565
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, spectroscopic, and antibacterial activity of tetraazamacrocyclic complexes of trivalent chromium, manganese, and iron

, , &
Pages 1201-1206 | Received 10 Oct 2008, Accepted 21 Jan 2009, Published online: 23 Sep 2009

References

  • Gloe K, ed. Macrocyclic Chemistry: Current Trends and Future Perspectives. Dordrecht: Springer, 2005.
  • Lindoy LF, ed. The Chemistry of Macrocyclic Ligand Complexes. Cambridge: Cambridge University Press, 1989.
  • Constable EC, ed. Coordination Chemistry of Macrocyclic Compounds. Oxford: Oxford University Press, 1999.
  • Singh DP, Kumar R, Malik V, Tyagi P. Synthesis and characterization of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) with macrocycle 3,4,11,12-tetraoxo-1,2,5,6,9,10,13,14-octaazacyclohexadeca-6,8,14,16-tetraene and their biological screening. Transition Met Chem 2007;32:1051–5.
  • Singh DP, Kumar R, Malik V, Tyagi P. Template synthesis, spectroscopic studies and biological activities of macrocyclic complexes derived from thiocarbohydrazide and glyoxal. J Enzyme Inhib Med Chem 2007;22:177–82.
  • Muller JG, Chen X, Dadiz AC, Rokita SE, Burrows CJ. Macrocyclic nickel complexes in DNA recognition and oxidation. Pure Appl Chem 1993;65:545–50.
  • Liu J, Lu TB, Deng H, Ji LN, Qu LH, Zhou H. Synthesis DNA-binding and cleavage studies of macrocyclic copper(II) complexes. Transition Met Chem 2003;28:116–21.
  • Paryzek WR, Krzyminiewska VP. Yttrium(III) complexes of pentadentate Schiff base macrocyclic ligands with N3O2 and N5 set of donor atoms. Polyhedron 1995;14:2059–62.
  • Watson AD, Rockladge SM. In: Higgins CB, ed. Magnetic Resonance Imaging of the Body. New York: Raven Press, 1992.
  • Kosmas C, Snook D, Gooden CS, Courtenay-Luck NS, McCall MJ, Claude F, Meares CF, Epenetos AA. Development of humoral immune responses against a macrocyclic chelating agent (DOTA) in cancer patients receiving radioimmunoconjugates for imaging and therapy. Cancer Res 1992;52:904–11.
  • Seto J, Tamura S, Asai N, Kishii N, Kijima Y, Matsuzawa N. Macrocyclic functional dyes: applications to optical disk media, photochemical hole burning and non-linear optics. Pure Appl Chem 1996;68:1429–34.
  • Dong W, Yang R, Yan L. Rare earth complexes of a new Schiff base macrocyclic ligand derived from 2,29-(ethylenedioxy) bisbenzaldehyde and 2,29-(ethylenedioxy)bisbenzyl amine. Indian J Chem 2001;40A:202–6.
  • Singh DP, Kumar R, Tyagi P. Template synthesis, spectroscopic studies and biological screening of macrocyclic complexes derived from thiocarbohydrazide and benzil. Transition Met Chem 2006;31:970–3.
  • Singh DP, Kumar R, Singh J. Biologically active trivalent metal macrocyclic complexes derived from oxalyldihydrazide and benzil: synthesis and spectroscopic approach. Eur J Med Chem 2009 (in press).
  • Kumar R, Singh R. Chromium(III) complexes with different chromospheres macrocyclic ligand: synthesis and spectroscopic studies. Turk J Chem 2006;30:77–87.
  • Prasad RN, Mathur M, Upadhyay A. Synthesis and spectroscopic studies of CrIII, FeIII and CoII complexes of hexaazamacrocycles. J Indian Chem Soc 2007;84:1202–4.
  • Khan TA, Rather MA, Jahan N, Varkey SP, Shakir M. Tetraoxotetraamide macrocyclic complexes. Transition Met Chem 1998;23:283–5.
  • Singh AK, Panwar A, Singh R, Beniwal S. New bis-macrocyclic complexes with transition metal ion. Transition Met Chem 2003;28:160–2.
  • Pavia DL, Lampman GM, Kriz GS.Introduction to Spectroscopy. New York: Harcourt College Publishers, 2001.
  • Nishat N, Ud-din R, Haq MM, Siddiqi KS. Synthesis and characterization of new 13- and 14-membered macrocycles and their transition metal complexes. Transition Met Chem 2003;28:948–53.
  • Prasad RN, Mathur M. CrIII, FeIII, CoII, NiII, CuII and ZnII complexes of 26- and 28-membered tetraazamacrocycles. J Indian Chem Soc 2006;83:1208–13.
  • Zeng Q, Sun J, Gou S, Zhou K, Fang J, Chen H. Synthesis and spectroscopic studies of dinuclear copper(II) complexes with new pendant-armed macrocyclic ligands. Transition Met Chem 1998;23:371–3.
  • Singh AK, Singh R, Saxena P. Macrocyclic metal complexes: synthesis and characterization of 14- and 16-membered tetraaza macrocyclic complexes of transition metals. Transition Met Chem 2004;29:867–9.
  • Gupta LK, Chandra S. Physicochemical and biological characterization of transition metal complexes with a nitrogen donor tetra-dentate novel macrocyclic ligand. Transition Met Chem 2006;31:368–73.
  • Mohamed AK, Islam KS, Hasan SS, Shakir M. Metal ion directed synthesis of 14-16 membered tetraimine macrocyclic complexes. Transition Met Chem 1999;24:198–201.
  • Lodeiro C, Basitida R, Bertolo E, Macias A, Rodriguez R. Synthesis and characterization of four novel NxOy-Schiff base macrocyclic ligands and their metal complexes. Transition Met Chem 2003;28:388–94.
  • Shakir M, Islam KS, Mohamed AK, Shagufta M, Hasan SS. Macrocyclic complexes of transition metals with divalent polyaza units. Transition Met Chem 1999;24:577–80.
  • Shakir M, Varkey SP. A new synthetic route for the preparation of a new series of 14–22-membered tetraoxomacrocyclic tetraamines and their transition metal complexes. Polyhedron 1995;14:1117–27.
  • Aqra FMAM. New macrocyclic complexes containing amide, imine and secondary amine functions. Transition Met Chem 1999;24:337–9.
  • Chandra S, Kumar R. Synthesis and spectral studies on mononuclear complexes of chromium(III) and manganese(II) with 12-membered tetradentate N2O2, N2S2 and N4 donor macrocyclic ligand. Transition Met Chem 2004;29:269–75.
  • Wood JS. Stereochemical electronic structural aspects of five coordination. Prog Inorg Chem 1972;16:227.
  • Singh DP and Rana VB. Binuclear chromium (III), manganese (III), iron (III) and cobalt (III) complexes bridged by diaminopyridine. Polyhedron. 1995; 14: 2901–2906.
  • Lever ABP. Inorganic Electronic Spectroscopy. Amsterdam: Elsevier, 1984.
  • Chohan ZH, Supuran CT. Structure and biological properties of first row d-transition metal complexes with N-substituted sulfonamides. J Enzyme Inhib Med Chem 2008;23:240–51.
  • Chohan ZH. Metal-based sulfonamides: their preparation, characterization and in-vitro antibacterial, antifungal & cytotoxic properties. X-ray structure of 4-(2-hydroxybenzylidene) amino benzenesulfonamide. J Enzyme Inhib Med Chem 2008;23:120–30.
  • Chohan ZH, Shad HA. Structural elucidation and biological significance of 2-hydroxy-1-naphthaldehyde derived sulfonamides and their first row d-transition metal chelates. J Enzyme Inhib Med Chem 2008;23:369–79.
  • Chohan ZH. Synthesis of organometallic-based biologically active compounds: in vitro antibacterial, antifungal and cytotoxic properties of some sulfonamide incorporated ferrocences. J Enzyme Inhib Med Chem 2009;24:169–75..
  • Chohan ZH, Supuran CT, Hadda TB, Nasim F, Khan KM. Metal based isatin-derived sulfonamides: their synthesis, characterization, coordination behavior and biological activity. J Enzyme Inhib Med Chem 2008 Sep 30:1. [Epub ahead of print]
  • Singh K, Singh DP, Barwa MS, Tyagi P, Mirza Y. Antibacterial Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff bases derived from fluorobenzaldehyde and triazoles. J Enzyme Inhib Med Chem 2006;21:557–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.