1,572
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Application of the Mannich reaction in the structural modification of natural products

, , , &
Article: 2235095 | Received 15 May 2023, Accepted 05 Jul 2023, Published online: 14 Jul 2023

References

  • Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109(Suppl 1):69–75.
  • Shivarama Holla B, Veerendra B, Shivananda MK, Poojary B. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur J Med Chem. 2003;38(7–8):759–767.
  • Sujith KV, Rao JN, Shetty P, Kalluraya B. Regioselective reaction: synthesis and pharmacological study of Mannich bases containing ibuprofen moiety. Eur J Med Chem. 2009;44(9):3697–3702.
  • Malinka W, Swiatek P, Filipek B, Sapa J, Jezierska A, Koll A. Synthesis, analgesic activity and computational study of new isothiazolopyridines of Mannich base type. Farmaco. 2005;60(11–12):961–968.
  • Ashok M, Holla BS, Poojary B. Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4-methylthiobenzyl moiety. Eur J Med Chem. 2007;42(8):1095–1101.
  • Reddy MV, Su CR, Chiou WF, Liu YN, Chen RY, Bastow KF, Lee KH, Wu TS. Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. Bioorg Med Chem. 2008;16(15):7358–7370.
  • Hieu BT, Thuy LT, Thuy VT, Tien HX, Van LV, Hoang VD, Vu TK. Design, synthesis and in vitro cytotoxic activity evaluation of new Mannich bases. B Korean Chem Soc. 2012;33(5):1586–1592.
  • Chen Y, Cass SL, Kutty SK, Yee EM, Chan DS, Gardner CR, Vittorio O, Pasquier E, Black DS, Kumar N. Synthesis, biological evaluation and structure-activity relationship studies of isoflavene based Mannich bases with potent anti-cancer activity. Bioorg Med Chem Lett. 2015;25(22):5377–5383.
  • Bajracharya GB. Diversity, pharmacology and synthesis of Bergenin and its derivatives: potential materials for therapeutic usages. Fitoterapia. 2015;101:133–152.
  • Pavan Kumar P, Siva B, Venkateswara Rao B, Dileep Kumar G, Lakshma Nayak V, Nishant Jain S, Tiwari AK, Purushotham U, Venkata Rao C, Suresh Babu K. Synthesis and biological evaluation of Bergenin-1,2,3-triazole hybrids as novel class of anti-mitotic agents. Bioorg Chem. 2019;91:103161.
  • Mistry B, Keum Y-S, Noorzai R, Gansukh E, Kim DH. Synthesis of piperazine based N-Mannich bases of berberine and their antioxidant and anticancer evaluations. J Iran Chem Soc. 2016;13(3):531–539.
  • Mistry B, Patel RV, Keum YS, Noorzai R, Gansukh E, Kim DH. Synthesis of Mannich base derivatives of berberine and evaluation of their anticancer and antioxidant effects. J Chem Res. 2016;40(2):73–77.
  • Tugrak M, Yamali C, Sakagami H, Gul HI. Synthesis of mono Mannich bases of 2-(4-hydroxybenzylidene)-2,3-dihydroinden-1-one and evaluation of their cytotoxicities. J Enzyme Inhib Med Chem. 2016;31(5):818–823.
  • Manohar S, Thakur A, I. Khan S, Sun G, Ni N, Wang B, S. Rawat D. Synthesis of unsymmetrical C5-curcuminoids as potential anticancer agents. LDDD. 2013;11(2):138–149.
  • Goel A, Aggarwal BB. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer. 2010;62(7):919–930.
  • Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, Reddy BS. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res. 1999;59(3):597–601.
  • Chen XJ, Ren LQ, Zhang XH, Guo L, Zhou JM, Liang G, Wang Y. Improved Pharmacokinetic Profile and Anti-Inflammatory Property of a Novel Curcumin Derivative, A50. LDDD. 2013;10 (6):535–542.
  • Huang S-W, Frankel EN. Antioxidant activity of tea catechins in different lipid systems. J Agric Food Chem. 1997;45(8):3033–3038.
  • Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci. 2009;30(2):85–94.
  • Jordan WC, Drew CR. Curcumin – a natural herb with anti-HIV activity. J Natl Med Assoc. 1996;88(6):333.
  • Yerdelen KO, Gul HI, Sakagami H, Umemura N, Sukuroglu M. Synthesis and cytotoxic activities of a curcumin analogue and its bis-Mannich derivatives. LDDD. 2015;12(8):643–649.
  • Fu Y, Liu B, Zhang N, Liu Z, Liang D, Li F, Cao Y, Feng X, Zhang X, Yang Z. Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-kappaB and MAPKs signaling pathways. J Ethnopharmacol. 2013;145(1):193–199.
  • Shen JL, Man KM, Huang PH, Chen WC, Chen DC, Cheng YW, Liu PL, Chou MC, Chen YH. Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders. Molecules. 2010;15(9):6452–6465.
  • Kim KR, Park KK, Chun KS, Chung WY. Honokiol inhibits the progression of collagen-induced arthritis by reducing levels of pro-inflammatory cytokines and matrix metalloproteinases and blocking oxidative tissue damage. J Pharmacol Sci. 2010;114(1):69–78.
  • Singh T, Prasad R, Katiyar SK. Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo. Epigenetics. 2013;8(1):54–65.
  • Tang H, Zhang Y, Li D, Fu S, Tang M, Wan L, Chen K, Liu Z, Xue L, Peng A, et al. Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem. 2018;156:190–205.
  • Zhao M, Zheng YH, Zhao QY, Zheng W, Yang JH, Pei HY, Liu L, Liu KJ, Xue LL, Deng DX, Wang L, Ma X, et al. Synthesis and evaluation of new compounds bearing 3-(4-aminopiperidin-1-yl)methyl magnolol scaffold as anticancer agents for the treatment of non-small cell lung cancer via targeting autophagy. Eur J Med Chem. 2021;209:112922.
  • Liang C, Ju W, Pei S, Tang Y, Xiao Y. Pharmacological activities and synthesis of esculetin and its derivatives: a mini-review. Molecules. 2017;22(3):387.
  • Park SS, Park SK, Lim JH, Choi YH, Kim WJ, Moon SK. Esculetin inhibits cell proliferation through the Ras/ERK1/2 pathway in human colon cancer cells. Oncol Rep. 2010;25(1):223–230.
  • Kim SH, Kang KA, Zhang R, Piao MJ, Ko DO, Wang ZH, Chae SW, Kang SS, Lee KH, Kang HK, et al. Protective effect of esculetin against oxidative stress-induced cell damage via scavenging reactive oxygen species. Acta Pharmacol Sin. 2008;29(11):1319–1326.
  • Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie. 2013;95(2):366–373.
  • Wang P, Xia YL, Yu Y, Lu JX, Zou LW, Feng L, Ge GB, Yang L. Design, synthesis and biological evaluation of esculetin derivatives as anti-tumour agents. RSC Adv. 2015;5(66):53477–53483.
  • Okita K, Li Q, Murakamio T, Takahashi M. Anti-growth effects with components of Sho-saiko-to (TJ-9) on cultured human hepatoma cells. Eur J Cancer Prev. 1993;2(2):169–175.
  • Ikemoto S, Sugimura K, Yoshida N, Yasumoto R, Wada S, Yamamoto K, Kishimoto T. Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology. 2000;55(6):951–955.
  • Li L, Liu WY, Feng F, Wu CY, Xie N. Synthesis and in vitro cytotoxicity evaluation of baicalein amino acid derivatives. Chin J Nat Med. 2014;11(3):284–288.
  • Zhang S, Ma J, Bao Y, Yang P, Zou L, Li K, Sun X. Nitrogen-containing flavonoid analogues as CDK1/cyclin B inhibitors: synthesis, SAR analysis, and biological activity. Bioorg Med Chem. 2008;16(15):7128–7133.
  • Oh BS, Shin EA, Jung JH, Jung DB, Kim B, Shim BS, Yazdi MC, Iranshahi M, Kim SH. Apoptotic effect of galbanic acid via activation of caspases and inhibition of Mcl-1 in H460 non-small lung carcinoma cells. Phytother Res. 2015;29(6):844–849.
  • Xia YL, Wang JJ, Li SY, Liu Y, Gonzalez FJ, Wang P, Ge GB. Synthesis and structure-activity relationship of coumarins as potent Mcl-1 inhibitors for cancer treatment. Bioorg Med Chem. 2021;29:115851.
  • Zhao XX, Peng C, Zhang H, Qin LP. Sinomenium acutum: a review of chemistry, pharmacology, pharmacokinetics, and clinical use. Pharm Biol. 2012;50(8):1053–1061.
  • Li S, Gao M, Nian X, Zhang L, Li J, Cui D, Zhang C, Zhao C. Design, synthesis, biological evaluation and silico prediction of novel sinomenine derivatives. Molecules. 2021;26(11):3466.
  • Palmer AM. Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharmacol Sci. 2011;32(3):141–147.
  • Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res. 2013;36(4):375–399.
  • Jan A, Gokce O, Luthi-Carter R, Lashuel HA. The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol Chem. 2008;283(42):28176–28189.
  • Barnham KJ, Bush AI. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev. 2014;43(19):6727–6749.
  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, et al. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry. 1999;38(24):7609–7616.
  • Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, Bogdanovic N, Winblad B, Sandebring-Matton A, Frykman S, et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with gamma-secretase and regulates neuronal amyloid beta-peptide levels. Alzheimers Res Ther. 2017;9(1):57.
  • Zhang X, Song Q, Cao Z, Li Y, Tian C, Yang Z, Zhang H, Deng Y. Design, synthesis and evaluation of Chalcone Mannich base derivatives as multifunctional agents for the potential treatment of Alzheimer’s disease. Bioorg Chem. 2019;87:395–408.
  • Rosini M, Simoni E, Caporaso R, Minarini A. Multitarget strategies in Alzheimer’s disease: benefits and challenges on the road to therapeutics. Future Med Chem. 2016;8(6):697–711.
  • Tian C, Qiang X, Song Q, Cao Z, Ye C, He Y, Deng Y, Zhang L. Flurbiprofen-chalcone hybrid Mannich base derivatives as balanced multifunctional agents against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg Chem. 2020;94:103477.
  • Liu HR, Huang XQ, Lou DH, Liu XJ, Liu WK, Wang QA. Synthesis and acetylcholinesterase inhibitory activity of Mannich base derivatives flavokawain B. Bioorg Med Chem Lett. 2014;24(19):4749–4753.
  • Liu H, Fan H, Gao X, Huang X, Liu X, Liu L, Zhou C, Tang J, Wang Q, Liu W. Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: a further study based on Flavokawain B Mannich base derivatives. J Enzyme Inhib Med Chem. 2016;31(4):580–589.
  • Duan KK, Liu HR, Fan HQ, Zhang J, Wang Q. Synthesis and anticholinesterase inhibitory activity of Mannich base derivatives of flavonoids. J Chem Res. 2014;38(7):443–446.
  • Desideri N, Bolasco A, Fioravanti R, Monaco LP, Orallo F, Yanez M, Ortuso F, Alcaro S. Homoisoflavonoids: natural scaffolds with potent and selective monoamine oxidase-B inhibition properties. J Med Chem. 2011;54(7):2155–2164.
  • Gan C, Zhao Z, Nan DD, Yin B, Hu J. Homoisoflavonoids as potential imaging agents for beta-amyloid plaques in Alzheimer’s disease. Eur J Med Chem. 2014;76:125–131.
  • Park DH, Venkatesan J, Kim SK, Ramkumar V, Parthiban P. Antioxidant properties of Mannich bases. Bioorg Med Chem Lett. 2012;22(20):6362–6367.
  • Kontogiorgis CA, Hadjipavlou-Litina DJ. Synthesis and antiinflammatory activity of coumarin derivatives. J Med Chem. 2005;48(20):6400–6408.
  • Li Y, Qiang X, Luo L, Yang X, Xiao G, Zheng Y, Cao Z, Sang Z, Su F, Deng Y. Multitarget drug design strategy against Alzheimer’s disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties. Bioorg Med Chem. 2017;25(2):714–726.
  • Liu HR, Men X, Gao XH, Liu LB, Fan HQ, Xia XH, Wang QA. Discovery of potent and selective acetylcholinesterase (AChE) inhibitors: acacetin 7-O-methyl ether Mannich base derivatives synthesised from easy access natural product naringin. Nat Prod Res. 2018;32(6):743–747.
  • Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.
  • Mooney S, Leuendorf JE, Hendrickson C, Hellmann H. Vitamin B6: a long known compound of surprising complexity. Molecules. 2009;14(1):329–351.
  • Hashim A, Wang L, Juneja K, Ye Y, Zhao Y, Ming LJ. Vitamin B6s inhibit oxidative stress caused by Alzheimer’s disease-related Cu(II)-beta-amyloid complexes-cooperative action of phospho-moiety. Bioorg Med Chem Lett. 2011;21(21):6430–6432.
  • Yang X, Qiang X, Li Y, Luo L, Xu R, Zheng Y, Cao Z, Tan Z, Deng Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg Chem. 2017;71:305–314.
  • Na Y. Recent cancer drug development with xanthone structures. J Pharm Pharmacol. 2009;61(6):707–712.
  • Li GL, He JY, Zhang A, Wan Y, Wang B, Chen WH. Toward potent alpha-glucosidase inhibitors based on xanthones: a closer look into the structure-activity correlations. Eur J Med Chem. 2011;46(9):4050–4055.
  • Belluti F, Rampa A, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Cavalli A, Recanatini M, Valenti P. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation. J Med Chem. 2005;48(13):4444–4456.
  • Li NG, Song SL, Shen MZ, Tang YP, Shi ZH, Tang H, Shi QP, Fu YF, Duan JA. Mannich bases of scutellarein as thrombin-inhibitors: design, synthesis, biological activity and solubility. Bioorg Med Chem. 2012;20(24):6919–6923.
  • Qin J, Lan W, Liu Z, Huang J, Tang H, Wang H. Synthesis and biological evaluation of 1, 3-dihydroxyxanthone Mannich base derivatives as anticholinesterase agents. Chem Cent J. 2013;7(1):78.
  • Yan YF, Yang CJ, Shang XF, Zhao ZM, Liu YQ, Zhou R, Liu H, Wu TL, Zhao WB, Wang YL, et al. Bioassay-guided isolation of two antifungal compounds from Magnolia officinalis, and the mechanism of action of honokiol. Pestic Biochem Physiol. 2020;170:104705.
  • Li H, He YH, Hu YM, Chu QR, Chen YJ, Wu ZR, Zhang ZJ, Liu YQ, Yang CJ, Liang HJ, et al. Design, synthesis, and structure-activity relationship studies of Magnolol derivatives as antifungal agents. J Agric Food Chem. 2021;69(40):11781–11793.
  • Liu R, Zhao B, Wang DE, Yao T, Pang L, Tu Q, Ahmed SM, Liu JJ, Wang J. Nitrogen-containing apigenin analogs: preparation and biological activity. Molecules. 2012;17(12):14748–14764.
  • Lv XH, Liu H, Ren ZL, Wang W, Tang F, Cao HQ. Design, synthesis and biological evaluation of novel flavone Mannich base derivatives as potential antibacterial agents. Mol Divers. 2019;23(2):299–306.
  • Allochio Filho JF, Roldi LL, Delarmelina M, Fiorot RG, Andrade JT, Aleixo ÁA, Carvalho RS, Araújo MGF, Ferreira JMS, Taranto AG, et al. Synthesis, in vitroantifungal activity and molecular modeling studies of new Mannich bases derived from lawsone. J Brazil Chem Soc. 2016;27(11):2127–2140.
  • Abrao PH, Pizi RB, De Souza TB, Silva NC, Fregnan AM, Silva FN, Coelho LF, Malaquias LC, Dias AL, Dias DF, et al. Synthesis and biological evaluation of new eugenol Mannich bases as promising antifungal agents. Chem Biol Drug Des. 2015;86(4):459–465.
  • Vogl S, Zehl M, Picker P, Urban E, Wawrosch C, Reznicek G, Saukel J, Kopp B. Identification and quantification of coumarins in Peucedanum ostruthium (L.) Koch by HPLC-DAD and HPLC-DAD-MS. J Agric Food Chem. 2011;59(9):4371–4377.
  • Zhang MZ, Zhang RR, Yin WZ, Yu X, Zhang YL, Liu P, Gu YC, Zhang WH. Microwave-assisted synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives. Mol Divers. 2016;20(3):611–618.
  • Choi NH, Choi GJ, Min BS, Jang KS, Choi YH, Kang MS, Park MS, Choi JE, Bae BK, Kim JC. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi. J Appl Microbiol. 2009;106(6):2057–2063.
  • Lee SK, Kim HN, Kang YR, Lee CW, Kim HM, Han DC, Shin J, Bae K, Kwon BM. Obovatol inhibits colorectal cancer growth by inhibiting tumor cell proliferation and inducing apoptosis. Bioorg Med Chem. 2008;16(18):8397–8402.
  • Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther. 2011;130(2):157–176.
  • Seo JJ, Lee SH, Lee YS, Kwon BM, Ma Y, Hwang BY, Hong JT, Oh KW. Anxiolytic-like effects of obovatol isolated from Magnolia Obovata: involvement of GABA/benzodiazepine receptors complex. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(7):1363–1369.
  • Park ES, Lim Y, Lee SH, Kwon BM, Yoo HS, Hong JT, Yun YP. Antiplatelet activity of obovatol, a biphenolic component of Magnolia Obovata, in rat arterial thrombosis and rabbit platelet aggregation. J Atheroscler Thromb. 2011;18(8):659–669.
  • Choi DY, Lee JW, Peng J, Lee YJ, Han JY, Lee YH, Choi IS, Han SB, Jung JK, Lee WS, Lee SH, et al. Obovatol improves cognitive functions in animal models for Alzheimer’s disease. J Neurochem. 2012;120(6):1048–1059.
  • Yang C, Zhi X, Xu H. Semisynthesis and insecticidal activity of arylmethylamine derivatives of the neolignan honokiol against Mythimna separata Walker. Z Naturforsch C J Biosci. 2015;70(3–4):65–69.
  • Yang C, Li T, Jiang L, Zhi X, Cao H. Semisynthesis and biological evaluation of some novel Mannich base derivatives derived from a natural lignan obovatol as potential antifungal agents. Bioorg Chem. 2020;94:103469.
  • Tillhon M, Guaman Ortiz LM, Lombardi P, Scovassi AI. Berberine: new perspectives for old remedies. Biochem Pharmacol. 2012;84(10):1260–1267.
  • Wen SQ, Jeyakkumar P, Avula SR, Zhang L, Zhou CH. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation. Bioorg Med Chem Lett. 2016;26(12):2768–2773.
  • Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Alternat Med. 2011;2011:323171.
  • Hari Babu T, Rama Subba Rao V, Tiwari AK, Suresh Babu K, Srinivas PV, Ali AZ, Madhusudana Rao J. Synthesis and biological evaluation of novel 8-aminomethylated oroxylin A analogues as alpha-glucosidase inhibitors. Bioorg Med Chem Lett. 2008;18(5):1659–1662.
  • Zhen J, Dai Y, Villani T, Giurleo D, Simon JE, Wu Q. Synthesis of novel flavonoid alkaloids as alpha-glucosidase inhibitors. Bioorg Med Chem. 2017;25(20):5355–5364.
  • Wang Y, Campbell T, Perry B, Beaurepaire C, Qin L. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats. Metabolism. 2011;60(2):298–305.
  • Li R, Wu J, He Y, Hai L, Wu Y. Synthesis and in vitro evaluation of 12-(substituted aminomethyl) berberrubine derivatives as anti-diabetics. Bioorg Med Chem Lett. 2014;24(7):1762–1765.
  • Crespo ME, Galvez J, Cruz T, Ocete MA, Zarzuelo A. Anti-inflammatory activity of diosmin and hesperidin in rat colitis induced by TNBS. Planta Med. 1999;65(7):651–653.
  • Wilmsen PK, Spada DS, Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem. 2005;53(12):4757–4761.
  • Huang YC, Liu KC, Chiou YL. Melanogenesis of murine melanoma cells induced by hesperetin, a citrus hydrolysate-derived flavonoid. Food Chem Toxicol. 2012;50(3–4):653–659.
  • Park HJ, Kim MJ, Ha E, Chung JH. Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine. 2008;15(1–2):147–151.
  • Elshazly SM, Mahmoud AA. Antifibrotic activity of hesperidin against dimethylnitrosamine-induced liver fibrosis in rats. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(6):559–567.
  • Yeh CC, Kao SJ, Lin CC, Wang SD, Liu CJ, Kao ST. The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci. 2007;80(20):1821–1831.
  • Wang QQ, Shi JB, Chen C, Huang C, Tang WJ, Li J. Hesperetin derivatives: synthesis and anti-inflammatory activity. Bioorg Med Chem Lett. 2016;26(5):1460–1465.
  • Hasan SM, Alam MM, Husain A, Khanna S, Akhtar M, Zaman MS. Synthesis of 6-aminomethyl derivatives of benzopyran-4-one with dual biological properties: anti-inflammatory-analgesic and antimicrobial. Eur J Med Chem. 2009;44(12):4896–4903.
  • Lu J, Wang D. Advances in endovascular therapy for ischemic cerebrovascular diseases. Chronic Dis Transl Med. 2016;2(3):135–139.
  • Lapikova ES, Drozd NN, Tolstenkov AS, Makarov VA, Zvyagintseva TN, Shevchenko NM, Bakunina IU, Besednova NN, Kuznetsova TA. Inhibition of thrombin and factor Xa by Fucus evanescens fucoidan and its modified analogs. Bull Exp Biol Med. 2008;146(3):328–333.
  • Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53(1):135–159.
  • Liu YM, Lin AH, Chen H, Zeng FD. Study on pharmacokinetics of scutellarin in rabbits. Yao Xue Xue Bao. 2003;38(10):775–778.
  • Pan Z, Feng T, Shan L, Cai B, Chu W, Niu H, Lu Y, Yang B. Scutellarin-induced endothelium-independent relaxation in rat aorta. Phytother Res. 2008;22(11):1428–1433.
  • Zhong Y, Lu YT, Sun Y, Li NG, Gu T, Wu WY, Yu SP, Shi ZH. Scaffold hopping strategy for the design, synthesis and biological activity evaluation of novel hexacyclic scutellarein derivatives with a 1,3-oxazine ring fused at A-ring. Med Chem. 2018;14(5):478–484.
  • Joshi D, Field J, Murphy J, Abdelrahim M, Schonherr H, Sparrow JR, Ellestad G, Nakanishi K, Zask A. Synthesis of antioxidants for prevention of age-related macular degeneration. J Nat Prod. 2013;76(3):450–454.