1,341
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis, biological evaluation and theoretical studies of (E)-1-(4-sulfamoyl-phenylethyl)-3-arylidene-5-aryl-1H-pyrrol-2(3H)-ones as human carbonic anhydrase inhibitors

, , , , , , , , , & ORCID Icon show all
Article: 2189126 | Received 24 Jan 2023, Accepted 05 Mar 2023, Published online: 23 Mar 2023

References

  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181.
  • Supuran CT. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors? J Enzyme Inhib Med Chem. 2018;33(1):485–495.
  • Carta F, Supuran CT, Scozzafava A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med Chem. 2014;6(10):1149–1165.
  • Supuran CT. Carbonic anhydrases as drug targets–an overview. Curr Top Med Chem. 2007;7(9):825–833.
  • Nocentini A, Donald WA, Supuran CT. Human carbonic anhydrases: tissue distribution, physiological role, and druggability. In: Supran CT, Nocentini A, editors. Carbonic anhydrases. Cambridge: Academic press; 2019. p. 151–185.
  • Aspatwar A, Parvathaneni NK, Barker H, Anduran E, Supuran CT, Dubois L, Lambin P, Parkkila S, Winum J-Y. Design, synthesis, in vitro inhibition and toxicological evaluation of human carbonic anhydrases I, II and IX inhibitors in 5-nitroimidazole series. J Enzyme Inhib Med Chem. 2020; 35(1):109–117.
  • Supuran CT. Experimental Carbonic Anhydrase Inhibitors for the Treatment of Hypoxic Tumors. J Exp Pharmacol. 2020;12:603–617.
  • Balaydin HT, Durdaği S, Ekinci D, Sentürk M, Göksu S, Menzek A. Inhibition of human carbonic anhydrase isozymes I, II and VI with a series of bisphenol, methoxy and bromophenol compounds. J Enzyme Inhib Med Chem. 2012;27(4):467–475.
  • Oudah KH, Najm MAA, Roomi AB, Al-Saidy HA, Awadallah FM. The recent progress of sulfonamide in medicinal chemistry. Syst Rev Pharm. 2020; 11(12):1473–1477.
  • Supuran CT. Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO(2) capture. J Enzyme Inhib Med Chem. 2013;28(2):229–230.
  • Alterio V, Vitale RM, Monti SM, Pedone C, Scozzafava A, Cecchi A, De Simone G, Supuran CT. Carbonic anhydrase inhibitors: X-ray and molecular modeling study for the interaction of a fluorescent antitumor sulfonamide with isozyme II and IX. J Am Chem Soc. 2006;128(25):8329–8335.
  • Yaseen R, Ekinci D, Senturk M, Hameed AD, Ovais S, Rathore P, Samim M, Javed K, Supuran CT. Pyridazinone substituted benzenesulfonamides as potent carbonic anhydrase inhibitors. Bioorg Med Chem Lett. 2016;26(4):1337–1341.
  • Ahmad A, Husain A, Khan SA, Mujeeb M, Bhandari A. Design, synthesis, molecular properties and antimicrobial activities of some novel 2 (3H) pyrrolone derivatives. J Saudi Chem Soc. 2015;196:340–346.
  • Husain A, Khan MSY, Hasan SM, Alam MM. 2-Arylidene-4-(4-phenoxy-phenyl)but-3-en-4-olides: synthesis, reactions and biological activity. Eur J Med Chem. 2005;40(12):1394–1404.
  • Zykova SS, Boĭchuk SV, Galembikova AR, Ramazanov BR, Mustafin IG, Igidov NM, et al. 3-Hydroxy-1,5-diaryl-4-pivaloyl-2,5-dihydro-2-pyrrolones induce the mitotic exit failure and cell death in tumor cells in vitro]. Tsitologiia. 2014;56:439–442.
  • Olla S, Manetti F, Crespan E, Maga G, Angelucci A, Schenone S, Bologna M, Botta M. Indolyl-pyrrolone as a new scaffold for Pim1 inhibitors. Bioorg Med Chem Lett. 2009;19(5):1512–1516.
  • Alam MM, Husain A, Hasan SM, Anwer T., Suruchi   Synthesis and pharmacological evaluation of 2(3H)-furanones and 2(3H)-pyrrolones, combining analgesic and anti-inflammatory properties with reduced gastrointestinal toxicity and lipid peroxidation. Eur J Med Chem. 2009;44(6):2636–2642.
  • Oudah KH, Najm MAA, Samir N, Serya RAT, Abouzid KAM. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg Chem. 2019;92:103239.
  • Yazdani E, Kazemi Miraki M, Salamatmanesh A, Azarnia J, Azizi K, Ghandi L, Heydari A. A magnetically recoverable copper–salen complex as a nano-catalytic system for amine protection via acetylation using thioacetic acid. Res Chem Intermed. 2019; 45(4):1775–1793.
  • Das VK, Devi RR, Thakur AJ. Recyclable, highly efficient and low cost nano-MgO for amide synthesis under SFRC: A convenient and greener “NOSE” approach. Appl Catal A Gen. 2013;456:118–125.
  • Song B, Xiao T, Qi X, Li L-N, Qin K, Nian S, Hu G-X, Yu Y, Liang G, Ye F. Design and synthesis of 8-substituted benzamido-phenylxanthine derivatives as MAO-B inhibitors. Bioorg Med Chem Lett. 2012;22(4):1739–1742.
  • Gawel JM, Shouksmith AE, Raouf YS, Nawar N, Toutah K, Bukhari S, Manaswiyoungkul P, Olaoye OO, Israelian J, Radu TB, et al. PTG-0861: a novel HDAC6-selective inhibitor as a therapeutic strategy in acute myeloid leukaemia. Eur J Med Chem. 2020;201:112411.
  • Basanagouda M, Kulkarni MV, Kalkhambkar RG, Kulkarni GM. ChemInform abstract: new, efficient, selective, and one-pot method for acylation of amines. ChemInform. 2008;38:2929–2940.
  • Das VK, Devi RR, Raul PK, Thakur AJ. Nano rod-shaped and reusable basic Al2O3 catalyst for N-formylation of amines under solvent-free conditions: A novel, practical and con_venient NOSE’ approach. Green Chem. 2012;14:847–854.
  • Sharma K, Neshat N, Sharma S, Giri N, Srivastava A, Almalki F, Saifullah K, Alam MM, Shaquiquzzaman M, Akhter M, et al. Identification of novel selective Mtb-DHFR inhibitors as antitubercular agents through structure-based computational techniques. Arch Pharm (Weinheim)). 2020;353(2):e1900287.
  • Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys. 2020;152(22):224108.
  • Axel DB. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Physics. 1993;98:5648–5652.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37(2):785–789.
  • Zarić MM, Bugarski BK. Best methods for calculating interaction energies in 2-butene and butane systems. Comput Theor Chem. 2017;1117:150–161.
  • Bashir R, Ovais S, Yaseen S, Hamid H, Alam MS, Samim M, Singh S, Javed K. Synthesis of some new 1,3,5- trisubstituted pyrazolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents. Bioorg Med Chem Lett. 2011;21(14):4301–4305.
  • Rathish IG, Javed K, Ahmad S, Bano S, Alam MS, Akhter M, Pillai KK, Ovais S, Samim M. Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3(2H)-ones. Eur J Med Chem. 2012;49:304–309.
  • Ovais S, Javed K, Yaseen S, Bashir R, Rathore P, Yaseen R, Hameed AD, Samim M. Synthesis, antiproliferative and anti-inflammatory activities of some novel 6-aryl-2-(p-(methanesulfonyl)phenyl)-4,5-dihydropyridazi-3(2H)-ones. Eur J Med Chem. 2013;67:352–358.
  • Rathore P, Yaseen S, Ovais S, Bashir R, Yaseen R, Hameed AD, et al. Synthesis and evaluation of some new pyrazoline substituted benzenesulfonylureas as potential antiproliferative agents. Bioorg Med Chem Lett. 2014;24:1685–1691.
  • Khan MSY, Husain A. Synthesis and reactions of some new 2-arylidene-4-(biphenyl-4-yl)-but-3-en-4-olides with a study of their biological activity. Pharmazie. 2002;57:448–452.
  • Khan MSY, Husain A, Sharma S. Studies on butenolides: 2-Arylidene-4-(substituted aryl)but-3-ene-4-olides synthesis, reactions and biological activity. Indian J Chem. 2002 2002;41B:2160–2171.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971;246:2561–2573.
  • Singh P, Yadav Swain PP, Thacker B, Angeli PS, Supuran A, Arifuddin CT. M. Discovery of a novel series of indolylchalcone-benzenesulfonamide hybrids acting as selective carbonic anhydrase II inhibitors. Bioorg Chem. 2021;108:104647.
  • Darin D, Kantin G, Kalinin S, Sharonova T, Bunev A, Ostapenko GI, Nocentini A, Sharoyko V, Supuran CT, Krasavin M, et al. investigation of 3-sulfamoyl coumarins against cancer_related IX and XII isoforms of human carbonic anhydrase as well as cancer cells leads to the discovery of 2-oxo-2H-ben_zo[h]chromene-3-sulfonamide – a new caspase-activating pro apoptotic agent. Eur J Med Chem. 2021;222:113589.
  • Yamali CI, Gul, H, Ozli G, Angeli A, Ballar Kirmizibayrak PE, Tepedelen B, Sakagami H, Bua S. Supuran CT.Exploring of tumor-associated carbonic anhydrase isoenzyme IX and XII inhibitory effects and cytotoxicities of the novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides. Bioorg Chem. 2021;115:105194.
  • Lolak N, Akocak S, Bua S, Sanku RKK, Supuran CT. Discovery of new ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as carbonic anhydrase I, II, IX and XII inhibitors. Bioorg Med Chem. 2019;27:1588–1594.
  • Kim C-Y, Chang JS, Doyon JB, Baird TT, Fierke CA, Jain A, Christianson DW. Contribution of fluorine to protein-ligand affinity in the binding of fluoroaromatic inhibitors to carbonic anhydrase II. J Am Chem Soc. 2000;122:12125–12134.
  • Maren TH, Conroy CW. A new class of carbonic anhydrase inhibitors. J Biol Chem. 1993;268(35):26233–26239.
  • Abbate F, Casini A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with the perfluorobenzoyl analogue of methazolamide Implications for the drug design of fluorinated inhibitors. J Enz Inhib Med Chem. 2003;18:303–308.
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612.
  • Nabi SA, Ramzan F, Lone MS, Beg MA, Hamid A, Nainwal LM, Samim M, Shafi S, Bano S, Javed K. Synthesis, crystallographic study, molecular docking, ADMET, DFT and biological evaluation of new series of aurone derivatives as anti-leishmanial agents. J Mol Struct. 2022;1256:132528.
  • Choudhary S, Yadav J, Mamta Pawar AP, Vanaparthi S, Mir NA, et al. Sequential multicomponent site-selective synthesis of 4-iodo and 5-iodopyrrole-3-carboxaldehydes from a common set of starting materials by tuning the conditions. Org Biomol Chem. 2020;18:1155–1164.
  • Hamid A, Roy RK. Solvent effect on stabilization energy: An approach based on density functional reactivity theory. Int J Quantum Chem. 2019;119:e25909.
  • Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983;105:7512–7516.
  • Hamid A, Roy RK. Validation of Hammett’s Linear Free Energy Relationship Through an Unconventional Approach. J Phys Chem A. 2020;124:5775–5783.
  • Pearson RG. The principle of maximum hardness. Acc Chem Res. 1993;26:250–255.