 2019;8(10):E1659.
  • Meister A. Glutathione, ascorbate, and cellular protection. Cancer Res. 1994;54(7Supplement):1969s–1975s.
  • Antunes LM, Darin JD, Bianchi MD. Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol Res. 2000;41(4):405–411.
  • Kadkhodaee M, Khastar H, Faghihi M, et al. Effects of co‐supplementation of vitamins E and C on gentamicin‐induced nephrotoxicity in rat. Exp Physiol. 2005;90(4):571–576.
  • Kavutcu M, Canbolat O, Ozturk S, et al. Reduced enzymatic antioxidant defense mechanism in kidney tissues from gentamicin-treated guinea pigs: effects of vitamins E and C. Nephron. 1996;72(2):269–274.
  • Stojiljkovic N, Stoiljkovic M, Randjelovic P, et al. Cytoprotective effect of vitamin C against gentamicin-induced acute kidney injury in rats. Exp Toxicol Pathol. 2012;64(1–2):69–74.
  • Khalili H, Dashti-Khavidaki S, Karimzadeh I, et al. Changes in 4-year antimicrobial resistance pattern of gram-positive bacteria at the main referral teaching hospital, Tehran, Iran. Acta Med Iran. 2012;50(7):493–504.
  • Baell JB. Feeling nature’s PAINS: natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). J Nat Prod. 2016;79(3):616–628.
  • Yaman I, Balikci E. Protective effects of nigella sativa against gentamicin-induced nephrotoxicity in rats. Exp Toxicol Pathol. 2010;62(2):183–190.
  • Abdel-Raheem IT, Abdel-Ghany AA, Mohamed GA. Protective effect of quercetin against gentamicin-induced nephrotoxicity in rats. Biol Pharm Bull. 2009;32(1):61–67.
  • Ademiluyi AO, Oboh G, Ogunsuyi OB, et al. Attenuation of gentamycin-induced nephrotoxicity in rats by dietary inclusion of ginger (Z ingiber officinale) and turmeric (Curcuma longa) rhizomes. Nutr Health. 2012;21(4):209–218.
  • Priyamvada S, Priyadarshini M, Arivarasu NA, et al. Studies on the protective effect of dietary fish oil on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Prostaglandins Leukot Essent Fatty Acids. 2008;78(6):369–381.
  • Kavutcu M, Canbolat O, Öztürk S, et al. Reduced enzymatic antioxidant defense mechanism in kidney tissues from gentamicin-treated guinea pigs: effects of vitamins E and C. Nephron. 1996;72(2):269–274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.