1,236
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis, DFT calculations, and anti-proliferative evaluation of pyrimidine and selenadiazolopyrimidine derivatives as dual Topoisomerase II and HSP90 inhibitors

ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon
Article: 2198163 | Received 16 Feb 2023, Accepted 27 Mar 2023, Published online: 10 Apr 2023

References

  • Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–38043.
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery: miniperspective. J Med Chem. 2014;57(19):7874–7887.
  • Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447.
  • Longley DB, Latif T, Boyer J, Allen WL, Maxwell PJ, Johnston PG. The interaction of thymidylate synthase expression with p53-regulated signaling pathways in tumor cells. Semin Oncol. 2003;30(3 Suppl 6):3–9.
  • Newby Z, Lee TT, Morse RJ, Liu Y, Liu L, Venkatraman P, Santi DV, Finer-Moore JS, Stroud RM. The role of protein dynamics in thymidylate synthase catalysis: variants of conserved 2’-deoxyuridine 5’-monophosphate (dUMP)-binding Tyr-261. Biochemistry. 2006;45(24):7415–7428.
  • Zhang N, Yin Y, Xu S-J, Chen W-S. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008;13(8):1551–1569.
  • Evdokimov NM, Van Slambrouck S, Heffeter P, Tu L, Le Calvé B, Lamoral-Theys D, Hooten CJ, Uglinskii PY, Rogelj S, Kiss R, et al. Structural simplification of bioactive natural products with multicomponent synthesis. 3. Fused uracil-containing heterocycles as novel topoisomerase-targeting agents. J Med Chem. 2011;54(7):2012–2021.
  • Radaeva M, Dong X, Cherkasov A. The use of methods of computer-aided drug discovery in the development of topoisomerase II inhibitors: applications and future directions. J Chem Inf Model. 2020;60(8):3703–3721.
  • Hande KR. Topoisomerase II inhibitors. Update Cancer Ther. 2008;3(1):13–26.
  • Pearl LH. The HSP90 molecular chaperone—an enigmatic ATPase. Biopolymers. 2016;105(8):594–607.
  • Prodromou C. Mechanisms of Hsp90 regulation. Biochem J. 2016;473(16):2439–2452.
  • Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta. 2012;1823(3):624–635.
  • Mak OW, Sharma N, Reynisson J, Leung IKH. Discovery of novel Hsp90 C-terminal domain inhibitors that disrupt co-chaperone binding. Bioorg Med Chem Lett. 2021;38:127857.
  • Gaber AA, Sobhy M, Turky A, Eldehna WM, El-Sebaey SA, El-Metwally SA, El-Naggar AM, Ibrahim IM, Elkaeed EB, Metwaly AM, et al. New [1, 2, 4] triazolo [4, 3-c] quinazolines as intercalative Topo II inhibitors: design, synthesis, biological evaluation, and in silico studies. PLoS One. 2023;18(1):e0274081.
  • Maede Y, Shimizu H, Fukushima T, Kogame T, Nakamura T, Miki T, Takeda S, Pommier Y, Murai J. Differential and common DNA repair pathways for topoisomerase I-and II-targeted drugs in a genetic DT40 repair cell screen panel genetic screen of DNA repair for topoisomerase inhibitors. Mol Cancer Ther. 2014;13(1):214–220.
  • Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad SVUM. Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem. 2018;143:1277–1300.
  • Yao Q, Weigel B, Kersey J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin Cancer Res. 2007;13(5):1591–1600.
  • Dutta R, Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci. 2000;25(1):24–28.
  • Barker CR, McNamara AV, Rackstraw SA, Nelson DE, White MR, Watson AJM, Jenkins JR. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage. Nucleic Acids Res. 2006;34(4):1148–1157.
  • Mohareb RM, Megally Abdo NY, Al-Darkazali WN. Uses of cyclohexan-1, 3-dione for the synthesis of thiazole, pyrazole, thiophene, isoxazole and pyran derivatives with antitumor activities. Lett Drug Des Deliv. 2020;17(5):597–609.
  • Rayman MP, Infante HG, Sargent M. Food-chain selenium and human health: spotlight on speciation. Br J Nutr. 2008;100(2):238–253.
  • Steinbrenner H, Speckmann B, Sies H. Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal. 2013;19(2):181–191.
  • Méplan C. Association of single nucleotide polymorphisms in selenoprotein genes with cancer risk. Selenoproteins Methods Protocol. 2018;1661:313–324.
  • Bertz M, Kühn K, Koeberle SC, Müller MF, Hoelzer D, Thies K, Deubel S, Thierbach R, Kipp AP. Selenoprotein H controls cell cycle progression and proliferation of human colorectal cancer cells. Free Radic Biol Med. 2018;127:98–107.
  • Gladyshev VN, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA, Burk RF, Carlson BA, Castellano S, Chavatte L, Conrad M, et al. Selenoprotein gene nomenclature. J Biol Chem. 2016;291(46):24036–24040.
  • Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radical Biol Med. 2022;188:146–161.
  • Spengler G, et al. Organoselenium compounds as novel adjuvants of chemotherapy drugs—a promising approach to fight cancer drug resistance. Molecules. 2019;24(2):336.
  • Arsenyan P, Rubina K, Shestakova I, Domracheva I. 4-Methyl-1, 2, 3-selenadiazole-5-carboxylic acid amides: antitumor action and cytotoxic effect correlation. Eur J Med Chem. 2007;42(5):635–640.
  • Chen T, Zheng W, Wong Y-S, Yang F. Mitochondria-mediated apoptosis in human breast carcinoma MCF-7 cells induced by a novel selenadiazole derivative. Biomed Pharmacother. 2008;62(2):77–84.
  • Ruberte AC, Plano D, Encío I, Aydillo C, Sharma AK, Sanmartín C. Novel selenadiazole derivatives as selective antitumor and radical scavenging agents. Eur J Med Chem. 2018;157:14–27.
  • Ghorab WM, El-Sebaey SA, Ghorab MM. Design, synthesis and Molecular modeling study of certain EGFR inhibitors with a quinazolinone scaffold as anti-hepatocellular carcinoma and radio-sensitizers. Bioorg Chem. 2023;131:106310.
  • Ghorab WM, El-Sebaey SA, Ghorab MM. Design, synthesis and molecular modeling study of certain quinazolinone derivatives targeting poly (ADP-ribose) polymerase 1 (PARP-1) enzyme as anti-breast cancer and radio-sensitizers. J Mol Struct. 2023;1273:134358.
  • Gomha SM, Riyadh SM, Mahmmoud EM. Synthesis and anticancer activities of thiazoles, 1, 3-thiazines, and thiazolidine using chitosan-grafted-poly (vinylpyridine) as basic catalyst. Heterocycles. 2015;91(6):1227–1243.
  • Gardner L, Malik R, Shimizu Y, Mullins N, ElShamy WM. Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells. Breast Cancer Res. 2011;13(3):1–20.
  • Allan RK, Mok D, Ward BK, Ratajczak T. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem. 2006;281(11):7161–7171.
  • Omar AM, Bajorath J, Ihmaid S, Mohamed HM, El-Agrody AM, Mora A, El-Araby ME, Ahmed HEA. Novel molecular discovery of promising amidine-based thiazole analogues as potent dual Matrix Metalloproteinase-2 and 9 inhibitors: anticancer activity data with prominent cell cycle arrest and DNA fragmentation analysis effects. Bioorg Chem. 2020;101:103992.
  • Kumar CP. Synthesis and biological evaluation of 5, 10-dihydro-11H-dibenzo [b, e][1, 4] diazepin-11-one structural derivatives as anti-cancer and apoptosis inducing agents. Eur J Med Chem. 2016;108:674–686.
  • Lowe B, Avila HA, Bloom FR, Gleeson M, Kusser W. Quantitation of gene expression in neural precursors by reverse-transcription polymerase chain reaction using self-quenched, fluorogenic primers. Anal Biochem. 2003;315(1):95–105.
  • Rizvi SMD, Shakil S, Haneef M. A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI J. 2013;12:831.
  • Classen S, Olland S, Berger JM. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci U S A. 2003;100(19):10629–10634.
  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997;89(2):239–250.
  • Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B Condens Matter. 1996;54(23):16533–16539.
  • Challan S, Khater S, Rashad A. Preparation, molecular modeling and in-vivo evaluation of 99mTc-Oseltamivir as a tumor diagnostic agent. Int J Radiat Res. 2022;20(3):635–642.
  • Rashad AM, Mahmoud MS, El-Desawy M. FTIR and UV spectroscopic analysis of sparfloxacin combined with theoretical study based on DFT calculations. Arab J Nucl Sci Appl. 2021;54(1):51–65.
  • El-Kalyoubi S, Agili F. Synthesis, in silico prediction and in vitro evaluation of antitumor activities of novel pyrido [2, 3-d] pyrimidine, xanthine and lumazine derivatives. Molecules. 2020;25(21):5205.
  • El-Kalyoubi S, et al. Synthesis, in silico prediction and in vitro evaluation of antimicrobial activity, dft calculation and theoretical investigation of novel xanthines and uracil containing imidazolone derivatives. Int J Mol Sci. 2021;22(20):10979.
  • El-Kalyoubi S, Agili F, Adel I, Tantawy MA. Novel uracil derivatives depicted potential anticancer agents: in vitro, molecular docking, and ADME study. Arab J Chem. 2022;15(4):103669.
  • Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med. 2018;127:80–97.
  • Ueda T, Doi W, Nagai S-I, Sakakibara J. Synthesis of [1, 2, 5] selena (or thia) diazolo [3, 4‐e][1, 4] diazepines,[1, 2, 5] selena (or thia) diazolo [3, 4‐e][1, 4] oxazepines and [1, 2, 5] selena (or thia) diazolo [3, 4‐c][1, 2, 6] thiadiazines. J Heterocycl Chem. 2000;37(5):1269–1272.
  • Gao S, Balan B, Yoosaf K, Monti F, Bandini E, Barbieri A, Armaroli N. Highly efficient luminescent solar concentrators based on benzoheterodiazole dyes with large stokes shifts. Chemistry. 2020;26(48):11013–11023.
  • Dhanjal S, Cameotra SS. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact. 2010;9(1):52.
  • Delgado JL, Hsieh C-M, Chan N-L, Hiasa H. Topoisomerases as anticancer targets. Biochem J. 2018;475(2):373–398.
  • Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH. The role of heat shock proteins in cancer. Cancer Lett. 2015;360(2):114–118.
  • Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016;37(7):8471–8486.
  • Zuehlke AD, Beebe K, Neckers L, Prince T. Regulation and function of the human HSP90AA1 gene. Gene. 2015;570(1):8–16.
  • Sordet O, Khan QA, Kohn KW, Pommier Y. Apoptosis induced by topoisomerase inhibitors. Curr Med Chem Anticancer Agents. 2003;3(4):271–290.
  • Hong T-J, Park H, Kim Y-J, Jeong J-H, Hahn J-S. Identification of new Hsp90 inhibitors by structure-based virtual screening. Bioorg Med Chem Lett. 2009;19(16):4839–4842.
  • Koopmans T. Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica. 1934;1(1-6):104–113.
  • Parr RG, Szentpály Lv, Liu S. Electrophilicity index. J Am Chem Soc. 1999;121(9):1922–1924.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):1–13.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev. 1997;23(1-3):3–25.
  • Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000;43(20):3714–3717.
  • Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties. J Chem Inf Model. 2012;52(11):2950–2957.
  • Daina A, Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11(11):1117–1121.
  • Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49(W1):W5–W14.
  • Wang S, Sun H, Liu H, Li D, Li Y, Hou T. ADMET evaluation in drug discovery. 16. Predicting hERG blockers by combining multiple pharmacophores and machine learning approaches. Mol Pharm. 2016;13(8):2855–2866.