1,374
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Novel Glu-based pyrazolo[3,4-d]pyrimidine analogues: design, synthesis and biological evaluation as DHFR and TS dual inhibitors

, , , &
Article: 2203879 | Received 06 Jan 2023, Accepted 12 Apr 2023, Published online: 20 Apr 2023

References

  • Boyer AS, Walter D, Sørensen CS. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. Semin Cancer Biol. 2016;37-38:16–25.
  • Raimondi MV, Randazzo O, La Franca M, Barone G, Vignoni E, Rossi D, Collina S. DHFR inhibitors: reading the past for discovering novel anticancer agents. Molecules. 2019;24(6):1140–1159.
  • Tian C, Wang M, Han Z, Fang F, Zhang Z, Wang X, Liu J. Design, synthesis and biological evaluation of novel 6-substituted pyrrolo [3,2-d] pyrimidine analogues as antifolate antitumor agents. Eur J Med Chem. 2017;138:630–643.
  • Fattahi N, Ramazani A, Hamidi M, Parsa M, Rostamizadeh K, Rashidzadeh H. Enhancement of the brain delivery of methotrexate with administration of mid-chain ester prodrugs: in vitro and in vivo studies. Int J Pharm. 2021;600:120479–120488.
  • Gangjee A, Jain DH, Kurup S. Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: part I. Anticancer Agents Med Chem. 2007;7(5):524–542.
  • Moran RG. Roles of folylpoly-gamma-glutamate synthetase in therapeutics with tetrahydrofolate antimetabolites: an overview. Semin Oncol. 1999;26(2 Suppl 6):24–32.
  • Ewida MA, Abou El Ella DA, Lasheen DS, Ewida HA, El-Gazzar YI, El-Subbagh HI. Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: synthesis, biological evaluation and molecular modeling study. Bioorg Chem. 2017;74:228–237.
  • García DS, Saturansky EI, Poncino D, Martínez-Artola Y, Rosenberg S, Abritta G, Ascimani-Peña C, Cravero A. Hepatic toxicity by methotrexate with weekly single doses associated with folic acid in rheumatoid and psoriatic arthritis. What is its real frequency? Ann Hepatol. 2019;18(5):765–769.
  • Mao Z, Pan J, Kalman TI. Design and synthesis of histidine analogues of folic acid and methotrexate as potential folylpolyglutamate synthetase inhibitors. J Med Chem. 1996;39(21):4340–4344.
  • Patel TS, Bhatt JD, Dixit RB, Chudasama CJ, Patel BD, Dixit BC. Design and synthesis of leucine‐linked quinazoline‐4 (3H)‐one‐sulphonamide molecules distorting malarial reductase activity in the folate pathway. Arch Pharm Chem Life Sci. 2019;352(9):1900099.
  • Marsham PR, Wardleworth JM, Boyle FT, Hennequin LF, Kimbell R, Brown M, Jackman AL. Design and synthesis of potent non-polyglutamatable quinazoline antifolate thymidylate synthase inhibitors. J Med Chem. 1999;42(19):3809–3820.
  • Bavetsias V, Jackman AL. Nonpolyglutamatable antifolates as inhibitors of thymidylate synthase (TS) and potential antitumour agents. CMC. 1998;5(4):265–288.
  • Wang S, Yuan X-H, Wang S-Q, Zhao W, Chen X-B, Yu B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: synthesis and clinical application. Eur J Med Chem. 2021;214:113218–113239.
  • Ayati A, Moghimi S, Toolabi M, Foroumadi A. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur J Med Chem. 2021;221:113523–113542.
  • Alberti MJ, Auten EP, Lackey KE, McDonald OB, Wood ER, Preugschat F, Cutler GJ, Kane-Carson L, Liu W, Jung DK. Discovery and in vitro evaluation of potent kinase inhibitors: pyrido[1′,2′:1,5]pyrazolo[3,4-d]pyrimidines. Bioorg Med Chem Lett. 2005;15(16):3778–3781.
  • Abdelgawad MA, Bakr RB, Alkhoja OA, Mohamed WR. Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorg Chem. 2016;66:88–96.
  • Karaman R. Prodrugs design based on inter- and intramolecular chemical processes. Chem Biol Drug Des. 2013;82(6):643–668.
  • Mahnashi MH, El-Senduny FF, Alshahrani MA, Abou-Salim MA. Design, synthesis, and biological evaluation of a novel VEGFR-2 inhibitor based on a 1,2,5-oxadiazole-2-oxide scaffold with MAPK signaling pathway inhibition. Pharmaceuticals. 2022;15(2):246–281.
  • Elshaier YAMM, Shaaban MA, Abd El Hamid MK, Abdelrahman MH, Abou-Salim MA, Elgazwi SM, Halaweish F. Design and synthesis of pyrazolo[3,4-d]pyrimidines: nitric oxide releasing compounds targeting hepatocellular carcinoma. Bioorg Med Chem. 2017;25(12):2956–2970.
  • Zhang X, Lin Q, Zhong P. A facile one-pot synthesis of 1-arylpyrazolo [3, 4-d] pyrimidin-4-ones. Molecules. 2010;15(5):3079–3086.
  • National Cancer Institute. NCI-60 Screening Methodology. [accessed 2022 Jun 1]. https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm.
  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991;83(11):757–766.
  • Boyd MR, Paull KD. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res. 1995;34(2):91–109.
  • Al-Warhi T, Abo-Ashour MF, Almahli H, Alotaibi OJ, Al-Sanea MM, Al-Ansary GH, Ahmed HY, Elaasser MM, Eldehna WM, Abdel-Aziz HA. Novel [(N-alkyl-3-indolylmethylene)hydrazono]oxindoles arrest cell cycle and induce cell apoptosis by inhibiting CDK2 and Bcl-2: synthesis, biological evaluation and in silico studies. J Enzyme Inhib Med Chem. 2020;35(1):1300–1309.
  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–1112.
  • Plumb JA. Cell sensitivity assays: The MTT assay. In: Langdon SP, editor. Cancer cell culture: Methods and Protocols. Totowa, NJ: Humana Press Inc., Springer; 2004. p. 165–169.
  • Bézivin C, Tomasi S, Lohézic-Le Dévéhat F, Boustie JJP. Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine. 2003;10(6-7):499–503.
  • Prayong P, Barusrux S, Weerapreeyakul N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia. 2008;79(7-8):598–601.
  • El-Senduny FF, Zidane MM, Youssef MM, Badria F-C. An approach to treatment of liver cancer by novel glycyrrhizin derivative. Anticancer Agents Med Chem. 2019;19(15):1863–1873.
  • Singh K, Gangrade A, Jana A, Mandal BB, Das N. Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1,2,3-triazole ring. ACS Omega. 2019;4(1):835–841.
  • Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J. Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules. 2018;23(11):2922–2936.
  • Azzam RA, Elsayed RE, Elgemeie GH. Design, synthesis, and antimicrobial evaluation of a new series of N-sulfonamide 2-pyridones as dual inhibitors of DHPS and DHFR enzymes. ACS Omega. 2020;5(18):10401–10414.
  • el-Subbagh HI, Abadi AH, Al-Khamees HA. Synthesis and antitumor activity of 9-anilino, phenylhydrazino, and sulphonamido analogs of 2- or 4-methoxy-6-nitroacridines. Arch Pharm. 1997;330(9-10):277–284.
  • Bilal Tufail M, Aamir Javed M, Ikram M, Mahnashi MH, Alyami BA, Alqahtani YS, Sadiq A, Rashid U. Synthesis, pharmacological evaluation and molecular modelling studies of pregnenolone derivatives as inhibitors of human dihydrofolate reductase. Steroids. 2021;168:108801–108811.
  • Sabry MA, Ghaly MA, Maarouf AR, El-Subbagh HI. New thiazole-based derivatives as EGFR/HER2 and DHFR inhibitors: synthesis, molecular modeling simulations and anticancer activity. Eur J Med Chem. 2022;241:114661–114682.
  • Henriksen M, Miller B, Newmark J, Al-Kofahi Y, Holden E, Chapter 7. Laser scanning cytometry and its applications: a pioneering technology in the field of quantitative imaging cytometry. In: Darzynkiewicz Z, Holden E, Orfao A, Telford W, Wlodkowic D, editors. Methods in cell biology. Vol. 102. New York (NY): Academic Press; 2011. p. 159–205.
  • Gray JW, Dolbeare F, Pallavicini MG, Beisker W, Waldman F. Cell cycle analysis using flow cytometry. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;49(2):237–255.
  • Ahmed MS, Kopel LC, Halaweish FT. Structural optimization and biological screening of a steroidal scaffold possessing cucurbitacin‐like functionalities as B‐raf inhibitors. ChemMedChem. 2014;9(7):1361–1367.
  • Noolvi MN, Patel HM. A comparative QSAR analysis and molecular docking studies of quinazoline derivatives as tyrosine kinase (EGFR) inhibitors: a rational approach to anticancer drug design. J Saudi Chem Soc. 2013;17(4):361–379.
  • Yang Y-A, Tang W-J, Zhang X, Yuan J-W, Liu X-H, Zhu H-L. Synthesis, molecular docking and biological evaluation of glycyrrhizin analogs as anticancer agents targeting EGFR. Molecules. 2014;19(5):6368–6381.
  • Rajendra Prasad VVS, Deepak Reddy G, Kathmann I, Amareswararao M, Peters GJ. Nitric oxide releasing acridone carboxamide derivatives as reverters of doxorubicin resistance in MCF7/Dx cancer cells. Bioorg Chem. 2016;64:51–58.
  • Mahnashi M, Elgazwi SM, Ahmed MS, Halaweish FT. Cucurbitacins inspired organic synthesis: potential dual inhibitors targeting EGFR – MAPK pathway. Eur J Med Chem. 2019;173:294–304. [InsertedFromOnli
  • Alsaif NA, Dahab MA, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Mahdy HA, Elkady H. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: design, molecular modeling, and synthesis. Bioorg Chem. 2021;110:104807–104828.
  • Yousef RG, Elkady H, Elkaeed EB, Gobaara IMM, Al-Ghulikah HA, Husein DZ, Ibrahim IM, Metwaly AM, Eissa IH. (E)-N-(3-(1-(2-(4-(2,2,2-Trifluoroacetamido)benzoyl)hydrazono)ethyl)phenyl)nicotinamide: a novel pyridine derivative for inhibiting vascular endothelial growth factor receptor-2: synthesis, computational, and anticancer studies. Molecules. 2022;27(22):7719–7741.
  • Elkaeed EB, Yousef RG, Elkady H, Mehany ABM, Alsfouk BA, Husein DZ, Ibrahim IM, Metwaly AM, Eissa IH. In silico, in vitro VEGFR-2 inhibition, and anticancer activity of a 3-(hydrazonomethyl)naphthalene-2-ol derivative. J Biomol Struct Dyn. 2022:1–16.
  • Alsaif NA, Taghour MS, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Elwan A, Elkady H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J Enzyme Inhib Med Chem. 2021;36(1):1093–1114.
  • Cody V, Luft JR, Pangborn W. Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH. Acta Crystallogr D Biol Crystallogr. 2005;61(Pt 2):147–155.
  • Sayre PH, Finer-Moore JS, Fritz TA, Biermann D, Gates SB, MacKellar WC, Patel VF, Stroud RM. Multi-targeted antifolates aimed at avoiding drug resistance form covalent closed inhibitory complexes with human and Escherichia coli thymidylate synthases. J Mol Biol. 2001;313(4):813–829.
  • Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;4(W1)9:W5–w14.
  • ADMETLAB2.0. ADMET Evaluation. 2020; [accessed 2022 May 20]. https://admetmesh.scbdd.com/.
  • Cheng C, Robins RK. Potential purine antagonists. VI. Synthesis of 1-alkyl-and 1-aryl-4-substituted pyrazolo[3,4-d]pyrimidines1, 2. J Org Chem. 1956;21(11):1240–1256.
  • Kreutzberger A, Burgwitz K. Antimykotische Wirkstoffe, 11. Mitt. 4-Amino-3-methylpyrazolo[3,4-d]pyrimidine. Arch Pharm Pharm Med Chem. 1980;313(11):906–912.
  • Silvestri R, Cascio MG, La Regina G, Piscitelli F, Lavecchia A, Brizzi A, Pasquini S, Botta M, Novellino E, Di Marzo V, et al. Synthesis, cannabinoid receptor affinity, and molecular modeling studies of substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. J Med Chem. 2008;51(6):1560–1576.
  • Tavakoli-Hoseini N, Moloudi R, Davoodnia A, Shaker M. Synthesis of pyrazolo[3,4-d]pyrimidin-4-ones catalyzed by bronsted-acidic ionic liquids as highly efficient and reusable catalysts. Chin J Chem. 2011;29(11):2421–2426.
  • Schmiedeberg N, Furet P, Imbach P, Holzer P. 1,4-Substituted pyrazolopyrimidines as kinase inhibitors. WO2006050946A1; 2006.
  • Severina A, Georgiyants V, Shtrygol SY, Kavraiskyi D. Synthesis and alkylation of 1-aryl-1, 5-dihydro-4H-pyrazolo [3, 4-d] pyrimidin-4-ones as possible anticonvulsant agents. Der Pharma Chemica. 2015;7:43–48.
  • Bakr RB, Abdelall EK, Abdel-Hamid MK, Kandeel MM. Design and synthesis of new EGFR-tyrosine kinase inhibitors containing pyrazolo[3,4-d]pyrimidine cores as anticancer agents. Bull Pharm Sci Assiut Univ. 2012(1);35:27–42.
  • Davoodnia A, Zhiani R, Tavakoli-Hoseini N. Synthesis of pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidines. Monatsh Chem. 2008;139(11):1405–1407.
  • Budeanu D. Analele Stiintifice ale Universitatii Al I Cuza din Iasi. Sectiunea 1c: Chimie. 1965;11:147–153.
  • Yao B-J, Wu W-X, Ding L-G, Dong Y-B. Sulfonic acid and ionic liquid functionalized covalent organic framework for efficient catalysis of the Biginelli reaction. J Org Chem. (3)2021;86:3024–3032.
  • Ranu BC, Hajra A, Jana U. Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction. J Org Chem. 2000;65(19):6270–6272.
  • Murata H, Ishitani H, Iwamoto M. Synthesis of Biginelli dihydropyrimidinone derivatives with various substituents on aluminium-planted mesoporous silica catalyst. Org Biomol Chem. 2010;8(5):1202–1211.
  • Fekri ZL, Movaghari M. 1,4-Diazabicyclo[2.2.2]octanium diacetate: as a new, effective and reusable catalyst for the synthesis of 3,4- dihydropyrimidin-2(1H)-ones and -thiones. LOC. 2016;13(6):406–413.
  • Shaibuna M, Kuniyil MJK, Sreekumar K. Deep eutectic solvent assisted synthesis of dihydropyrimidinones/thiones via Biginelli reaction: theoretical investigations on their electronic and global reactivity descriptors. New J Chem. 2021;45(44):20765–20775.
  • Shaaban MA, Elshaier YAMM, Hammad AH, Farag NA, Hassan Haredy H, AbdEl-Ghany AA, Mohamed KO. Design and synthesis of pyrazolo[3,4-d]pyrimidinone derivatives: discovery of selective phosphodiesterase-5 inhibitors. Bioorg Med Chem Lett. 2020;30(16):127337.
  • Elbadawi MM, Eldehna WM, Wang W, Agama KK, Pommier Y, Abe M. Discovery of 4-alkoxy-2-aryl-6,7-dimethoxyquinolines as a new class of topoisomerase I inhibitors endowed with potent in vitro anticancer activity. Eur J Med Chem. 2021;215:113261–113281.
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.
  • OpenEye. OMEGA. Version 4.2.1.1. Santa Fe (NM): OpenEye Scientific Software. 2022; [accessed 2022 Jul 20]. https://docs.eyesopen.com/applications/omega/index.html.
  • OpenEye. Chemgauss4; OpenEye Scientific Software documents. 2022; [accessed 2022 Jul 20]. https://docs.eyesopen.com/applications/oedocking/theory/hybrid_theory.html#chemgauss4.
  • OpenEye. VIDA. Version 5.0.3.1. Santa Fe (NM): OpenEye Scientific Software. 2022; [accessed 2022 Jul 25]. http://www.eyesopen.com.
  • BIOVIA Discovery Studio Visualizer. 2021; [accessed 2022 Jul 10]. https://discover.3ds.com/discovery-studio-visualizer-download.
  • Patil SM, Maruthi KR, Bajpe SN, Vyshali VM, Sushmitha S, Akhila C, Ramu R. Comparative molecular docking and simulation analysis of molnupiravir and remdesivir with SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Bioinformation. 2021;17(11):932–939.
  • OpenEye. DockingReport. Version 4.2.0.1. Santa Fe (NM): OpenEye Scientific Software. 2022; [accessed 2022 Jul 20]. https://docs.eyesopen.com/applications/oedocking/DockingReport.html#docking-report.