45,061
Views
540
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review on tyrosinase inhibitors

, , , , , & show all
Pages 279-309 | Received 18 Sep 2018, Accepted 05 Nov 2018, Published online: 03 Jan 2019

References

  • Dembitsky VM, Kilimnik A. Anti-melanoma agents derived from fungal species. M J Pharma 2016;1:1–16.
  • Maghsoudi S, Adibi H, Hamzeh M, et al. Kinetic of mushroom tyrosinase inhibition by benzaldehyde derivatives. J Rep Pharma Sci 2013;2:156–64.
  • Halaouli S, Asther M, Kruus K, et al. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol 2005;98:332–43.
  • Sahu RK, Roy A, Dwivedi J, Jha AK. Promotion and computation of inhibitory effect on tyrosinase activity of herbal cream by incorporating indigenous medicinal plants. Pak J Biol Sci 2014;17:146–50.
  • Jeon SH, Jong-Uk HK, Kwang-Hoon K. Inhibitory effects on L-dopa oxidation of tyrosinase by skin-whitening agents. Bull Korean Chem Soc 2005;26:1135–7.
  • Garcia-Molina F, Munoz JL, Varon R, et al. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. J Agric Food Chem 2007;55:9739–49.
  • Ravani Ananda R, Nagaraja P. Quantification of 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid mono sodium salt by oxidation with tyrosinase in the presence of 3-methyl-2-benzothiazolinone hydrazine. Chem Sci Rev Lett 2015;4:342–8.
  • Winder AJ. A stopped spectrophotometric assay for the dopa oxidase activity of tyrosinase. J Biochem Biophys Methods 1994;28:173–83.
  • Chai WM, Lin MZ, Song FJ, et al. Rifampicin as a novel tyrosinase inhibitor: inhibitory activity and mechanism. Int J Biol Macromol 2017;102:425–30.
  • Lee SY, Baek N, Nam TG. Natural, semisynthetic and synthetic tyrosinase inhibitors . J Enzyme Inhib Med Chem 2016; 31:1–13.
  • Zhou J, Tang Q, Wu T, Cheng Z. Improved TLC bioautographic assay for qualitative and quantitative estimation of tyrosinase inhibitors in natural products. Phytochem Anal 2017;28:115–24.
  • García P, Ramallo IA, Furlan RLE. Reverse phase compatible TLC-bioautography for detection of tyrosinase inhibitors. Phytochem Anal 2017;28:101–5.
  • García P, Furlan RL. Multiresponse optimisation applied to the development of a TLC autography for the detection of tyrosinase inhibitors. Phytochem Anal 2015;26:287–92.
  • Wangthong S, Tonsiripakdee I, Monhaphol T, et al. Post TLC developing technique for tyrosinase inhibitor detection. Biomed Chromatogr 2007;21:94–100.
  • Taibon JAA, Schwaiger S, Magnenat C, et al. Prevention of false-positive results: development of an HPTLC autographic assay for the detection of natural tyrosinase inhibitors. Planta Med 2015;81:1198–204.
  • Misra BB, Dey S. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil. Nat Prod Commun 2013;8:253–6.
  • Kamagaju L, Morandini R, Bizuru E, et al. Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment. J Ethnopharmacol 2013;146:824–34.
  • Liu DM, Yang JL, Ha W, et al. Kinetics and inhibition study of tyrosinase by pressure mediated microanalysis. Anal Biochem 2017;525:54–9.
  • Tang L, Zhang W, Zhao H, Chen Z. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis. J Sep Sci 2015;38:2887–92.
  • Jiang TF, Liang TT, Wang YH, et al. Immobilized capillary tyrosinase microreactor for inhibitor screening in natural extracts by capillary electrophoresis. J Pharm Biomed Anal 2013;84:36–40.
  • Cheng M, Chen Z. Screening of tyrosinase inhibitors by capillary electrophoresis with immobilized enzyme microreactor and molecular docking. Electrophoresis 2017;38:486–93.
  • Sun BB, Qi L, Mu XY, et al. A Chiral ligand exchange CE system for monitoring inhibitory effect of kojic acid on tyrosinase. Talanta 2013;116:1121–5.
  • Winder AJ, Harris H. New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J Biochem 1991;198:317–26.
  • Chen YM, Chavin W. Radiometric assay of tyrosinase and theoretical considerations of melanin formation. Anal Biochem 1965;13:234–58.
  • Vandeput M, Patris S, Silva H, et al. Application of a tyrosinase microreactor – detector in a flow injection configuration for the determination of affinity and dynamics of inhibitor binding. Sens Actuators B Chem 2017;248:385–94.
  • Ruzza P, Serra PA, Davide Fabbri D, et al. Hydroxylated biphenyls as tyrosinase inhibitor: a spectrophotometric and electrochemical study. Eur J Med Chem 2017;126:1034–8.
  • Tang H, Cui F, Li H, et al. Understanding the inhibitory mechanism of tea polyphenols against tyrosinase using fluorescence spectroscopy, cyclic voltammetry, oximetry, and molecular simulations. RSC Adv 2018;8:8310–8.
  • Liu Z, Liu S. A novel fluorescent biosensor for adrenaline detection and tyrosinase inhibitor screening. Anal Bioanal Chem 2018;410:4145–52.
  • Hsu KD, Chan YH, Chen HJ, et al. Tyrosinase-based TLC autography for anti-melanogenic drug screening. Sci Rep 2018;8:401.
  • Bagherzadeh K, Shirgahi Talari F, Sharifi A, et al. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies. J Biomol Struct Dyn 2015;33:487–501.
  • Tang H, Cui F, Liu L, Li Y. Predictive models for tyrosinase inhibitors: challenges from heterogeneous activity data determined by different experimental protocols. Comput Biol Chem 2018;73:79–84.
  • Li Q, Yang H, Mo J, et al. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors. Peer J 2018;6:e4206.
  • Suthar SK, Bansal S, Narkhede N, et al. Design, synthesis and biological evaluation of oxindole-based chalcones as small-molecule inhibitors of melanogenic tyrosinase. Chem Pharm Bull 2017;65:833–9.
  • Soares MA, Almeida MA, Marins-Goulart C, et al. Thiosemicarbazones as inhibitors of tyrosinase enzyme. Bioorg Med Chem Lett 2017;27:3546–50.
  • Gou L, Lee J, Hao H, et al. The effect of oxaloacetic acid on tyrosinase activity and structure:Integration of inhibition kinetics with docking simulation. Int J Biol Macromol 2017;101:59–66.
  • Mutahir S, Khan MA, Khan IU, et al. Organocatalyzed and mechanochemical solvent-free synthesis of novel and functionalized bis-biphenyl substituted thiazolidinones as potent tyrosinase inhibitors: SAR and molecular modeling studies. Eur J Med Chem 2017;134:406–14.
  • Fan M, Zhang G, Pan J, Gong D. An inhibition mechanism of dihydromyricetin on tyrosinase and the joint effects of vitamins B6, D3 or E. Food Funct 2017;8:2601–10.
  • Liu J, Li M, Yu Y, Cao S. Novel inhibitors of tyrosinase produced by the 4-substitution of TCT (pi). Int J Biol Macromol 2017;103:1096–106.
  • Chai WM, Lin MZ, Feng HL, et al. Proanthocyanidins purified from fruit pericarp of Clausena lansium (Lour.) Skeels as efficient tyrosinase inhibitors: structure evaluation, inhibitory activity and molecular mechanism. Food Funct 2017;8:1043–51.
  • Kwong HC, Chidan Kumar CS, Mah SH, et al. Novel biphenyl ester derivatives as tyrosinase inhibitors: synthesis, crystallographic, spectral analysis and molecular docking studies. PLoS one 2017;12:e0170117.
  • Garcia-Jimenez A, Teruel-Puche JA, Ortiz-Ruiz CV, , et al. Study of the inhibition of 3-/4-aminoacetophenones on tyrosinase. Reac Kinet Mech Cat 2017;120:1–13.
  • Cui Y, Hu YH, Yu F, et al. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase. Int J Biol Macromol 2017;95:1289–97.
  • Ferro S, De Luca L, Germano MP, et al. Chemical exploration of 4-(4-fluorobenzyl)piperidine fragment for the development of new tyrosinase inhibitors. Eur J Med Chem 2017;125:992–1001.
  • Tang J, Liu J, Wu F. Molecular docking studies and biological evaluation of 1,3,4-thiadiazole derivatives bearing schiff base moieties as tyrosinase inhibitors. Bioorg Chem 2016;69:29–36.
  • Lall N, Mogapi E, de Canha MN, et al. Insights into tyrosinase inhibition by compounds isolated from Greyia radlkoferi Szyszyl using biological activity, molecular docking and gene expression analysis. Bioorg Med Chem 2016;24:5953–9.
  • Hassani S, Haghbeen K, Fazli M. Non-specific binding sites help to explain mixed inhibition in mushroom tyrosinase activities. Eur J Med Chem 2016;122:138–48.
  • Wang R, Chai WM, Yang Q, et al. (4-Fluorophenyl)-quinazolin-4(3H)-one as a novel tyrosinase inhibitor: Synthesis, inhibitory activity, and mechanism. Bioorg Med Chem 2016;24:4620–5.
  • Yue LM, Lee J, Lü ZR, et al. Effect of Cd2+ on tyrosinase: integration of inhibition kinetics with computational simulation. Int J Biol Macromol 2017; 94:836–44.
  • Gao H. Predicting tyrosinase inhibition by 3D QSAR pharmacophore models and designing potential tyrosinase inhibitors from traditional Chinese medicine database. Phytomedicine 2018;38:145–57.
  • Khan MT. Novel tyrosinase inhibitors from natural resources – their computational studies. Curr Med Chem 2012;19:2262–72.
  • Chan CF, Huang CC, Lee MY, Lin YS. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 2014;19:13122–35.
  • Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci 2009;10:2440–75.
  • Chang TS. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials 2012;5:1661–85.
  • Chen CY, Lin LC, Yang WF, et al. An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr Org Chem 2015;19:4–18.
  • Hassan Khan MT. Molecular design of tyrosinase inhibitors: a critical review of promising novel inhibitors from synthetic origins. Pure Appl Chem 2007;79:2277–95.
  • Likhitwitayawuid K. Stilbenes with tyrosinase inhibitory activity. Curr Sci 2008;94:44–52.
  • Lin JW, Chiang HM, Lin YC, Wen KC. Natural products with skin – whitening effects. J Food Drug Anal 2008;16:1–10.
  • Loizzo MR, Tundis R, Menichini F. Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr Rev Food Sci Food Saf 2012;11:378–98.
  • Parvez S, Kang M, Chung HS, Bae H. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother Res 2007;21:805–16.
  • Fernandes MS, Kerkar S. Microorganisms as a source of tyrosinase inhibitors: a review. Ann Microbiol 2017;67:343–58.
  • Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 2017;32:403–25.
  • Wu B. Tyrosinase inhibitors from terrestrial and marine resources. Curr Top Med Chem 2014;14:1425–49.
  • Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol 2008;84:539–49.
  • Cestari TF, Dantas LP, Boza JC. Acquired hyperpigmentations. An Bras Dermatol 2014;89:11–25.
  • Nouveau S, Agrawal D, Kohli M, et al. Skin hyperpigmentation in Indian population: insights and best practice. Indian J Dermatol 2016;61:487–95.
  • Dorga S, Sarangal R. Pigmentary disorders: an insight. Pigment Int 2014;1:5–7.
  • Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, et al. Action of 2,2',4,4'-tetrahydroxybenzophenone in the biosynthesis pathway of melanin. Int J Biol Macromol 2017;98:622–9.
  • Bull AT, Carter BLA. The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. J Gen Microbiol 1973;75:61–73.
  • Silva S. C d, Wisniewski C, Luccas PO, Magalhães CSD. Enzyme from banana (Musa sp.) extraction procedures for sensitive adrenaline biosensor construction. Am J Analyt Chem 2013;04: 293–300.
  • Dolashki A, Voelter W, Gushterova A, et al. Isolation and characterization of novel tyrosinase from Laceyella sacchari. Protein Pept Lett 2012;19:538–43.,
  • Haghbeen K, Rastegar j. F, Karkhaneh AA, Shareefi Borojerdi SH. Purification of tyrosinase from edible mushroom. Iran J Biotechnol 2004;2:189–94.
  • Sambasiva Rao KRS, Tripathy NK, Srinivasa Rao D, Prakasham RS. Production, characterization, catalytic and inhibitory activities of tyrosinase. Res J Biotech 2013;8:187–99.
  • Vieira NCS, Ferreira RA, Valquiria da CR, et al. Self-assembled films containing crude extract of avocado as a source of tyrosinase for monophenol detection. Mater Sci Eng C 2013;33:3899–902.
  • Yamauchi K, Mitsunaga T, Batubara I. Isolation, identification and tyrosinase inhibitory activities of the extractives from Allamanda cathartica. Nat Res 2011;2:167–72.
  • Yuan H, Ke-wu L, Dong Y, et al. Some properties of potato tyrosinase, chemical research and application. J Chem Res App 2005;1:22–7.
  • Zh Y, Wu F. Catalytic properties of tyrosinase from potato and edible fungi. Biotechnology 2006;5:344–8.
  • Harir M, Bellahcene M, Baratto MC, et al. Isolation and characterization of a novel tyrosinase produced by Sahara soil actinobacteria and immobilization on nylon nanofiber membranes. J Biotechnol 2018;265:54–64.
  • Vanitha M, Soundhari C. Isolation and characterisation of mushroom tyrosinase and screening of herbal extracts for anti-tyrosinase activity. Int J ChemTech Research 2017;10:1156–67.
  • Zekiri F, Molitor C, G.Mauracher SG, et al. Purification and characterization of tyrosinase from walnut leaves (Juglans regia). Phytochemistry 2014;101:5–15.
  • Gasparetti C, Biochemical and structural characterisation of the copper containing oxidoreductases catechol oxidase, tyrosinase, and laccase from ascomycete fungi. Espoo: VTT Technical Research Centre of Finland; 2012.
  • Boekelheide K, Graham DG, Mize PD, Jeffs PW. The metabolic pathway catalyzed by the tyrosinase of Agaricus bisporus. J Biol Chem 1980;255:4766–71.
  • Ioniţă E, Stănciuc N, Aprodu I, et al. pH-induced structural changes of tyrosinase from Agaricus bisporus using fluorescence and in silico methods. J Sci Food Agric 2014;94:2338–44.
  • Ioniţă E, Aprodu I, Stănciuc N, et al. Advances in structure-function relationships of tyrosinase from Agaricus bisporus – investigation on heat-induced conformational changes. Food Chem 2014;156:129–36.
  • Khan IA, Ali R. Antigenicity, catalytic activity and conformation of Agaricus bisporus tyrosinase: interaction of conformation-directed antibodies with the native and irradiated enzyme. J Biochem 1986;99:445–52.
  • Zhou L, Liu W, Zou L, et al. Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment. Food Chem 2017;214:423–31.
  • Gheibi N, Saboury AA, Haghbeen K, Moosavi Movahedi AA. The effect of some osmolytes on the activity and stability of mushroom tyrosinase. J Biosci 2006;31:355–62.
  • Narin R, Cresswell W, J Narin J. Mushroom tyrosinase: a model system to combine experimental investigation of enzyme-catalyzed reactions, data handling using R, and enzyme-inhibitor structural studies. Biochem Mol Biol Educ 2015;43:370–6.
  • Della Longa S, Ascone I, Bianconi A, et al. The dinuclear copper site structure of Agaricus bisporus tyrosinase in solution probed by X-ray absorption spectroscopy. J Biol Chem 1996;271:21025–30.
  • Ismaya WT, Tandrasasmita OM, Sundari S, et al. The light subunit of mushroom Agaricus bisporus tyrosinase: its biological characteristics and implications. Int J Biol Macromol 2017;102:308–14.
  • Ismaya WT, Rozeboom HJ, Weijn A, et al. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011;50:5477–86.
  • Strothkamp KG, Jolley RL, Mason HS. Quaternary structure of mushroom tyrosinase. Biochem Biophys Res Commun 1976;70:519–24.
  • Bourquelot E, Bertrand A. Le beluissement et le noircissement des champignons. Comp Rend Soc Biol 1895;2:582–4.
  • van Gelder CW, Flurkey WH, Wichers HJ. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 1997;45:1309–23.
  • Lopez-Tejedor D, Palomo JM. Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus. Protein Expr Purif 2018;145:64–70.
  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F. Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1995;1247:1–11.
  • Ortiz-Ruiz CV, Maria-Solano MA, Garcia-Molina Mdel M, et al. Kinetic characterization of substrate-analogous inhibitors of tyrosinase. IUBMB Life 2015;67:757–67.
  • Dec J, Bollag JM. Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling. Environ Sci Technol 1995;29:657–63.
  • Munoz-Munoz JL, Garcia-Molina F, Varon R, et al. Suicide inactivation of the diphenolase and monophenolase activities of tyrosinase. IUBMB Life 2010;62:539–47.
  • Land EJ, Ramsden CA, Riley PA. The mechanism of suicide-inactivation of tyrosinase: a substrate structure investigation. Tohoku J Exp Med 2007;212:341–8.
  • Haghbeen K, Saboury AA, Karbassi F. Substrate share in the suicide inactivation of mushroom tyrosinase. Biochim Biophys Acta 2004;1675:139–46.
  • Saboury AA, Karbassi F, Haghbeen K, et al. Stability, structural and suicide inactivation changes of mushroom tyrosinase after acetylation by n-acetylimidazole. Int J Biol Macromol 2004;34:257–62.
  • Munoz-Munoz JL, Garcia-Molina F, Garcia-Ruiz PA, et al. Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism. Biochem J 2008;416:431–40.
  • Munoz-Munoz JL, Garcia-Molina F, Garcia-Ruiz PA, et al. Stereospecific inactivation of tyrosinase by L- and D-ascorbic acid. Biochim Biophys Acta 2009;1794:244–53.
  • Munoz-Munoz JL, Acosta-Motos JR, Garcia-Molina F, et al. Tyrosinase inactivation in its action on dopa. Biochim Biophys Acta 2010;1804:1467–75.
  • Munoz-Munoz JL, Garcia-Molina F, Berna J, et al. Kinetic characterisation of o-aminophenols and aromatic o-diamines as suicide substrates of tyrosinase. Biochim Biophys Acta 2012;1824:647–55.
  • Muñoz-Muñoz JL, Berna J, Garcia-Molina F, et al. Unravelling the suicide inactivation of tyrosinase: a discrimination between mechanisms. J Mol Catal B Enzym 2012;75:11–9.
  • Munoz-Munoz JL, Garcia-Molina Mdel M, Garcia-Molina F, et al. Indirect inactivation of tyrosinase in its action on 4-tert-butylphenol. J Enzyme Inhib Med Chem 2014;29:344–52.
  • Munoz-Munoz JL, Garcia-Molina F, Acosta-Motos JR, et al. Indirect inactivation of tyrosinase in its action on tyrosine. Acta Biochim Pol 2011;58:477–88.
  • del Mar Garcia-Molina M, Munoz-Munoz JL, Berna J, et al. Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone. IUBMB Life 2014;66:122–7.
  • Munoz-Munoz JL, Garcia-Molina F, Arribas E, et al. Suicide inactivation of tyrosinase in its action on tetrahydropterines. J Enzyme Inhib Med Chem 2011;26:728–33.
  • Garcia-Molina F, Munoz-Munoz JL, Martinez-Ortiz F, et al. Tetrahydrofolic acid is a potent suicide substrate of mushroom tyrosinase. J Agric Food Chem 2011;59:1383–91.
  • Garcia-Molina F, Munoz-Munoz JL, Garcia-Molina M, et al. Melanogenesis inhibition due to NADH. Biosci Biotechnol Biochem 2010;74:1777–87.
  • Park J, Jung H, Kim K, et al. D-tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity. Pigment Cell Melanoma Res 2018;31:374–83.
  • Hassani S, Gharechaei B, Nikfard S, et al. New insight into the allosteric effect of l-tyrosine on mushroom tyrosinase during l-dopa production. Int J Biol Macromol 2018;114:821–9.
  • Zhao DY, Zhang MX, Dong XW, et al. Design and synthesis of novel hydroxypyridinone derivatives as potential tyrosinase inhibitors. Bioorg Med Chem Lett 2016;26:3103–8.
  • Yin SJ, Si YX, Qian GY. Inhibitory effect of phthalic acid on tyrosinase: the mixed-type inhibition and docking simulations. Enzyme Res 2011;2011:1. doi: 10.4061/2011/294724.
  • Yin SJ, Si YX, Chen YF, et al. Mixed-type inhibition of tyrosinase from Agaricus bisporus by terephthalic acid: computational simulations and kinetics. Protein J 2011;30:273–80.
  • Liu HJ, Ji S, Fan YQ, et al. The effect of D-(−)-arabinose on tyrosinase: an integrated study using computational simulation and inhibition kinetics. Enzyme Res 2012;2012:731427. doi: 10.1155/2012/731427.
  • Hridya H, Amrita A, Sankari M, et al. Inhibitory effect of brazilein on tyrosinase and melanin synthesis: kinetics and in silico approach. Int J Biol Macromol 2015;81:228–34.
  • Ashraf Z, Rafiq M, Seo SY, et al. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. Eur J Med Chem 2015;98:203–11.
  • Karbassi F, Saboury AA, Khan MT, et al. Mushroom tyrosinase inhibition by two potent uncompetitive inhibitors. J Enzyme Inhib Med Chem 2004;19:349–53.
  • Seo B, Yun J, Lee S, et al. Barbarin as a new tyrosinase inhibitor from Barbarea orthocerus. Planta Med 1999;65:683–6.
  • Hu YH, Liu X, Jia YL, et al. Inhibitory kinetics of chlorocinnamic acids on mushroom tyrosinase. J Biosci Bioeng 2014;117:142–6.
  • Gheibi N, Saboury AA, Haghbeen K, et al. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase. J Enzyme Inhib Med Chem 2009;24:1076–81.
  • Shiino M, Watanabe Y, Umezawa K. Synthesis and tyrosinase inhibitory activity of novel N-hydroxybenzyl-N-nitrosohydroxylamines. Bioorg Chem 2003;31:129–35.
  • Chen QX, Song KK, Wang Q, Huang H. Inhibitory effects on mushroom tyrosinase by some alkylbenzaldehydes. J Enzyme Inhib Med Chem 2003;18:491–6.
  • Saeed A, Mahesar PA, Channar PA, et al. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase. Bioorg Chem 2017;74:187–96.
  • Mann T, Gerwat W, Batzer J, et al. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. J Invest Dermatol 2018; 138:1601–8.
  • Hamed SH, Sriwiriyanont P, deLong MA, et al. Comparative efficacy and safety of deoxyarbutin, a new tyrosinase-inhibiting agent. J Cosmet Sci 2006;57:291–308.
  • Sugimoto K, Nishimura T, Nomura K, et al. Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Chem Pharm Bull (Tokyo) 2003;51:798–801.
  • Di Petrillo A, Gonzalez-Paramas AM, Era B, et al. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement Altern Med 2016;16:453.
  • Koyu H, Kazan A, Demir S, et al. Optimization of microwave assisted extraction of Morus nigra L. Fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem 2018;248:183–91.
  • Lee SG, Karadeniz F, Seo Y, Kong CS. Anti-melanogenic effects of flavonoid glycosides from Limonium tetragonum (thunb.) bullock via inhibition of tyrosinase and tyrosinase-related proteins. Molecules 2017;22:1480–90.
  • Matsuo K, Kobayashi M, Takuno Y, et al. Anti-tyrosinase activity constituents of Arctostaphylos uva-ursi. Yakugaku Zasshi 1997;117:1028–32.
  • Alam N, Yoon KN, Lee JS, et al. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi J Biol Sci 2012;19:111–18.
  • Kim NY, Kwon HS, Lee HY. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation. J Cosmet Dermatol 2017;16:407–15.
  • Taherkhani M. Chemical constituents, total phenolic content, antimicrobial, antioxidant and radical scavenging properties, chelating ability, tyrosinase inhibition and in vitro cytotoxic effects of Artemisia aucheri herbs. Pharm Chem J 2017;50:736–45.
  • Lee GY, Cho BO, Shin JY, et al. Tyrosinase inhibitory components from the seeds of Cassia tora. Arch Pharm Res 2018;41:490–6.
  • Senol FS, Orhan I, Yilmaz G, et al. Acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibition studies and antioxidant activities of 33 Scutellaria L. taxa from Turkey. Food Chem Toxicol 2010;48:781–8.
  • Ya W, Chun-Meng Z, Tao G, et al. Preliminary screening of 44 plant extracts for anti-tyrosinase and antioxidant activities. Pak J Pharm Sci 2015;28:1737–44.
  • Nithitanakool S, Pithayanukul P, Bavovada R, Saparpakorn P. Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract. Molecules 2009;14:257–65.
  • Abdillahi HS, Finnie JF, Van Staden J. Anti-inflammatory, antioxidant, anti-tyrosinase and phenolic contents of four Podocarpus species used in traditional medicine in South Africa. J Ethnopharmacol 2011;136:496–503.
  • Saeio K, Yotsawimonwat S, Anuchapreeda S, Okonogi S. Development of microemulsion of a potent anti-tyrosinase essential oil of an edible plant. Drug Discov Ther 2011;5:246–52.
  • Mapunya MB, Hussein AA, Rodriguez B, Lall N. Tyrosinase activity of Greyia flanaganii (Bolus) constituents. Phytomedicine 2011;18:1006–12.
  • Lin YS, Chen HJ, Huang JP, et al. Kinetics of tyrosinase inhibitory activity using Vitis vinifera leaf extracts. Biomed Res Int 2017;2017:5232680. doi: 10.1155/2017/5232680.
  • Huang MH, Tai HM, Wang BS, Chang LW. Inhibitory effects of water extract of Flos Inulae on mutation and tyrosinase. Food Chem 2013;139:1015–20.
  • Chiari ME, Joray MB, Ruiz G, et al. Tyrosinase inhibitory activity of native plants from central argentina: isolation of an active principle from Lithrea molleoides. Food Chem 2010;120:10–4.
  • Burlando B, Clericuzio M, Cornara L. Moraceae plants with tyrosinase inhibitory activity: A review. Mini Rev Med Chem 2017;17:108–21.
  • Chatatikun M, Chiabchalard A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity. BMC Complement Altern Med 2017;17:487.
  • Issa RA, Afifi FU, Amro BI. Studying the anti-tyrosinase effect of Arbutus andrachne L. extracts. Int J Cosmet Sci 2008;30:271–6.
  • Hameed A, Akhtar N. Comparative chemical investigation and evaluation of antioxidant and tyrosinase inhibitory effects of Withania somnifera (L.) Dunal and Solanum nigrum (L.) berries. Acta Pharm 2018;68:47–60.
  • Neagu E, Radu GL, Albu C, Paun G. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts. Saudi J Biol Sci 2018;25:578–85.
  • Panda P, Dash P, Ghosh G. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel's foot creeper leaves (Bauhinia vahlii). Nat Prod Res 2018;32:596–9.
  • Quispe YN, Hwang SH, Wang Z, Lim SS. Screening of peruvian medicinal plants for tyrosinase inhibitory properties: identification of tyrosinase inhibitors in Hypericum laricifolium Juss. Molecules 2017;22:doi: 10.3390/molecules22030402.
  • Suh SS, Hwang J, Park M, et al. Phenol content, antioxidant and tyrosinase inhibitory activity of mangrove plants in Micronesia. Asian Pac J Trop Med 2014;7:531–5.
  • Hun Son K, Young Heo M. Inhibitory effects of Korean indigenous plants on tyrosinase and melanogenesis. J Cosmet Sci 2013;64:145–58.
  • Souza PM, Elias ST, Simeoni LA, et al. Plants from Brazilian cerrado with potent tyrosinase inhibitory activity. PLoS One 2012;7:e48589.
  • Khazaeli P, Goldoozian R, Sharififar F. An evaluation of extracts of five traditional medicinal plants from Iran on the inhibition of mushroom tyrosinase activity and scavenging of free radicals. Int J Cosmet Sci 2009;31:375–81.
  • Masuda T, Fujita N, Odaka Y, et al. Tyrosinase inhibitory activity of ethanol extracts from medicinal and edible plants cultivated in Okinawa and identification of a water-soluble inhibitor from the leaves of Nandina domestica. Biosci Biotechnol Biochem 2007;71:2316–20.
  • Masuda T, Yamashita D, Takeda Y, Yonemori S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci Biotechnol Biochem 2005;69:197–201.
  • Baurin N, Arnoult E, Scior T, et al. Preliminary screening of some tropical plants for anti-tyrosinase activity. J Ethnopharmacol 2002;82:155–8.
  • Kubo I, Yokokawa Y, Kinst-Hori I. Tyrosinase inhibitors from Bolivian medicinal plants. J Nat Prod 1995;58:739–43.
  • Bonesi M, Xiao J, Tundis R, et al. Advances in the tyrosinase inhibitors from plant source. Curr Med Chem 2018;25:1. doi: 10.2174/0929867325666180522091311.
  • Vasantha KY, Murugesh CS, Sattur AP. A tyrosinase inhibitor from Aspergillus niger. J Food Sci Technol 2014;51:2877–80.
  • Tsuchiya T, Yamada K, Minoura K, et al. Purification and determination of the chemical structure of the tyrosinase inhibitor produced by Trichoderma viride strain H1-7 from a marine environment. Biol Pharm Bull 2008;31:1618–20.
  • Lu R, Liu X, Gao S, et al. New tyrosinase inhibitors from Paecilomyces gunnii. J Agric Food Chem 2014;62:11917–23.
  • Kang HS, Choi JH, Cho WK, et al. A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch Pharm Res 2004;27:742–50.
  • Morimura K, Yamazaki C, Hattori Y, et al. A tyrosinase inhibitor, daedalin a, from mycelial culture of Daedalea dickinsii. Biosci Biotechnol Biochem 2007;71:2837–40.
  • Sharma VK, Choi J, Sharma N, et al. In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophora indusiata. Phytother Res 2004;18:841–4.
  • Ishihara A, Ide Y, Bito T, et al. Novel tyrosinase inhibitors from liquid culture of Neolentinus lepideus. Biosci Biotechnol Biochem 2018;82:22–30.
  • Li X, Kim MK, Lee U, et al. Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chem Pharm Bull (Tokyo) 2005;53:453–5.
  • Wu B, Wu X, Sun M, Li M. Two novel tyrosinase inhibitory sesquiterpenes induced by cucl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Mar Drugs 2013;11:2713–21.
  • Chang TS, Tseng M, Ding HY, Shou-Ku Tai S. Isolation and characterization of Streptomyces hiroshimensis strain TI-C3 with anti-tyrosinase activity. J Cosmet Sci 2008;59:33–40.
  • le Roes-Hill M, Prins A, Meyers PR. Streptomyces swartbergensis sp. Nov., a novel tyrosinase and antibiotic producing actinobacterium. Antonie Van Leeuwenhoek 2018;111:589–600.
  • Nakashima T, Anzai K, Kuwahara N, et al. Physicochemical characters of a tyrosinase inhibitor produced by Streptomyces roseolilacinus NBRC 12815. Biol Pharm Bull 2009;32:832–6.
  • Deering RW, Chen J, Sun J, et al. N-acyl dehydrotyrosines, tyrosinase inhibitors from the marine bacterium Thalassotalea sp. PP2-459. J Nat Prod 2016;79:447–50.
  • Sano T, Kaya K. Oscillapeptin G, a tyrosinase inhibitor from toxic Oscillatoria agardhii. J Nat Prod 1996;59:90–2.
  • Ji K, Cho YS, Kim YT. Tyrosinase inhibitory and anti-oxidative effects of lactic acid bacteria isolated from dairy cow feces. Probiotics Antimicrob Proteins 2018;10:43–55.
  • Wang GH, Chen CY, Tsai TH, et al. Evaluation of tyrosinase inhibitory and antioxidant activities of Angelica dahurica root extracts for four different probiotic bacteria fermentations. J Biosci Bioeng 2017;123:679–84.
  • Crozier A, Jaganath IB, Clifford MN. Phenols, polyphenols and tannins: an overview. Plant Secondary Metabolites 2007;1–24. 10.1002/9780470988558.ch1.
  • Sakuma K, Ogawa M, Sugibayashi K, et al. Relationship between tyrosinase inhibitory action and oxidation-reduction potential of cosmetic whitening ingredients and phenol derivatives. Arch Pharm Res 1999;22:335–9.
  • Hashimoto A, Ichihashi M, Mishima Y. The mechanism of depigmentation by hydroquinone: a study on suppression and recovery processes of tyrosinase activity in the pigment cells in vivo and in vitro. Nihon Hifuka Gakkai Zasshi 1984;94:797–804.
  • Chen YR, Y-Y R, Lin TY, et al. Identification of an alkylhydroquinone from Rhus succedanea as an inhibitor of tyrosinase and melanogenesis. J Agric Food Chem 2009;57:2200–5.
  • Sasaki A, Yamano Y, Sugimoto S, et al. Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities. J Nat Med 2018;72:381–9.
  • Chawla S, deLong MA, Visscher MO, et al. Mechanism of tyrosinase inhibition by deoxyarbutin and its second-generation derivatives. Br J Dermatol 2008;159:1267–74.
  • Boissy RE, Visscher M, DeLong MA. Deoxyarbutin: a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency. Exp Dermatol 2005;14:601–8.
  • Chawla S, Kvalnes K, deLong MA, et al. Deoxyarbutin and its derivatives inhibit tyrosinase activity and melanin synthesis without inducing reactive oxygen species or apoptosis. J Drugs Dermatol 2012;11:e28–34.
  • Tasaka K, Kamei C, Nakano S, et al. Effects of certain resorcinol derivatives on the tyrosinase activity and the growth of melanoma cells. Methods Find Exp Clin Pharmacol 1998;20:99–109.
  • Kolbe L, Mann T, Gerwat W, et al. 4-n-Butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J Eur Acad Dermatol Venereol 2013;27:19–23.
  • Nguyen MH, Nguyen HX, Nguyen MT, Nguyen NT. Phenolic constituents from the heartwood of Artocapus altilis and their tyrosinase inhibitory activity. Nat Prod Commun 2012;7:185–6.
  • Ashraf Z, Rafiq M, Seo SY, et al. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg Med Chem 2015;23:5870–80.
  • Shirota S, Miyazaki K, Aiyama R, et al. Tyrosinase inhibitors from crude drugs. Biol Pharm Bull 1994;17:266–9.
  • Matsumoto T, Nakajima T, Iwadate T, Nihei KI. Chemical synthesis and tyrosinase-inhibitory activity of isotachioside and its related glycosides. Carbohydr Res 2018;465:22–8.
  • Deri B, Kanteev M, Goldfeder M, et al. The unravelling of the complex pattern of tyrosinase inhibition. Sci Rep 2016;6:34993.
  • Garcia-Jimenez A, Teruel-Puche JA, Berna J, et al. Action of tyrosinase on alpha and beta-arbutin: a kinetic study. PLoS One 2017;12:e0177330.
  • Garcia-Molina MO, Munoz-Munoz JL, Garcia-Molina F, et al. Study of umbelliferone hydroxylation to esculetin catalyzed by polyphenol oxidase. Biol Pharm Bull 2013;36:1140–5.
  • Maria Del Mar Garcia-Molina JB, Muñoz-Muñoz JL, García-Ruiz PA, Moreno MG, Martinez JR, Garcia-Canovas F. Action of tyrosinase on hydroquinone in the presence of catalytic amounts of o-diphenol. A kinetic study. React Kinet Mech Cat 2014;112:305–20.
  • Garcia-Molina Mdel M, Munoz Munoz JL, Martinez-Ortiz F, et al. Tyrosinase-catalyzed hydroxylation of hydroquinone, a depigmenting agent, to hydroxyhydroquinone: a kinetic study. Bioorg Med Chem 2014;22:3360–9.
  • Ortiz-Ruiz CV, Berna J, Garcia-Molina Mdel M, et al. Identification of p-hydroxybenzyl alcohol, tyrosol, phloretin and its derivate phloridzin as tyrosinase substrates. Bioorg Med Chem 2015;23:3738–46.
  • Ortiz-Ruiz CV, Berna J, Rodriguez-Lopez JN, et al. Tyrosinase-catalyzed hydroxylation of 4-hexylresorcinol, an antibrowning and depigmenting agent: A kinetic study. J Agric Food Chem 2015;63:7032–40.
  • Ortiz-Ruiz CV, Ballesta de Los Santos M, Berna J, et al. Kinetic characterization of oxyresveratrol as a tyrosinase substrate. IUBMB Life 2015;67:828–36.
  • Garcia-Jimenez A, Teruel-Puche JA, Ortiz-Ruiz CV, et al. 4-n-Butylresorcinol, a depigmenting agent used in cosmetics, reacts with tyrosinase. IUBMB Life 2016;68:663–72.
  • Garcia-Jimenez A, Teruel-Puche JA, Berna J, et al. Characterization of the action of tyrosinase on resorcinols. Bioorg Med Chem 2016;24:4434–43.
  • Garcia-Jimenez A, Munoz-Munoz JL, Garcia-Molina F, et al. Spectrophotometric characterization of the action of tyrosinase on p-coumaric and caffeic acids: characteristics of o-caffeoquinone. J Agric Food Chem 2017;65:3378–86.
  • Garcia-Jimenez A, Garcia-Molina F, Teruel-Puche JA, et al. Catalysis and inhibition of tyrosinase in the presence of cinnamic acid and some of its derivatives. Int J Biol Macromol 2018;119:548–54.
  • Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, et al. Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase. PLoS One 2017;12:e0187845.
  • Ortiz-Ruiz CV, Garcia-Molina Mdel M, Serrano JT, et al. Discrimination between alternative substrates and inhibitors of tyrosinase. J Agric Food Chem 2015;63:2162–71.
  • Lin D, Xiao M, Zhao J, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016;21:1374. https://doi.org/10.3390/molecules21101374
  • Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 2010;62:1–20.
  • Wang Y, Curtis-Long MJ, Lee BW, et al. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg Med Chem 2014;22:1115–20.
  • Xue YL, Miyakawa T, Hayashi Y, et al. Isolation and tyrosinase inhibitory effects of polyphenols from the leaves of persimmon, Diospyros kaki. J Agric Food Chem 2011;59:6011–7.
  • Sirat HM, Rezali MF, Ujang Z. Isolation and identification of radical scavenging and tyrosinase inhibition of polyphenols from Tibouchina semidecandra L. J Agric Food Chem 2010;58:10404–9.
  • Yoon NY, Eom TK, Kim MM, Kim SK. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J Agric Food Chem 2009;57:4124–9.
  • Fujimoto A, Shingai Y, Nakamura M, et al. A novel ring-expanded product with enhanced tyrosinase inhibitory activity from classical Fe-catalyzed oxidation of rosmarinic acid, a potent antioxidative lamiaceae polyphenol. Bioorg Med Chem Lett 2010;20:7393–6.
  • Solimine J, Garo E, Wedler J, et al. Tyrosinase inhibitory constituents from a polyphenol-enriched fraction of rose oil distillation wastewater. Fitoterapia 2016;108:13–9.
  • Du ZY, Jiang YF, Tang ZK, et al. Antioxidation and tyrosinase inhibition of polyphenolic curcumin analogs. Biosci Biotechnol Biochem 2011;75:2351–8.
  • Jiang Y, Du Z, Xue G, et al. Synthesis and biological evaluation of unsymmetrical curcumin analogues as tyrosinase inhibitors. Molecules 2013;18:3948–61.
  • Ng LT, Ko HH, Lu TM. Potential antioxidants and tyrosinase inhibitors from synthetic polyphenolic deoxybenzoins. Bioorg Med Chem 2009;17:4360–6.
  • Zheng ZP, Zhang YN, Zhang S, Chen J. One-pot green synthesis of 1,3,5-triarylpentane-1,5-dione and triarylmethane derivatives as a new class of tyrosinase inhibitors. Bioorg Med Chem Lett 2016;26:795–8.
  • Orhan IE, Khan MT. Flavonoid derivatives as potent tyrosinase inhibitors – a survey of recent findings between 2008–2013. Curr Top Med Chem 2014;14:1486–93.
  • Jegal J, Park SA, Chung K, et al. Tyrosinase inhibitory flavonoid from Juniperus communis fruits. Biosci Biotechnol Biochem 2016;80:2311–7.
  • Muhammad D, Hubert J, Lalun N, et al. Isolation of flavonoids and triterpenoids from the fruits of Alphitonia neocaledonica and evaluation of their anti-oxidant, anti-tyrosinase and cytotoxic activities. Phytochem Anal 2015;26:137–44.
  • Erdogan Orhan I, Senol FS, Aslan Erdem S, et al. Tyrosinase and cholinesterase inhibitory potential and flavonoid characterization of Viola odorata L. (Sweet Violet). Phytother Res 2015;29:1304–10.
  • Liang CP, Chang CH, Liang CC, et al. In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.). AMES Mol 2014;19:4681–94.
  • Badria FA, elGayyar MA. A new type of tyrosinase inhibitors from natural products as potential treatments for hyperpigmentation. Boll Chim Farm 2001;140:267–71.
  • Promden W, Viriyabancha W, Monthakantirat O, et al. Correlation between the potency of flavonoids on mushroom tyrosinase inhibitory activity and melanin synthesis in melanocytes. Molecules 2018;23:1403. doi: 10.3390/molecules23061403.
  • Demirkiran O, Sabudak T, Ozturk M, Topcu G. Antioxidant and tyrosinase inhibitory activities of flavonoids from Trifolium nigrescens Subsp. petrisavi. J Agric Food Chem 2013;61:12598–603.
  • Yao Y, Cheng X, Wang L, et al. Mushroom tyrosinase inhibitors from mung bean (Vigna radiatae L.) extracts. Int J Food Sci Nutr 2012;63:358–61.
  • Lou SN, Yu MW, Ho CT. Tyrosinase inhibitory components of immature calamondin peel. Food Chem 2012;135:1091–6.
  • Hu X, Wu JW, Wang M, et al. 2-Arylbenzofuran, flavonoid, and tyrosinase inhibitory constituents of Morus yunnanensis. J Nat Prod 2012;75:82–7.
  • Fawole OA, Makunga NP, Opara UL. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement Altern Med 2012;12:200.
  • Kim JM, Ko RK, Jung DS, et al. Tyrosinase inhibitory constituents from the stems of Maackia fauriei. Phytother Res 2010;24:70–5.
  • Alam N, Yoon KN, Lee KR, et al. Antioxidant activities and tyrosinase inhibitory effects of different extracts from Pleurotus ostreatus fruiting bodies. Mycobiology 2010;38:295–301.
  • Piao X, Tian Y, Mi X, Cui J. tyrosinase inhibition of Potentilla bifurca. Zhongguo Zhong Yao Za Zhi 2009;34:1952–4.
  • Lu YH, Lin T, Wang ZT, et al. Mechanism and inhibitory effect of galangin and its flavonoid mixture from Alpinia officinarum on mushroom tyrosinase and B16 murine melanoma cells. J Enzyme Inhib Med Chem 2007;22:433–8.
  • Jeong SH, Ryu YB, Curtis-Long MJ, et al. Tyrosinase inhibitory polyphenols from roots of Morus lhou. J Agric Food Chem 2009;57:1195–203.
  • Kishore N, Twilley D, Blom van Staden A, et al. Isolation of flavonoids and flavonoid glycosides from Myrsine africana and their inhibitory activities against mushroom tyrosinase. J Nat Prod 2018;81:49–56.
  • Lee HS. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J Agric Food Chem 2002;50:1400–3.
  • Wang YL, Hu G, Zhang Q, et al. Screening and characterizing tyrosinase inhibitors from Salvia miltiorrhiza and Carthamus tinctorius by spectrum-effect relationship analysis and molecular docking. J Anal Methods Chem 2018;2018:1.
  • Azizuddin, Khan AM, Choudhary MI. Tyrosinase inhibitory potential of natural products isolated from various medicinal plants. Nat Prod Res 2011;25:750–3.
  • Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 2012;3:222.
  • Lee NK, Son KH, Chang HW, et al. Prenylated flavonoids as tyrosinase inhibitors. Arch Pharm Res 2004;27:1132–5.
  • Rho HS, Ahn SM, Lee BC, et al. Changes in flavonoid content and tyrosinase inhibitory activity in kenaf leaf extract after far-infrared treatment. Bioorg Med Chem Lett 2010;20:7534–6.
  • Manthey JA, Cesar TB, Jackson E, Mertens-Talcott S. Pharmacokinetic study of nobiletin and tangeretin in rat serum by high-performance liquid chromatography-electrospray ionization-mass spectrometry. J Agric Food Chem 2011;59:145–51.
  • Shang C, Zhang Y, You X, et al. The effect of 7,8,4-trihydroxyflavone on tyrosinase activity and conformation: spectroscopy and docking studies. Luminescence 2018;33:681–91.
  • Gao H, Nishida J, Saito S, Kawabata J. Inhibitory effects of 5,6,7-trihydroxyflavones on tyrosinase. Molecules 2007;12:86–97.
  • Mu Y, Li L, Hu SQ. Molecular inhibitory mechanism of tricin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc 2013;107:235–40.
  • Guo N, Wang C, Shang C, et al. Integrated study of the mechanism of tyrosinase inhibition by baicalein using kinetic, multispectroscopic and computational simulation analyses. Int J Biol Macromol 2018;118:57–68.
  • Zhang L, Tao G, Chen J, Zheng ZP, Characterization of a new flavone and tyrosinase inhibition constituents from the Twigs of Morus alba L. Molecules 2016;21(9):1130. doi: 10.3390/molecules21091130
  • Ryu YB, Ha TJ, Curtis-Long MJ, et al. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz. J Enzyme Inhib Med Chem 2008;23:922–30.
  • Kubo I, Kinst-Hori I. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. J Agric Food Chem 1999;47:4121–5.
  • Omar SH, Scott CJ, Hamlin AS, Obied HK. Biophenols: enzymes (β-secretase, cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.)). Fitoterapia 2018;128:118–29.
  • Yang Z, Zhang Y, Sun L, et al. An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from mulberry leaves. Anal Chim Acta 2012;719:87–95.
  • Wang Y, Zhang G, Yan J, Gong D. Inhibitory effect of morin on tyrosinase: insights from spectroscopic and molecular docking studies. Food Chem 2014;163:226–33.
  • Zheng ZP, Zhu Q, Fan CL, et al. Phenolic tyrosinase inhibitors from the stems of Cudrania cochinchinensis. Food Funct 2011;2:259–64.
  • Kim JH, Cho IS, So YK, et al. Kushenol a and 8-prenylkaempferol, tyrosinase inhibitors, derived from Sophora flavescens. J Enzyme Inhib Med Chem 2018;33:1048–54.
  • Park JS, Kim DH, Lee JK, et al. Natural ortho-dihydroxyisoflavone derivatives from aged Korean fermented soybean paste as potent tyrosinase and melanin formation inhibitors. Bioorg Med Chem Lett 2010;20:1162–4.
  • Chang TS, Ding HY, Lin HC. Identifying 6,7,4'-trihydroxyisoflavone as a potent tyrosinase inhibitor. Biosci Biotechnol Biochem 2005;69:1999–2001.
  • Chang TS. Two potent suicide substrates of mushroom tyrosinase: 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone. J Agric Food Chem 2007;55:2010–5.
  • Chen J, Yu X, Huang Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc 2016;168:111–7.
  • Deshmukh K, Poddar SS. Tyrosinase inhibitor-loaded microsponge drug delivery system: new approach for hyperpigmentation disorders. J Microencapsul 2012;29:559–68.
  • Jirawattanapong W, Saifah E, Patarapanich C. Synthesis of glabridin derivatives as tyrosinase inhibitors. Arch Pharm Res 2009;32:647–54.
  • Nerya O, Vaya J, Musa R, et al. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J Agric Food Chem 2003;51:1201–7.
  • Heo do Y, Kim YM, Lee J, et al. Desmodianone H and uncinanone B, potential tyrosinase inhibitors obtained from Lespedeza maximowiczii by using bioactivity-guided isolation. Biosci Biotechnol Biochem 2014;78:943–5.
  • Kim HJ, Seo SH, Lee BG, Lee YS. Identification of tyrosinase inhibitors from Glycyrrhiza uralensis. Planta Med 2005;71:785–7.
  • Kim JH, Kim HY, Kang SY, et al. Chemical constituents from Apios americana and their inhibitory activity on tyrosinase. Molecules 2018;23:232. doi: 10.3390/molecules23010232.
  • Si YX, Wang ZJ, Park D, et al. Effect of hesperetin on tyrosinase: inhibition kinetics integrated computational simulation study. Int J Biol Macromol 2012;50:257–62.
  • Chiari ME, Vera DM, Palacios SM, Carpinella MC. Tyrosinase inhibitory activity of a 6-isoprenoid-substituted flavanone isolated from Dalea elegans. Bioorg Med Chem 2011;19:3474–82.
  • Hu X, Yu MH, Yan GR, et al. Isoprenylated phenolic compounds with tyrosinase inhibition from Morus nigra. J Asian Nat Prod Res 2018;20:488–93.
  • Kim SS, Hyun CG, Choi YH, Lee NH. Tyrosinase inhibitory activities of the compounds isolated from Neolitsea aciculata (Blume) Koidz. J Enzyme Inhib Med Chem 2013;28:685–9.
  • Ko RK, Kim GO, Hyun CG, et al. Compounds with tyrosinase inhibition, elastase inhibition and DPPH radical scavenging activities from the branches of Distylium racemosum Sieb. et Zucc. Phytother Res 2011;25:1451–6.
  • Chai WM, Lin MZ, Wang YX, et al. Inhibition of tyrosinase by cherimoya pericarp proanthocyanidins: structural characterization, inhibitory activity and mechanism. Food Res Int 2017;100:731–9.
  • Kim YJ, Chung JE, Kurisawa M, et al. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates. Biomacromolecules 2004;5:474–9.
  • Chai WM, Huang Q, Lin MZ, et al. Condensed tannins from longan bark as inhibitor of tyrosinase: structure, activity, and mechanism. J Agric Food Chem 2018;66:908–17.
  • Jhan JK, Chung YC, Chen GH, et al. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity. Int J Cosmet Sci 2016;38:319–24.
  • Bukhari SN, Jantan I, Unsal Tan O, et al. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. J Agric Food Chem 2014;62:5538–47.
  • Liu J, Wu F, Chen L, et al. Biological evaluation of coumarin derivatives as mushroom tyrosinase inhibitors. Food Chem 2012;135:2872–8.
  • Le-Thi-Thu H, Casanola-Martin GM, Marrero-Ponce Y, et al. Novel coumarin-based tyrosinase inhibitors discovered by OECD principles-validated QSAR approach from an enlarged, balanced database. Mol Divers 2011;15:507–20.
  • Hassan M, Ashraf Z, Abbas Q, et al. Exploration of novel human tyrosinase inhibitors by molecular modeling, docking and simulation studies. Interdiscip Sci 2018;10:68–80.
  • Pintus F, Matos MJ, Vilar S, et al. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: anti-melanogenesis and antioxidant activities, and computational molecular modeling studies. Bioorg Med Chem 2017;25:1687–95.
  • Masamoto Y, Ando H, Murata Y, et al. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci Biotechnol Biochem 2003;67:631–4.
  • Ahmad VU, Ullah F, Hussain J, et al. Tyrosinase inhibitors from Rhododendron collettianum and their structure–activity relationship (SAR) studies. Chem Pharm Bull (Tokyo) 2004;52:1458–61.
  • Ashraf Z, Rafiq M, Seo SY, et al. Design, synthesis and bioevaluation of novel umbelliferone analogues as potential mushroom tyrosinase inhibitors. J Enzyme Inhib Med Chem 2015;30:874–83.
  • Matos MJ, Santana L, Uriarte E, et al. New halogenated phenylcoumarins as tyrosinase inhibitors. Bioorg Med Chem Lett 2011;21:3342–5.
  • Ueno T, Fukami H, Ohkishi H, et al. Synthesis of 3,4-dihydro-3-amino-7-hydroxycoumarin from s-methyl-l-cysteine and resorcinol by crystalline-beta-tyrosinase. Biochim Biophys Acta 1970;206:476–9.
  • Asthana S, Zucca P, Vargiu AV, et al. Structure–activity relationship study of hydroxycoumarins and mushroom tyrosinase. J Agric Food Chem 2015;63:7236–44.
  • Gardelly M, Trimech B, Belkacem MA, et al. Synthesis of novel diazaphosphinanes coumarin derivatives with promoted cytotoxic and anti-tyrosinase activities. Bioorg Med Chem Lett 2016;26:2450–4.
  • Tocco G, Fais A, Meli G, et al. PEG-immobilization of cardol and soluble polymer-supported synthesis of some cardol-coumarin derivatives: preliminary evaluation of their inhibitory activity on mushroom tyrosinase. Bioorg Med Chem Lett 2009;19:36–9.
  • Fais A, Corda M, Era B, et al. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules 2009;14:2514–20.
  • Yang HH, Oh KE, Jo YH, et al. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorg Med Chem 2018;26:509–15.
  • Takahashi M, Takara K, Toyozato T, Wada K. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J Oleo Sci 2012;61:585–92.
  • Zhang X, Hu X, Hou A, Wang H. Inhibitory effect of 2,4,2',4'-tetrahydroxy-3-(3-methyl-2-butenyl)-chalcone on tyrosinase activity and melanin biosynthesis. Biol Pharm Bull 2009;32:86–90.
  • Niesen DB, Ma H, Yuan T, et al. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 2015;10:491–3.
  • Suthar SK, Bansal S, Narkhede N, et al. Design, synthesis and biological evaluation of oxindole-based chalcones as small-molecule inhibitors of melanogenic tyrosinase. Chem Pharm Bull (Tokyo) 2017;65:833–9.
  • Kim BH, Park KC, Park JH, et al. Inhibition of tyrosinase activity and melanin production by the chalcone derivative 1-(2-cyclohexylmethoxy-6-hydroxy-phenyl)-3-(4-hydroxymethyl-phenyl)-propenone. Biochem Biophys Res Commun 2016;480:648–54.
  • Niu C, Yin L, Nie LF, et al. Synthesis and bioactivity of novel isoxazole chalcone derivatives on tyrosinase and melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorg Med Chem 2016;24:5440–8.
  • Radhakrishnan SK, Shimmon RG, Conn C, Baker AT. Evaluation of novel chalcone oximes as inhibitors of tyrosinase and melanin formation in B16 cells. Arch Pharm (Weinheim) 2016;349:20–9.
  • Radhakrishnan SK, Shimmon RG, Conn C, Baker AT. Inhibitory kinetics of azachalcones and their oximes on mushroom tyrosinase: a facile solid-state synthesis. Chem Biodivers 2016;13:531–8.
  • Dong X, Zhang Y, He JL, et al. Preparation of tyrosinase inhibitors and antibrowning agents using green technology. Food Chem 2016;197:589–96.
  • Jun N, Hong G, Jun K. Synthesis and evaluation of 2',4',6'-trihydroxychalcones as a new class of tyrosinase inhibitors. Bioorg Med Chem 2007;15:2396–402.
  • Radhakrishnan S, Shimmon R, Conn C, Baker A. Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2015;25:4085–91.
  • Liu J, Chen C, Wu F, Zhao L. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives. Chem Biol Drug Des 2013;82:39–47.
  • Nerya O, Musa R, Khatib S, et al. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 2004;65:1389–95.
  • Okombi S, Rival D, Bonnet S, et al. Discovery of benzylidenebenzofuran-3(2H)-one (aurones) as inhibitors of tyrosinase derived from human melanocytes. J Med Chem 2006;49:329–33.
  • Zhu JJ, Yan GR, Xu ZJ, et al. Inhibitory effects of (2'R)-2',3'-dihydro-2'-(1-hydroxy-1-methylethyl)-2,6'-bibenzofuran-6,4'-diol on mushroom tyrosinase and melanogenesis in B16-F10 melanoma cells. Phytother Res 2015;29:1040–5.
  • Hu X, Wang M, Yan GR, et al. 2-Arylbenzofuran and tyrosinase inhibitory constituents of Morus notabilis. J Asian Nat Prod Res 2012;14:1103–8.
  • Koirala P, Seong SH, Zhou Y, et al. Structure(−)activity relationship of the tyrosinase inhibitors kuwanon G, mulberrofuran G, and albanol B from Morus species: a kinetics and molecular docking study. Molecules 2018;23:1413. doi: 10.3390/molecules23061413.
  • Wang Y, Xu L, Gao W, et al. Isoprenylated phenolic compounds from Morus macroura as potent tyrosinase inhibitors. Planta Med 2018;84:336–43.
  • Lin YF, Hu YH, Lin HT, et al. Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits. J Agric Food Chem 2013;61:2889–95.
  • Lopes TIB, Coelho RG, Honda NK. Inhibition of mushroom tyrosinase activity by orsellinates. Chem Pharm Bull (Tokyo) 2018;66:61–4.
  • Lim JY, Ishiguro K, Kubo I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother Res 1999;13:371–5.
  • Cabanes J, Garcia-Carmona F, Garcia-Canovas F, et al. Kinetic study on the slow inhibition of epidermis tyrosinase by m-coumaric acid. Biochim Biophys Acta 1984;790:101–7.
  • An SM, Koh JS, Boo YC. p-Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother Res 2010;24:1175–80.
  • Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, et al. Action of tyrosinase on caffeic acid and its n-nonyl ester. Catalysis and suicide inactivation. Int J Biol Macromol 2018;107:2650–9.
  • Hu YH, Chen QX, Cui Y, et al. 4-Hydroxy cinnamic acid as mushroom preservation: anti-tyrosinase activity kinetics and application. Int J Biol Macromol 2016;86:489–95.
  • Kwak SY, Yang JK, Choi HR, et al. Synthesis and dual biological effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant. Bioorg Med Chem Lett 2013;23:1136–42.
  • Iwai K, Kishimoto N, Kakino Y, et al. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J Agric Food Chem 2004;52:4893–8.
  • Oyama T, Takahashi S, Yoshimori A, et al. Discovery of a new type of scaffold for the creation of novel tyrosinase inhibitors. Bioorg Med Chem 2016;24:4509–15.
  • Bernard P, Berthon JY. Resveratrol: an original mechanism on tyrosinase inhibition. Int J Cosmet Sci 2000;22:219–26.
  • Park J, Boo YC. Isolation of resveratrol from Vitis Viniferae caulis and its potent inhibition of human tyrosinase. Evid Based Complement Alternat Med 2013;2013:645257.
  • Gilly R, Mara D, Oded S, Zohar K. Resveratrol and a novel tyrosinase in carignan grape juice. J Agric Food Chem 2001;49:1479–85.
  • Likhitwitayawuid K, Sritularak B, De-Eknamkul W. Tyrosinase inhibitors from Artocarpus gomezianus. Planta Med 2000;66:275–7.
  • Lee N, Kim EJ, Kim BG. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680. ACS Chem Biol 2012;7:1687–92.
  • Ohguchi K, Tanaka T, Ito T, et al. Inhibitory effects of resveratrol derivatives from dipterocarpaceae plants on tyrosinase activity. Biosci Biotechnol Biochem 2003;67:1587–9.
  • Franco DC, de Carvalho GS, Rocha PR, et al. Inhibitory effects of resveratrol analogs on mushroom tyrosinase activity. Molecules 2012;17:11816–25.
  • Shin NH, Ryu SY, Choi EJ, et al. Oxyresveratrol as the potent inhibitor on DOPA oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun 1998;243:801–3.
  • Zheng ZP, Tan HY, Wang M. Tyrosinase inhibition constituents from the roots of Morus australis. Fitoterapia 2012;83:1008–13.
  • Bae SJ, Ha YM, Kim JA, et al. A novel synthesized tyrosinase inhibitor: (E)-2-((2,4-dihydroxyphenyl) diazenyl) phenyl 4-methylbenzenesulfonate as an azo-resveratrol analog. Biosci Biotechnol Biochem 2013;77:65–72.
  • Song YM, Ha YM, Kim JA, et al. Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Bioorg Med Chem Lett 2012;22:7451–5.
  • Yanagihara M, Yoshimatsu M, Inoue A, et al. Inhibitory effect of gnetin c, a resveratrol dimer from melinjo (Gnetum gnemon), on tyrosinase activity and melanin biosynthesis. Biol Pharm Bull 2012;35:993–6.
  • Kim YM, Yun J, Lee CK, et al. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J Biol Chem 2002;277:16340–4.
  • Ohguchi K, Tanaka T, Kido T, et al. Effects of hydroxystilbene derivatives on tyrosinase activity. Biochem Biophys Res Commun 2003;307:861–3.
  • Kim DH, Kim JH, Baek SH, et al. Enhancement of tyrosinase inhibition of the extract of Veratrum patulum using cellulase. Biotechnol Bioeng 2004;87:849–54.
  • Uesugi D, Hamada H, Shimoda K, et al. Synthesis, oxygen radical absorbance capacity, and tyrosinase inhibitory activity of glycosides of resveratrol, pterostilbene, and pinostilbene. Biosci Biotechnol Biochem 2017;81:226–30.
  • Ismail T, Shafi S, Srinivas J, et al. Synthesis and tyrosinase inhibition activity of trans-stilbene derivatives. Bioorg Chem 2016;64:97–102.
  • Lima LL, Lima RM, da Silva AF, et al. Azastilbene analogs as tyrosinase inhibitors: new molecules with depigmenting potential. Scientific World Journal 2013;2013:274643. doi: 10.1155/2013/274643.
  • Choi J, Bae SJ, Ha YM, et al. A newly synthesized, potent tyrosinase inhibitor: 5-(6-hydroxy-2-naphthyl)-1,2,3-benzenetriol. Bioorg Med Chem Lett 2010;20:4882–4.
  • Song S, Lee H, Jin Y, et al. Syntheses of hydroxy substituted 2-phenyl-naphthalenes as inhibitors of tyrosinase. Bioorg Med Chem Lett 2007;17:461–4.
  • Ha YM, Chung SW, Song S, et al. 4-(6-Hydroxy-2-naphthyl)-1,3-bezendiol: a potent, new tyrosinase inhibitor. Biol Pharm Bull 2007;30:1711–5.
  • Satooka H, Kubo I. Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorg Med Chem 2012;20:1090–9.
  • Fachinetti N, Rigon RB, Eloy JO, et al. Comparative study of glyceryl behenate or polyoxyethylene 40 stearate-based lipid carriers for trans-resveratrol delivery: development, characterization and evaluation of the in vitro tyrosinase inhibition. AAPS PharmSciTech 2018;19:1401–9.
  • Wu B, Zhang X, Wu X. New lignan glucosides with tyrosinase inhibitory activities from exocarp of Castanea henryi. Carbohydr Res 2012;355:45–9.
  • Karioti A, Protopappa A, Megoulas N, Skaltsa H. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorg Med Chem 2007;15:2708–14.
  • Wu YY, Huang XX, Wu J, et al. A new cyclolignan glycoside from the tubers of Pinellia ternata. J Asian Nat Prod Res 2015;17:1097–103.
  • Huang XX, Liu QB, Wu J, et al. Antioxidant and tyrosinase inhibitory effects of neolignan glycosides from Crataegus pinnatifida seeds. Planta Med 2014;80:1732–8.
  • Ashraf Z, Rafiq M, Nadeem H, et al. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies. PLoS One 2017; 12:e0178069.
  • Mutschlechner B, Rainer B, Schwaiger S, Stuppner H. Tyrosinase inhibitors from the aerial parts of Wulfenia carinthiaca Jacq. Chem Biodivers 2018;15:e1800014
  • Lehbili M, Alabdul Magid A, Hubert J, et al. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia 2018;125:41–8.
  • Tan C, Zhu W, Lu Y. Aloin, cinnamic acid and sophorcarpidine are potent inhibitors of tyrosinase. Chin Med J (Engl) 2002;115:1859–62.
  • Leu YL, Hwang TL, Hu JW, Fang JY. Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use. Phytother Res 2008;22:552–6.
  • Bao K, Dai Y, Zhu ZB, et al. Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg Med Chem 2010;18:6708–14.
  • Kim YJ, No JK, Lee JH, Chung HY. 4,4'-Dihydroxybiphenyl as a new potent tyrosinase inhibitor. Biol Pharm Bull 2005;28:323–7.
  • van Rensburg WJ, Ferreira D, Malan E, Steenkamp JA. Tyrosinase catalysed biphenyl construction from flavan-3-ol substrates. Phytochemistry 2000;53:285–92.
  • Oyama T, Yoshimori A, Takahashi S, et al. Structural insight into the active site of mushroom tyrosinase using phenylbenzoic acid derivatives. Bioorg Med Chem Lett 2017;27:2868–72.
  • Le Mellay-Hamon V, Criton M. Phenylethylamide and phenylmethylamide derivatives as new tyrosinase inhibitors. Biol Pharm Bull 2009;32:301–3.
  • Chiku K, Dohi H, Saito A, et al. Enzymatic synthesis of 4-hydroxyphenyl beta-D-oligoxylosides and their notable tyrosinase inhibitory activity. Biosci Biotechnol Biochem 2009;73:1123–8.
  • Saboury AA, Zolghadri S, Haghbeen K, Moosavi-Movahedi AA. The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase. J Enzyme Inhib Med Chem 2006;21:711–7.
  • Alijanianzadeh M, Saboury AA, Ganjali MR, et al. Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations. J Biomol Struct Dyn 2012;30:448–59.
  • Shareefi Borojerdi S, Haghbeen K, Asghar Karkhane A, et al. Successful resonance Raman study of cresolase activity of mushroom tyrosinase. Biochem Biophys Res Commun 2004;314:925–30.
  • Shao LL, Wang XL, Chen K, et al. Novel hydroxypyridinone derivatives containing an oxime ether moiety: synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chem 2018;242:174–81.
  • Saghaie L, Pourfarzam M, Fassihi A, Sartippour B. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid. Res Pharm Sci 2013;8:233–42.
  • Li DF, Hu PP, Liu MS, et al. Design and synthesis of hydroxypyridinone-l-phenylalanine conjugates as potential tyrosinase inhibitors. J Agric Food Chem 2013;61:6597–603.
  • Hider RC, Lerch K. The inhibition of tyrosinase by pyridinones. Biochem J 1989;257:289–90.
  • Dong H, Liu J, Liu X, et al. Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorg Chem 2017;75:106–17.
  • Song S, You A, Chen Z, et al. Study on the design, synthesis and structure-activity relationships of new thiosemicarbazone compounds as tyrosinase inhibitors. Eur J Med Chem 2017;139:815–25.
  • Xie J, Dong H, Yu Y, Cao S. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: insights from fluorescence, (1)H-NMR titration and molecular docking studies. Food Chem 2016;190:709–16.
  • Zhu TH, Cao SW, Yu YY. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors. Int J Biol Macromol 2013;62:589–95.
  • Xu J, Liu J, Zhu X, et al. Novel inhibitors of tyrosinase produced by the 4-substitution of TCT. Food Chem 2017;221:1530–8.
  • Choi J, Choi KE, Park SJ, et al. Ensemble-based virtual screening led to the discovery of new classes of potent tyrosinase inhibitors. J Chem Inf Model 2016;56:354–67.
  • Yi W, Cao R, Chen Z, et al. Rational design and synthesis of 4-o-substituted phenylmethylenethiosemicarbazones as novel tyrosinase inhibitors. Chem Pharm Bull (Tokyo) 2010;58:752–4.
  • Yi W, Cao RH, Chen ZY, et al. Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted phenylmethylenethiosemicarbazones as tyrosinase inhibitors. Chem Pharm Bull (Tokyo) 2009;57:1273–7.
  • Chen LH, Hu YH, Song W, et al. Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: novel tyrosinase inhibitors. J Agric Food Chem 2012;60:1542–7.
  • Li ZC, Chen LH, Yu XJ, et al. Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on mushroom tyrosinase. J Agric Food Chem 2010;58:12537–40.
  • El-Sadek MM, Hassan SY, Abdelwahab HE, Yacout GA. Synthesis of new 1,3,4-thiadiazole and 1,2,3,4-oxathiadiazole derivatives from carbohydrate precursors and study of their effect on tyrosinase enzyme. Molecules 2012;17:8378–96.
  • Yi W, Dubois C, Yahiaoui S, et al. Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase. Eur J Med Chem 2011;46:4330–5.
  • Buitrago E, Vuillamy A, Boumendjel A, et al. Exploring the interaction of n/s compounds with a dicopper center: tyrosinase inhibition and model studies. Inorg Chem 2014;53:12848–58.
  • Yang MH, Chen CM, Hu YH, et al. Inhibitory kinetics of DABT and DABPT as novel tyrosinase inhibitors. J Biosci Bioeng 2013;115:514–7.
  • Liu J, Wu F, Chen C. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents. Bioorg Med Chem Lett 2015;25:5142–6.
  • You A, Zhou J, Song S, et al. Structure-based modification of 3-/4-aminoacetophenones giving a profound change of activity on tyrosinase: from potent activators to highly efficient inhibitors. Eur J Med Chem 2015;93:255–62.
  • Yi W, Cao R, Wen H, et al. Discovery of 4-functionalized phenyl-o-beta-d-glycosides as a new class of mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2009;19:6157–60.
  • Liu J, Yi W, Wan Y, et al. 1-(1-Arylethylidene)thiosemicarbazide derivatives: a new class of tyrosinase inhibitors. Bioorg Med Chem 2008;16:1096–102.
  • Yan Q, Cao R, Yi W, et al. Synthesis and evaluation of 5-benzylidene(thio)barbiturate-beta-d-glycosides as mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2009;19:4055–8.
  • Gheibi N, Saboury AA, Mansuri-Torshizi H, et al. The inhibition effect of some n-alkyl dithiocarbamates on mushroom tyrosinase. J Enzyme Inhib Med Chem 2005;20:393–9.
  • Amin E, Saboury AA, Mansouri-Torshizi H, et al. Evaluation of p-phenylene-bis and phenyl dithiocarbamate sodium salts as inhibitors of mushroom tyrosinase. Acta Biochim Pol 2010;57:277–83.
  • Amin E, Saboury AA, Mansuri-Torshizi H, Moosavi-Movahedi AA. Potent inhibitory effects of benzyl and p-xylidine-bis dithiocarbamate sodium salts on activities of mushroom tyrosinase. J Enzyme Inhib Med Chem 2010;25:272–81.
  • Zarivi O, Bonfigli A, Cesare P, et al. Truffle thio-flavours reversibly inhibit truffle tyrosinase. FEMS Microbiol Lett 2003;220:81–8.
  • Choi J, Jee JG. Repositioning of thiourea-containing drugs as tyrosinase inhibitors. Int J Mol Sci 2015;16:28534–48.
  • De B, Adhikari I, Nandy A, et al. In silico modelling of azole derivatives with tyrosinase inhibition ability: application of the models for activity prediction of new compounds. Comput Biol Chem 2018;74:105–14.
  • Loriga M, Paglietti G, Sparatore F, et al. Synthesis of substituted DL-3(5-benzazolyl)alanines as dopa and alpha-methyldopa analogs and their effects on dopamine beta-hydroxylase, tyrosinase and diphenoloxidase. Farmaco 1992;47:439–48.
  • Channar PA, Saeed A, Larik FA, et al. Synthesis of aryl pyrazole via suzuki coupling reaction, in vitro mushroom tyrosinase enzyme inhibition assay and in silico comparative molecular docking analysis with kojic acid. Bioorg Chem 2018;79:293–300.
  • Gawande SS, Warangkar SC, Bandgar BP, Khobragade CN. Synthesis of new heterocyclic hybrids based on pyrazole and thiazolidinone scaffolds as potent inhibitors of tyrosinase. Bioorg Med Chem 2013;21:2772–7.
  • Zhou Z, Zhuo J, Yan S, Ma L. Design and synthesis of 3,5-diaryl-4,5-dihydro-1H-pyrazoles as new tyrosinase inhibitors. Bioorg Med Chem 2013;21:2156–62.
  • Bandgar BP, Totre JV, Gawande SS, et al. Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorg Med Chem 2010;18:6149–55.
  • Khan KM, Maharvi GM, Khan MT, et al. A facile and improved synthesis of sildenafil (viagra) analogs through solid support microwave irradiation possessing tyrosinase inhibitory potential, their conformational analysis and molecular dynamics simulation studies. Mol Divers 2005;9:15–26.
  • Mojzych M, Tarasiuk P, Kotwica-Mojzych K, et al. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity. J Enzyme Inhib Med Chem 2017;32:99–105.
  • Mojzych M, Dolashki A, Voelter W. Synthesis of pyrazolo[4,3-e][1,2,4]triazine sulfonamides, novel sildenafil analogs with tyrosinase inhibitory activity. Bioorg Med Chem 2014;22:6616–24.
  • Qamar R, Saeed A, Larik FA, et al. Novel 1,3-oxazine-tetrazole hybrids as mushroom tyrosinase inhibitors and free radical scavengers: synthesis, kinetic mechanism and molecular docking studies. Chem Biol Drug Des 2018; doi: 10.1111/cbdd.13352.
  • Nikalje APG, Gawhane P, Tiwari S, et al. Ultrasound promoted green synthesis, docking study of indole spliced thiadiazole, alpha-amino phosphonates as anticancer agents and anti-tyrosinase agents. Anticancer Agents Med Chem 2018;18:1. doi: 10.2174/1871520618666180417163226.
  • Mahdavi M, Ashtari A, Khoshneviszadeh M, et al. Synthesis of new benzimidazole-1,2,3-triazole hybrids as tyrosinase inhibitors. Chem Biodivers 2018; 15:e1800120.
  • Chekir S, Debbabi M, Regazzetti A, et al. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorg Chem 2018;80:189–94.
  • Kim SJ, Yang J, Lee S, et al. The tyrosinase inhibitory effects of isoxazolone derivatives with a (z)-beta-phenyl-alpha, beta-unsaturated carbonyl scaffold. Bioorg Med Chem 2018; doi: 10.1016/j.bmc.2018.05.047.
  • Hamidian H, Tagizadeh R, Fozooni S, et al. Synthesis of novel azo compounds containing 5(4h)-oxazolone ring as potent tyrosinase inhibitors. Bioorg Med Chem 2013;21:2088–92.
  • Heitz MP, Rupp JW. Determining mushroom tyrosinase inhibition by imidazolium ionic liquids: a spectroscopic and molecular docking study. Int J Biol Macromol 2018;107:1971–81.
  • Mann T, Scherner C, Rohm KH, Kolbe L. Structure–activity relationships of thiazolyl resorcinols, potent and selective inhibitors of human tyrosinase. Int J Mol Sci 2018;19:690. doi: 10.3390/ijms19030690.
  • Rezaei M, Mohammadi HT, Mahdavi A, et al. Evaluation of thiazolidinone derivatives as a new class of mushroom tyrosinase inhibitors. Int J Biol Macromol 2018;108:205–13.
  • Kim SH, Ha YM, Moon KM, et al. Anti-melanogenic effect of (z)-5-(2,4-dihydroxybenzylidene) thiazolidine-2,4-dione, a novel tyrosinase inhibitor. Arch Pharm Res 2013;36:1189–97.
  • Ha YM, Park YJ, Kim JA, et al. Design and synthesis of 5-(substituted benzylidene)thiazolidine-2,4-dione derivatives as novel tyrosinase inhibitors. Eur J Med Chem 2012;49:245–52.
  • Han YK, Park YJ, Ha YM, et al. Characterization of a novel tyrosinase inhibitor, (2RS,4R)-2-(2,4-dihydroxyphenyl)thiazolidine-4-carboxylic acid (MHY384). Biochim Biophys Acta 2012;1820:542–9.
  • Ha YM, Park YJ, Lee JY, et al. Design, synthesis and biological evaluation of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. Biochimie 2012;94:533–40.
  • Jung HJ, Lee MJ, Park YJ, et al. A novel synthetic compound, (z)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one (mhy773) inhibits mushroom tyrosinase. Biosci Biotechnol Biochem 2018;82:759–67. doi: 10.1080/09168451.2018.1445518.
  • Kahn V. Effect of kojic acid on the oxidation of DL-dopa, norepinephrine, and dopamine by mushroom tyrosinase. Pigment Cell Res 1995;8:234–40.
  • Xie W, Zhang H, He J, et al. Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase. Bioorg Med Chem Lett 2017;27:530–2.
  • Chen MJ, Hung CC, Chen YR, et al. Novel synthetic kojic acid-methimazole derivatives inhibit mushroom tyrosinase and melanogenesis. J Biosci Bioeng 2016;122:666–72.
  • Asadzadeh A, Sirous H, Pourfarzam M, et al. In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme. Iran J Basic Med Sci 2016;19:132–44.
  • Xie W, Zhang J, Ma X, et al. Synthesis and biological evaluation of kojic acid derivatives containing 1,2,4-triazole as potent tyrosinase inhibitors. Chem Biol Drug Des 2015;86:1087–92.
  • Lima CR, Silva JR, de Tassia Carvalho Cardoso E, et al. Combined kinetic studies and computational analysis on kojic acid analogous as tyrosinase inhibitors. Molecules 2014;19:9591–605.
  • Noh JM, Kwak SY, Seo HS, et al. Kojic acid-amino acid conjugates as tyrosinase inhibitors. Bioorg Med Chem Lett 2009;19:5586–9.
  • Lee YS, Park JH, Kim MH, et al. Synthesis of tyrosinase inhibitory kojic acid derivative. Arch Pharm (Weinheim) 2006;339:111–4.
  • Cho JC, Rho HS, Joo YH, et al. Depigmenting activities of kojic acid derivatives without tyrosinase inhibitory activities. Bioorg Med Chem Lett 2012;22:4159–62.
  • Nihei KI, Kubo I. Substituent effect of benzaldehydes on tyrosinase inhibition. Plant Physiol Biochem 2017;112:278–82.
  • Rafiee M, Javaheri M. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using ab initio calculated NQCC parameters. Mol Biol Res Commun 2015;4:151–9.
  • Ley JP, Bertram HJ. Hydroxy- or methoxy-substituted benzaldoximes and benzaldehyde-o-alkyloximes as tyrosinase inhibitors. Bioorg Med Chem 2001;9:1879–85.
  • Lopes ND, Chaves OA, de Oliveira MCC, et al. Novel piperonal 1,3,4-thiadiazolium-2-phenylamines mesoionic derivatives: synthesis, tyrosinase inhibition evaluation and HSA binding study. Int J Biol Macromol 2018;112:1062–72.
  • Yi W, Cao R, Peng W, et al. Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors. Eur J Med Chem 2010;45:639–46.
  • Ha TJ, Tamura S, Kubo I. Effects of mushroom tyrosinase on anisaldehyde. J Agric Food Chem 2005;53:7024–8.
  • Yu L. Inhibitory effects of (s)- and (r)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acids on tyrosinase activity. J Agric Food Chem 2003;51:2344–7.
  • Alijanianzadeh M, Saboury AA, Mansuri-Torshizi H, et al. The inhibitory effect of some new synthesized xanthates on mushroom tyrosinase activities. J Enzyme Inhib Med Chem 2007;22:239–46.
  • Saboury AA, Alijanianzadeh M, Mansoori-Torshizi H. The role of alkyl chain length in the inhibitory effect n-alkyl xanthates on mushroom tyrosinase activities. Acta Biochim Pol 2007;54:183–91.
  • Xing R, Wang F, Zheng A, et al. Biological evaluation of two Keggin-type polyoxometalates containing glycine as mushroom tyrosinase inhibitors. Biotechnol Appl Biochem 2016;63:746–50.
  • Park KH, Lee JR, Hahn HS, et al. Inhibitory effect of ammonium tetrathiotungstate on tyrosinase and its kinetic mechanism. Chem Pharm Bull (Tokyo) 2006;54:1266–70.
  • Chen XX, Zhang J, Chai WM, et al. Reversible and competitive inhibitory kinetics of amoxicillin on mushroom tyrosinase. Int J Biol Macromol 2013;62:726–33.
  • Hemachandran H, Jain F, Mohan S, et al. Glandular hair constituents of Mallotus philippinensis muell. Fruit act as tyrosinase inhibitors: insights from enzyme kinetics and simulation study. Int J Biol Macromol 2018;107:1675–82.
  • Lin YF, Hu YH, Jia YL, et al. Inhibitory effects of naphthols on the activity of mushroom tyrosinase. Int J Biol Macromol 2012;51:32–6.
  • Wu LC, Chen YC, Ho JA, Yang CS. Inhibitory effect of red koji extracts on mushroom tyrosinase. J Agric Food Chem 2003;51:4240–6.
  • Fourche J, Jensen H, Neuzil E, Bellegarde B. [Alpha-hydrazinophloretic acid, competitive inhibitor of fungal tyrosinase]. CR Hebd Seances Acad Sci Ser D 1977;284:2163–6.
  • Gheibi N, Saboury AA, Haghbeen K, Moosavi-Movahedi AA. Activity and structural changes of mushroom tyrosinase induced by n-alkyl sulfates. Colloids Surf B Biointerfaces 2005;45:104–7.
  • Jena K, Pandey JP, Kumari R, et al. Tasar silk fiber waste sericin: new source for anti-elastase, anti-tyrosinase and anti-oxidant compounds. Int J Biol Macromol 2018;114:1102–8.
  • Hwang SH, Wang Z, Suh HW, Lim SS. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine maillard reaction products on aldose reductase and tyrosinase. Food Funct 2018;9:1790–9.
  • Huang XX, Yan ZY, Liu S, et al. Investigation of chemical constituents of safflower and their tyrosinase inhibitory activity. J Asian Nat Prod Res 2018; 1–9. doi: 10.1080/10286020.2018.1430775.
  • Alijanianzadeh M, Saboury AA, Ganjali MR, et al. The inhibitory effect of ethylenediamine on mushroom tyrosinase. Int J Biol Macromol 2012;50:573–7.
  • Wang Y, Hao MM, Sun Y, et al. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 2018;23:106. doi: 10.3390/molecules23010106.
  • Liang C, Lim JH, Kim SH, Kim DS. Dioscin: a synergistic tyrosinase inhibitor from the roots of Smilax china. Food Chem 2012;134:1146–8.
  • Jin YH, Lee SJ, Chung MH, et al. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch Pharm Res 1999;22:232–6.
  • Schved F, Kahn V. Synergism exerted by 4-methyl catechol, catechol, and their respective quinones on the rate of DL-dopa oxidation by mushroom tyrosinase. Pigment Cell Res 1992;5:41–8.
  • Chen X, Haniu A, Kashiwagi T, et al. The evaluation of the synergistic effect of 3-(2,4-dihydroxyphenyl)propionic acid and L-ascorbic acid on tyrosinase inhibition. Z Naturforsch C 2017;72:119–21.
  • Hseu YC, Cheng KC, Lin YC, et al. Synergistic effects of linderanolide B combined with arbutin, PTU or kojic acid on tyrosinase inhibition. Curr Pharm Biotechnol 2015;16:1120–6.