2,785
Views
12
CrossRef citations to date
0
Altmetric
Research Paper

Novel benzothiazole derivatives as multitargeted-directed ligands for the treatment of Alzheimer’s disease

, , , , , , , ORCID Icon, & show all
Article: 2175821 | Received 10 Dec 2022, Accepted 29 Jan 2023, Published online: 15 Feb 2023

References

  • Kamer AR, Craig RG, Niederman R, Fortea J, de Leon MJ. Periodontal disease as a possible cause for Alzheimer’s disease. Periodontol 2000. 2020;83(1):242–271.
  • Lopes FB, Aranha CMSQ, Fernandes JPS. Histamine H3 receptor and cholinesterases as synergistic targets for cognitive decline: Strategies to the rational design of multitarget ligands. Chem Biol Drug Des. 2021;98(2):212–225.
  • Abeysinghe AADT, Deshapriya RDUS, Udawatte C. Alzheimer’ s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci. 2020;256:117996.
  • Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep. 2019;20(2):1479–1487.
  • Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-target-directed ligands as an effective strategy for the treatment of Alzheimer’s disease. Curr Med Chem. 2022;29(10):1757–1803.
  • Pasieka A, Panek D, Malawska B. Multifunctional ligand approach: search for effective therapy against Alzheimer’s disease. Exon Publications. 2020:181–203.
  • Nikolic K, Mavridis L, Bautista-Aguilera OM, Marco-Contelles J, Stark H, do Carmo Carreiras M, Rossi I, Massarelli P, Agbaba D, Ramsay RR, et al. Predicting targets of compounds against neurological diseases using cheminformatic methodology. J Comput Aided Mol Des. 2015;29(2):183–198.
  • de Freitas Silva M, Dias KST, Gontijo VS, Ortiz CJC, Viegas C. Jr Multi-target directed drugs as a modern approach for drug design towards Alzheimer’s disease: an update. Curr Med Chem. 2018;25(29):3491–3525.
  • Maramai S, Benchekroun M, Gabr MT, Yahiaoui S. Multitarget therapeutic strategies for Alzheimer’s disease: review on emerging target combinations. Biomed Res Int. 2020;2020.
  • Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorganic Med Chem. 2019;27(6):895–930.
  • Khanfar MA, Affini A, Lutsenko K, Nikolic K, Butini S, Stark H. Multiple targeting approaches on histamine H3 receptor antagonists. Front Neurosci. 2016;10:201.
  • Ghamari N, Zarei O, Arias-Montaño J-A, Reiner D, Dastmalchi S, Stark H, Hamzeh-Mivehroud M. Histamine H3 receptor antagonists/inverse agonists: where do they go? Pharmacol Ther. 2019;200:69–84.
  • Harwell V, Fasinu PS. Pitolisant and other histamine-3 receptor antagonists—an update on therapeutic potentials and clinical prospects. Medicines. 2020;7(9):55.
  • Bautista-Aguilera ÓM, Hagenow S, Palomino-Antolin A, Farré-Alins V, Ismaili L, Joffrin P-L, Jimeno ML, Soukup O, Janočková J, Kalinowsky L, et al. Multitarget-directed ligands combining cholinesterase and monoamine oxidase inhibition with histamine H3R antagonism for neurodegenerative diseases. Angew Chem Int Ed Engl. 2017;56(41):12765–12769.
  • Godyń J, Zaręba P, Łażewska D, Stary D, Reiner-Link D, Frank A, Latacz G, Mogilski S, Kaleta M, Doroz-Płonka A, et al. Cyanobiphenyls: novel H3 receptor ligands with cholinesterase and MAO B inhibitory activity as multitarget compounds for potential treatment of Alzheimer’s disease. Bioorg Chem. 2021;114:105129.
  • Zhou Y, Hu Y, Lu X, Yang H, Li Q, Du C, Chen Y, Hong KH, Sun H. Discovery of a selective 6-hydroxy-1, 4-diazepan-2-one containing butyrylcholinesterase inhibitor by virtual screening and MM-GBSA rescoring. Dose Response. 2020;18(2):1559325820938526.
  • Darvesh S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr Alzheimer Res. 2016;13(10):1173–1177.
  • El-Sayed NA-E, Farag AE-S, Ezzat MAF, Akincioglu H, Gülçin İ, Abou-Seri SM. Design, synthesis, in vitro and in vivo evaluation of novel pyrrolizine-based compounds with potential activity as cholinesterase inhibitors and anti-Alzheimer’s agents. Bioorg Chem. 2019;93:103312.
  • Jończyk J, Lodarski K, Staszewski M, Godyń J, Zaręba P, Soukup O, Janockova J, Korabecny J, Sałat K, Malikowska-Racia N, et al. Search for multifunctional agents against Alzheimer’s disease among non-imidazole histamine H3 receptor ligands. In vitro and in vivo pharmacological evaluation and computational studies of piperazine derivatives. Bioorg Chem. 2019;90:103084.
  • Gill RK, Rawal RK, Bariwal J. Recent advances in the chemistry and biology of benzothiazoles. Arch Pharm. 2015;348(3):155–178.
  • Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP. Medicinal significance of benzothiazole scaffold: an insight view. J Enzyme Inhib Med Chem. 2013;28(2):240–266.
  • Keri RS, Patil MR, Patil SA, Budagumpi SA. comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur J Med Chem. 2015;89:207–251.
  • Pathak N, Rathi E, Kumar N, Kini SG, Rao CM. A review on anticancer potentials of benzothiazole derivatives. Mini Rev Med Chem. 2020;20(1):12–23.
  • Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur J Med Chem. 2015;97:911–927.
  • Aboushady Y, Gabr M, ElHady AK, Salah M, Abadi AH, Wilms G, Becker W, Abdel-Halim M, Engel M. Discovery of hydroxybenzothiazole urea compounds as multitargeted agents suppressing major cytotoxic mechanisms in neurodegenerative diseases. ACS Chem Neurosci. 2021;12(22):4302–4318.
  • AlNajjar YT, Gabr M, ElHady AK, Salah M, Wilms G, Abadi AH, Becker W, Abdel-Halim M, Engel M. Discovery of novel 6-hydroxybenzothiazole urea derivatives as dual Dyrk1A/α-synuclein aggregation inhibitors with neuroprotective effects. Eur J Med Chem. 2022;227:113911.
  • Salah M, Abdel-Halim M, Engel M. Design and synthesis of conformationally constraint Dyrk1A inhibitors by creating an intramolecular H-bond involving a benzothiazole core. Medchemcomm. 2018;9(6):1045–1053.
  • Rosales Hernández MC, Fragoso Morales LG, Correa Basurto J, Olvera Valdez M, García Báez EV, Román Vázquez DG, Anaya García AP, Cruz A. In silico and in vitro studies of benzothiazole-isothioureas derivatives as a multitarget compound for Alzheimer’s disease. IJMS. 2022;23(21):12945.
  • Matthews DC, Mao X, Dowd K, Tsakanikas D, Jiang CS, Meuser C, Andrews RD, Lukic AS, Lee J, Hampilos N, et al. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer’s disease. Brain. 2021;144(12):3742–3755.
  • Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG, et al. Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules. 2021;26(12):3724.
  • Łażewska D, Bajda M, Kaleta M, Zaręba P, Doroz-Płonka A, Siwek A, Alachkar A, Mogilski S, Saad A, Kuder K, et al. Rational design of new multitarget histamine H3 receptor ligands as potential candidates for treatment of Alzheimer’s disease. Eur J Med Chem. 2020;207:112743.
  • Lipp R, Stark H, Schunack W. Pharmacochemistry of H3-receptors. 1992:57–72. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pharmacochemistry+of+H3-receptors+stark&btnG=
  • Sylvain C, Maikel W, Patrice T, Rob L, Iwan JPE. Histamine H3 receptor antagonist reach out for the clinics. Drug Disc Today. 2005;10:1613–1627.
  • Wingen K, Stark H. Scaffold variations in amine warhead of histamine H3 receptor antagonists. Drug Discov Today Technol. 2013;10(4):e483–e489.
  • Meier G, Apelt J, Reichert U, Grassmann S, Ligneau X, Elz S, Leurquin F, Ganellin CR, Schwartz JC, Schunack W, et al. Influence of imidazole replacement in different structural classes of histamine H3-receptor antagonists. Eur J Pharm Sci. 2001;13(3):249–259.
  • Walczynski K, Guryn R, Zuiderveld OP, Timmerman H. Non‐imidazole histamine H3 ligands, part 2: new 2‐substituted benzothiazoles as histamine H3 antagonists. Arch Pharm Pharm Med Chem. 1999;332(11):389–398.
  • Walczyński K, Guryn R, Zuiderveld OP, Timmerman H. Non-imidazole histamine H3 ligands. Part I. Synthesis of 2-(1-piperazinyl)-and 2-(hexahydro-1H-1, 4-diazepin-1-yl) benzothiazole derivatives as H3-antagonists with H1 blocking activities. Farm. 1999;54(10):684–694.
  • Bordi F, Mor M, Morini G, et al. QSAR study on H3-receptor affinity of benzothiazole derivatives of thioperamide. Farm. 1994;49:153–166.
  • Löwik DWPM, Tisi LC, Murray JAH, Lowe CR. Synthesis of 6-hydroxybenzothiazole-2-carboxylic acid. Synthesis. 2001;2001(12):1780–1783.
  • Ghosh AK, Shahabi D. Synthesis of amide derivatives for electron deficient amines and functionalized carboxylic acids using EDC and DMAP and a catalytic amount of HOBt as the coupling reagents. Tetrahedron Lett. 2021;63(152719):152719.
  • Wang K, Yu L, Shi J, Liu W, Sang Z. Multifunctional indanone–chalcone hybrid compounds with anti-β-amyloid (Aβ) aggregation, monoamine oxidase B (MAO-B) inhibition and neuroprotective properties against Alzheimer’s disease. Med Chem Res. 2019;28(11):1912–1922.
  • Cai Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease. Mol Med Rep. 2014;9(5):1533–1541.
  • Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, et al. Structure of the human histamine H 1 receptor complex with doxepin. Nature. 2011;475(7354):65–70.
  • Jończyk J, Malawska B, Bajda M. Hybrid approach to structure modeling of the histamine H3 receptor: Multi-level assessment as a tool for model verification. PLOS One. 2017;12(10):e0186108.
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2(4):541–553.
  • Darwish SS, Abdel-Halim M, Salah M, Abadi AH, Becker W, Engel M. Development of novel 2, 4-bispyridyl thiophene–based compounds as highly potent and selective Dyrk1A inhibitors. Part I: benzamide and benzylamide derivatives. Eur J Med Chem. 2018;157:1031–1050.
  • Yung-Chi C, Prusoff WH. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(23):3099–3108.
  • Pisani L, Catto M, De Palma A, Farina R, Cellamare S, Altomare CD. Discovery of potent dual binding site acetylcholinesterase inhibitors via homo‐and heterodimerization of coumarin‐based moieties. ChemMedChem. 2017;12(16):1349–1358.
  • Pisani L, Iacobazzi RM, Catto M, Rullo M, Farina R, Denora N, Cellamare S, Altomare CD. Investigating alkyl nitrates as nitric oxide releasing precursors of multitarget acetylcholinesterase-monoamine oxidase B inhibitors. Eur J Med Chem. 2019;161:292–309.