621
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase

, , , &
Pages 1076-1081 | Received 22 Apr 2008, Accepted 28 Oct 2008, Published online: 19 Mar 2009

References

  • Mason HS. Mechanisms of oxygen metabolism, In: Advance Enzymol, F.F. Nord, editor. NewYork, Academic Press, (1957); pp:79–234.
  • Yasunobu KT. In: Pigment cell biology, M. Gordon, editor. NewYork, Academic Press (1959); pp 583.
  • Raper HS. The anaerobic oxidases. Physiol Rev (1928); 8: 245–282.
  • Priestly GC. Molecular Aspects of Dermatology. Wiley: Chichester, U.K., (1993).
  • Martinez MV, Whitaker JR. The biochemistry and control of enzymatic browning. Trends Food Sci Technol (1995); 6:195–200.
  • Duckworth HW, Coleman JE. Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem (1970); 245:1613–1625.
  • Kuttner R, Wagreich H. Some inhibitors of mushroom catecholase. Arch Biochem Biophys (1953); 43:80–87.
  • Krueger RC. The effect of beta-keto acids on the action of tyrosinase. Arch Biochem (1955);56:394–404.
  • Martinez-Cayuela M, Plata MC, Faus MJ, Gil A. Effect of some phenolic carboxylic acids on cherimoya (Annona cherimolia) polyphenoloxidase activity. J Sci Food and Agric (1988);45:215–222.
  • Pifferi PG, Baldassari L, Cultrera R. Inhibition of carboxylic acids of an o-diphenol oxidase from Prunus avium fruits. J Sci Food Agric (1974);25:263–270.
  • Mishima Y, Oyama Y, Kurimoto M. Enzyme formation suppressing carboxylic acids. Eur Pat Appl (1989); pp:31.
  • Kato H, Shimizu M, Ozasa Y. Cosmetics containing unsaturated fatty acids, antioxidants, amino acids, and polybasic acids. (Sunstar, Inc., Japan). Jpn Kokai Tokkyo Koho (1989); pp:6.
  • Prota G. Melanins and melanogenesis, San Diego, Academic Press, (1992).
  • Haghbeen K, Saboury AA, Karbassi F. Substrate share in the suicide inactivation of mushroom tyrosinase. Biochim Biophys Acta (2004);1675:139–146.
  • Shareefi Borojerdi S, Haghbeen K, Karkhane AA, Fazli M, Saboury AA. Successful resonance raman study of cresolase activity of mushroom tyrosinase. Biochem Biophys Res Commun (2004);314:925–930.
  • Gheibi N, Saboury AA, Haghbeen K, Moosavi-Movahedi AA. Activity and structural changes of mushroom tyrosinase induced by n-alkyl sulfates. Colloids and Surface B: Biointerfaces (2005); 45:104–107.
  • Gheibi N, Saboury AA, Haghbeen K, Moosavi-Movahedi AA. The effect of some osmolytes on the activity and stability of mushroom tyrosinase. J Biosci (2006);31:355–362.
  • Gheibi N, Saboury AA, Haghbeen K. Substrate Construes the Copper and Nickel Ions Impacts on the mushroom tyrosinase activities. Bull Korean Chem Soc (2006);27:642–648.
  • Karbassi F, Saboury AA, Hassan MT, Khan Iqbal Choudhary M, Saifi ZS. Mushroom tyrosinase inhibition by two potent uncompetitive inhibitors. J Enz Inhib Med Chem (2004);19:349–353.
  • Gheibi N, Saboury AA, Mansury-Torshizy H, Haghbeen K, Moosavi-movahedi A.A. The inhibition effect of some n-alkyl dithiocarbamates on mushroom tyrosinase. J Enz Inhib Med Chem (2004);20:393–399.
  • Saboury AA, Zolghadri S, Haghbeen K, Moosavi-movahedi A.A. The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase. J Enz Inhib Med Chem (2006); 21, 711–717.
  • Haghbeen K, Tan EW. Facile synthesis of catechol azo dyes. J Org Chem (1998); 63, 4503–4505.
  • Haghbeen K, Tan EW. Direct spectrophotometric assay of mono-oxygenase and oxidase activities of mushroom tyrosinase in the presence of synthetic and natural substrates. Anal Biochem (2003); 312, 23–32.
  • Penafiel R, Galindo JD, Pedreno E, Lozano JA. The process for the activation of frog epidermis pro-tyrosinase. Biochem J (1982); 205, 397–404.
  • Espin JC, Harry JW. Kinetics of Activation of Latent Mushroom (Agaricus bisporus) Tyrosinase by Benzyl Alcohol. J Agric Food Chem (1999); 47(9), 3503–3508.
  • Jime¢nez M, Garcı¢a-Carmona F. The effect of sodium dodecyl sulphate on polyphenol oxidase. Phytochemistry (1996); 42, 1503–1509.
  • Jime¢nez-Cervantes C, Garcı¢a-Borro¢n JC, Lozano JA, Solano F. Effect of detergents and endogenous lipids on the activity and properties of tyrosinase and its related proteins. Biochim Biophys Acta (1995); 1243, 421–430.
  • Asada N, Fukumitsu T, Fujimoto K, Masuda K. Activation of pro- phenoloxidase with 2-propanol and other organic compounds in Drosophila melanogaster. Insect Biochem Mol Biol (1993); 23, 515–520.
  • Robinson SP, Dry IB. Broad bean leaf polyphenol oxidase is a 60-kilodalton protein susceptible to proteolytic cleavage. Plant Physiol (1992); 99, 317–323.
  • Tataral Y, Namba1 T, Yamagata Y, T Yoshida, Uchida T, Ichishima E. Acid activation of protyrosinase from Aspergillus oryzae: homo-tetrameric protyrosinase is converted to active dimers with an essential intersubunit disulfide bond at acidic pH. Pigment Cell Melanoma Res (2007); 21, 89–96.
  • Hearing VJ, Ekel TM. Mammalian tyrosinase: a comparison of tyrosine hydroxylation and melanin formation. Biochem J (1976);157:549–557.
  • Monod J, Changeux P, Jacob F. Allosteric proteins and cellular control systems. J Mol Biol (1963); 6: 306–329.
  • Cornish-Bowden A. Fundamentals of Enzyme Kinetics. (1995); pp.203–237, Portland Press.
  • Alijanzadeh M, Saboury AA, Mansuri-Torshizi H, Haghbeen K, Moosavi-Movahedi AA. The inhibitory effect of some new synthesized xanthates on mushroom tyrosinase activities. J Enz Inh Med Chem (2007); 22, 239–246.
  • Klabunde T, Eicken C, Sacchettini JC, Krebs B. Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Biol (1998);5:1084–1090.
  • Ling J, Nestor LP, Czeruszewicz RS, Spiro TC, Fraczkiewicz R, Sharma KD, Loehr TM, Sanders-Loehr J. Common oxygen binding site in hemocyanins from arthropods and molluse: Evidence from Raman spectroscopy and normal coordinate analysis. J Am Chem Soc (1994);116:7628–7691.
  • Olivares C, Garcia-Boron JC, Solano F. Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in mammalian tyrosinase: Implication to the catalytic cycle. Biochemistry (2002);41:679–686.
  • Wilcox DE, Porras AG, Hawang YT, Lerch K, Winker ME, Solomon EI. Substrate analogue binding to coupled binuclear copper active site in tyrosinase. J Am Chem Soc (1985);107:4015–4027.
  • Conard JS, Dawson SR, Hubbard ER, Meyers TE, Strothkamp KG. Inhibitor binding to the binuclear active site of tyrosinase: Temperature, pH, and solvent deuterium isotope effects. Biochemistry (1994);33:5739–5744.
  • Janovitz-Klapp AH, Richard FC, Goupy PM, Nicolas JJ. Inhibition studies on apple polyphenol oxidase. J Agric Food Chem (1990);38:926–931.
  • Janovitz-Klapp A, Richard F, Nicolas JJ. Polyphenol oxidase from apple: Partial purification and some properties. Phytochemistry (1989);28:2903–2907.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.