2,226
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Dual-target ligand discovery for Alzheimer’s disease: triphenylphosphoranylidene derivatives as inhibitors of acetylcholinesterase and β-amyloid aggregation

, , , &
Article: 2166040 | Received 25 Oct 2022, Accepted 03 Jan 2023, Published online: 24 Jan 2023

References

  • Grabher BJ. Effects of Alzheimer disease on patients and their family. J Nucl Med Technol. 2018;46(4):335–340.
  • Armstrong RA. What causes Alzheimer’s disease? Folia Neuropathol. 2013;51(3):169–188.
  • Nordberg A. Amyloid plaque imaging in vivo: current achievement and future prospects. Eur J Nucl Med Mol Imaging. 2008;35(S1):46–50.
  • Colovic MB, Krstic DZ, Lazarevic-Pasti TD, et al. Acetylcholinesterase inhibitors: pharmacology and toxicology. CN. 2013;11(3):315–335.
  • Pundir CS, Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal Biochem. 2012;429(1):19–31.
  • Pope C, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol. 2005;19(3):433–446.
  • Fais A, Kumar A, Medda R, et al. Synthesis, molecular docking and cholinesterase inhibitory activity of hydroxylated 2-phenylbenzofuran derivatives. Bioorg Chem. 2019;84:302–308.
  • Jang C, Yadav DK, Subedi L, et al. Identification of novel acetylcholinesterase inhibitors designed by pharmacophore-based virtual screening, molecular docking and bioassay. Sci Rep. 2018;8(1):14921.
  • Desai AK, Grossberg GT. Rivastigmine for Alzheimer’s disease. Expert Rev Neurother. 2005;5(5):563–580. Published online
  • Prvulovic D, Hampel H, Pantel J. Galantamine for Alzheimer’s disease. Expert Opin Drug Metab Toxicol. 2010;6(3):345–354.
  • Benjamin B, Burns A. Donepezil for Alzheimer’s disease. Expert Rev Neurother. 2007;7(10):1243–1249.
  • Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience. 2013;234:53–68.
  • Bentué-Ferrer D, Tribut O, Polard E, Allain H. Clinically significant drug interactions with cholinesterase inhibitors. CNS Drugs. 2003;17(13):947–963.
  • Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9(1):101–124.
  • Savini L, Gaeta A, Fattorusso C, et al. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors. J Med Chem. 2003;46(1):1–4. Published online
  • Penke B, Bogár F, Fülöp L. β-amyloid and the pathomechanisms of Alzheimer’s disease: a comprehensive view. Molecules 2017;22(10):1692. Published online
  • Campora M, Francesconi V, Schenone S, et al.. Journey on naphthoquinone and anthraquinone derivatives: new insights in Alzheimer’s disease. Pharmaceuticals 2021;14(1):33.
  • Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother. 2009;9(5):661–679.
  • Sakono M, Zako T. Amyloid oligomers: formation and toxicity of Aβ oligomers. Febs J. 2010;277(6):1348–1358. Published online
  • Mroczko B, Groblewska M, Litman-Zawadzka A. The role of protein misfolding and tau oligomers (TauOs) in Alzheimer’s disease (AD). IJMS. 2019;20(19):4661. Published online
  • Glabe C. Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. JMN. 2001;17(2):137–145. Published online
  • Inestrosa NC, Sagal JP, Colombres M. Acetylcholinesterase interaction with Alzheimer amyloid beta. Subcell Biochem. 2005;38:299–317.
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.
  • Wang XX, Tan MS, Yu JT, Tan L. Matrix metalloproteinases and their multiple roles in Alzheimer’s disease. Biomed Res Int. 2014;2014:908636.
  • Bajda M, Guzior N, Ignasik M, Malawska B. Multi-target-directed ligands in Alzheimer’s disease treatment. Curr Med Chem. 2011;18(32):4949–4975
  • Abd E, Maksoud MA, El-Makawy AI, Sh A-A. Antitumor activities of new iso(thio)cyanates and their nitrogen and sulphur heterocyclic phosphorus derivatives. J Appl Pharm Sci. 2019;9(2):1–11.
  • Hashem AI, El-Hussieny M, Abd E, et al. Chemistry of phosphorus ylides: part 45 synthesis of phosphoranylidene, thietane, azetidine and thiazinane derivatives as potent chemo preventative agents. Phosphorus Sulfur Silicon Relat Elem. 2018;193(1):1–9. Published online
  • El-Hussieny M, Abd E, Maksoud MA, et al. ChemInform abstract: chemistry of phosphorus ylides. Part 44. Reaction of 1-trimethylsilyl-1H-imidazole with phosphorus reagents. A convenient synthesis of phosphorus silyl imidazoles. ChemInform. 2016;47(39):265–268.
  • El-Hussieny M, Abd E, Maksoud MA, et al. Chemistry of phosphorus ylides part 42: reaction of dipyridyl ethanedione with phosphorus reagents. Cytotoxic activity of phosphanylidene-cyclobutane, oxaphosphetane, and pyridazinone. Phosphorus Sulfur Silicon Relat Elem. 2015;190(11):1845–1856.
  • Maigali SS, El-Hussieny M, Soliman FM. Chemistry of phosphorus ylides. Part 37. The reaction of phosphonium ylides with indoles and naphthofurans. Synthesis of phosphanylidenes, pyrans, cyclobutenes, and pyridazine as antitumor agents. J Heterocyclic Chem. 2015;52(1):15–23.
  • Maigali SS, Abd E, Maksoud MA, et al. Chemistry of phosphorus ylides: part 41 synthesis of antimicrobial agents from the reaction of aminoantipyrine, coumarin- and quinoline-carbaldehyde with phosphacumulene and phosphaallene ylides. J Chem Res. 2014;38(12):754–761.
  • Pan LF, Wang XB, Xie SS, et al. Multitarget-directed resveratrol derivatives: anti-cholinesterases, anti-β-amyloid aggregation and monoamine oxidase inhibition properties against Alzheimer’s disease. Med Chem Commun. 2014;5(5):609–616. Published online
  • Morris JC, Cyrus PA, Orazem J, et al. Metrifonate benefits cognitive, behavioral, and global function in patients with Alzheimer’s disease. Neurology. 1998;50(5):1222–1230. Published online
  • López-Arrieta J, Schneider L, Cochrane Dementia and Cognitive Improvement Group. Metrifonate for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;(2):CD003155.
  • Fujii S, Hashimoto Y. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond. Future Med Chem. 2017;9(5):485–505.
  • Brook MA. Silicon in organic, organometallic, and polymer chemistry. Vol. 38. New York: Wiley; 2001.
  • Bikzhanova GA, Toulokhonova IS, Gately S, West R. Novel silicon-containing drugs derived from the indomethacin scaffold: synthesis, characterization and evaluation of biological activity. Silicon Chem. 2007;3(3–4):209–217. Published online
  • Daud A, Valkov N, Centeno B, et al. Phase II trial of karenitecin in patients with malignant melanoma: Clinical and translational study. Clin Cancer Res. 2005;11(8):3009–3016. Published online
  • Ramesh R, Reddy DS. Quest for novel chemical entities through incorporation of silicon in drug scaffolds. J Med Chem. 2018;61(9):3779–3798.
  • El-Sayed NF, El-Hussieny M, Ewies EF, et al. New phosphazine and phosphazide derivatives as multifunctional ligands targeting acetylcholinesterase and β-Amyloid aggregation for treatment of Alzheimer’s disease. Bioorg Chem. 2020;95:103499.
  • Dilman AD, Ioffe SL. Carbon-carbon bond forming reactions mediated by Silicon Lewis acids. Chem Rev. 2003;103(3):733–772.
  • Tripp CP, Hair ML. Reaction of methylsilanols with hydrated silica surfaces: the hydrolysis of trichloro-, dichloro-, and monochloromethylsilanes and the effects of curing. Langmuir. 1995;11(1):149–155.
  • Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
  • Lim NK-H, Villemagne VL, Soon CPW, et al. Investigation of matrix metalloproteinases, MMP-2 and MMP-9, in plasma reveals a decrease of MMP-2 in Alzheimer’s disease. J Alzheimers Dis. 2011;26(4):779–786. Published online
  • Wang H, Huang L, Wu L, et al. The MMP-2/TIMP-2 system in Alzheimer disease. CNS Neurol Disord Drug Targets. 2020;19(6):402–416.
  • Ciccone L, Vandooren J, Nencetti S, Orlandini E. Natural marine and terrestrial compounds as modulators of matrix metalloproteinases-2 (MMP-2) and MMP-9 in alzheimer’s disease. Pharmaceuticals. 2021;14(2):86. Published online
  • Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 2010;34(8):1307–1350.
  • Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev. 2002;26(1):91–104.
  • Bohdanecký Z, Jarvik ME. Impairment of one-trial passive avoidance learning in mice by scopolamine, scopolamine methylbromide, and physostigmine. Neuropharmacol 1967;6(3):217–222.
  • Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. Neurotherapeutics 2005;2(4):554–571. Published online
  • Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–4072
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717.
  • Cheung J, Rudolph MJ, Burshteyn F, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55(22):10282–10286.
  • Viayna E, Coquelle N, Cieslikiewicz-Bouet M, et al. Discovery of a potent dual inhibitor of acetylcholinesterase and butyrylcholinesterase with antioxidant activity that alleviates Alzheimer-like pathology in old APP/PS1 mice. J Med Chem. 2021;64(1):812–839.
  • Kuzu B, Tan M, Taslimi P, et al. Mono- or di-substituted imidazole derivatives for inhibition of acetylcholine and butyrylcholine esterases. Bioorg Chem. 2019;86:187–196.
  • Kakkar T, Boxenbaum H, Mayersohn M. Estimation of K(i) in a competitive enzyme-inhibition model: comparisons among three methods of data analysis. Drug Metab Dispos. 1999;27(6):756–762.
  • Edmondson JM, Armstrong LS, Martinez AO. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J Tissue Cult Methods. 1988;11(1):15–17.
  • Nunez J. Morris water maze experiment. JoVE. 2008;(19):e897. Published online
  • Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem. 2008;8(18):1555–1572.