4,203
Views
37
CrossRef citations to date
0
Altmetric
Review

Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication

Pages 661-686 | Received 28 Feb 2020, Accepted 22 Jun 2020, Published online: 01 Aug 2020

References

  • Thompson KM. The role of risk analysis in polio eradication: modeling possibilities, probabilities and outcomes to inform choices. Expert Rev Vaccines. 2012;11(1):5–7.
  • Thompson KM. Modeling poliovirus risks and the legacy of polio eradication. Risk Anal. 2013;33(4):505–515.
  • Thompson KM, Duintjer Tebbens RJ, Pallansch MA, et al. Polio eradicators use integrated analytical models to make better decisions. Interfaces. 2015;45(1):5–25.
  • Duintjer Tebbens RJ, Thompson KM. Using integrated modeling to support the global eradication of vaccine-preventable diseases. Syst Dyn Rev. 2018;34(1–2):78–120.
  • Kid Risk, Inc. Kid Risk, Inc. publications - polio. 2020 [cited 2020 Jan 10]; Available from: https://kidrisk.org/research/publications_Polio.html.
  • Imperial College. Professor Nicholas Grassly. 2020 [cited 2020 Jan 10]; Available from: https://www.imperial.ac.uk/people/n.grassly/publications.html.
  • Institute for Disease Modeling. Institute for Disease Modeling Publications. 2020 [cited 2020 Jan 10]; Available from: https://www.idmod.org/publications/topic/polio.
  • Sangrujee N, Duintjer Tebbens RJ, Caceres VM, et al. Policy decision options during the first 5 years following certification of polio eradication. Medscape J Med. 2003;5(4):35.
  • Thompson KM, Tebbens RJD. Retrospective cost-effectiveness analyses for polio vaccination in the United States. Risk Anal. 2006;26(6):1423–1440.
  • Duintjer Tebbens RJ, Pallansch MA, Kew OM, et al. A dynamic model of poliomyelitis outbreaks: learning from the past to help inform the future. Am J Epidemiol. 2005;162(4):358–372.
  • Tebbens RJD, Sangrujee N, Thompson KM. The costs of future polio risk management policies. Risk Anal. 2006;26(6):1507–1531.
  • de Gourville EM, Duintjer Tebbens RJ, Sangrujee N, et al. Global surveillance and the value of information: the case of the global polio laboratory network. Risk Anal. 2006;26(6):1557–1569.
  • Duintjer Tebbens RJD, Pallansch MA, Kew OM, et al. Risks of paralytic disease due to wild or vaccine-derived poliovirus after eradication. Risk Anal. 2006;26(6):1471–1505.
  • Thompson KM, Duintjer Tebbens RJ, Pallansch MA. Evaluation of response scenarios to potential polio outbreaks using mathematical models. Risk Anal. 2006;26(6):1541–1556.
  • Thompson KM. Poliomyelitis and the role of risk analysis in global infectious disease policy and management. Risk Anal. 2006;26(6):1419–1421.
  • Aylward RB, Sutter RW, Cochi SL, et al. Risk management in a polio-free world. Risk Anal. 2006;26(6):1441–1448.
  • Thompson KM, Duintjer Tebbens RJ, Pallansch MA, et al. Development and consideration of global policies for managing the future risks of poliovirus outbreaks: insights and lessons learned through modeling. Risk Anal. 2006;26(6):1571–1580.
  • Thompson KM, Tebbens RJD, Pallansch MA, et al. The risks, costs, and benefits of possible future global policies for managing polioviruses. Am J Public Health. 2008;98(7):1322–1330.
  • Thompson KM, Tebbens RJD. Eradication versus control for poliomyelitis: an economic analysis. Lancet. 2007;369(9570):1363–1371.
  • Duintjer Tebbens RJ, Pallansch MA, Kew OM, et al. Uncertainty and sensitivity analyses of a decision analytic model for posteradication polio risk management. Risk Anal. 2008;28(4):855–876.
  • Thompson KM, Duintjer Tebbens RJ. The case for cooperation in managing and maintaining the end of poliomyelitis: stockpile needs and coordinated OPV cessation. Medscape J Med. 2008;10(8):190.
  • Thompson KM, Tebbens RJD. Using system dynamics to develop policies that matter: global management of poliomyelitis and beyond. Syst Dyn Rev. 2008;24(4):433–449.
  • Tebbens RJD, Pallansch MA, Alexander JP, et al. Optimal vaccine stockpile design for an eradicated disease: application to polio. Vaccine. 2010;28(26):4312–4327.
  • Rahmandad H, H uK, Duintjer Tebbens RJ, et al. Development of an individual-based model for polioviruses: implications of the selection of network type and outcome metrics. Epidemiol Infect. 2011;139(6):836–848.
  • Duintjer Tebbens RJ, Pallansch MA, Cochi SL, et al. Economic analysis of the global polio eradication initiative. Vaccine. 2010;29(2):334–343.
  • Thompson KM, Wallace GS, Duintjer Tebbens RJ, et al., Trends in the risk of U.S. polio outbreaks and poliovirus vaccine availability for response. Public Health Rep.. 2012. 127(1): 23–37.
  • Kalkowska DA, Duintjer Tebbens RJ, Thompson KM. The probability of undetected wild poliovirus circulation after apparent global interruption of transmission. Am J Epidemiol. 2012;175(9):936–949.
  • Thompson KM, Tebbens RJD. Current polio global eradication and control policy options: perspectives from modeling and prerequisites for oral poliovirus vaccine cessation. Expert Rev Vaccines. 2012;11(4):449–459.
  • Duintjer Tebbens RJ, Pallansch MA, Chumakov KM, et al. Expert review on poliovirus immunity and transmission. Risk Anal. 2013;33(4):544–605.
  • Tebbens RJD, Pallansch MA, Chumakov KM, et al. Review and assessment of poliovirus immunity and transmission: synthesis of knowledge gaps and identification of research needs. Risk Anal. 2013;33(4):606–646.
  • Thompson KM, Pallansch MA, Duintjer Tebbens RJ, et al. Preeradication vaccine policy options for poliovirus infection and disease control. Risk Anal. 2013;33(4):516–543.
  • Duintjer Tebbens RJ, Pallansch MA, Kim J-H, et al. Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs). Risk Anal. 2013;33(4):680–702.
  • Duintjer Tebbens RJ, Pallansch MA, Kalkowska DA, et al. Characterizing poliovirus transmission and evolution: insights from modeling experiences with wild and vaccine-related polioviruses. Risk Anal. 2013;33(4):703–749.
  • Thompson KM, Pallansch MA, Duintjer Tebbens RJ, et al. Modeling population immunity to support efforts to end the transmission of live polioviruses. Risk Anal. 2013;33(4):647–663.
  • Duintjer Tebbens RJ, Kalkowska DA, Wassilak SGF, et al. The potential impact of expanding target age groups for polio immunization campaigns. BMC Infect Dis. 2014;14(1):45.
  • Kalkowska DA, Duintjer Tebbens RJ, Thompson KM. Modeling strategies to increase population immunity and prevent poliovirus transmission in 2 high-risk areas in northern India. J Infect Dis. 2014;210(Suppl suppl_1):S398–411.
  • Thompson KM, Duintjer Tebbens RJ. National choices related to inactivated poliovirus vaccine, innovation and the endgame of global polio eradication. Expert Rev Vaccines. 2014;13(2):221–234.
  • Thompson KM, Duintjer Tebbens RJ. Modeling the dynamics of oral poliovirus vaccine cessation. J Infect Dis. 2014;210(Suppl suppl_1):S475–84.
  • Duintjer Tebbens RJ, Thompson KM. Modeling the potential role of inactivated poliovirus vaccine to manage the risks of oral poliovirus vaccine cessation. J Infect Dis. 2014;210(Suppl suppl_1):S485–97.
  • Kalkowska DA, Duintjer Tebbens RJ, Thompson KM. Modeling strategies to increase population immunity and prevent poliovirus transmission in the high-risk area of northwest Nigeria. J Infect Dis. 2014;210(Suppl 1):S412–23.
  • Kisjes KH, Duintjer Tebbens RJ, Wallace GS, et al. Individual-based modeling of potential poliovirus transmission in connected religious communities in North America with low uptake of vaccination. J Infect Dis. 2014;210(Suppl suppl_1):S424–33.
  • Thompson KM. Polio endgame management: focusing on performance with or without inactivated poliovirus vaccine. Lancet. 2014;384(9953):1480–1482.
  • Kalkowska DA, Duintjer Tebbens RJ, Grotto I, et al. Modeling options to manage type 1 wild poliovirus imported into Israel in 2013. J Infect Dis. 2015;211(11):1800–1812.
  • Thompson KM, Logan GE; Research Team from Florida SHOTS™. Characterization of heterogeneity in childhood immunization coverage in Central Florida using immunization registry data. Risk Anal. 2016;36(7):1427–1458.
  • Thompson KM, Cochi SL. Modeling and managing the risks of measles and rubella: a global perspective, part I. Risk Anal. 2016;36(7):1288–1296.
  • Kalkowska DA, Duintjer Tebbens RJ, Pallansch MA, et al. Modeling undetected live poliovirus circulation after apparent interruption of transmission: implications for surveillance and vaccination. BMC Infect Dis. 2015;15(1):66.
  • Thompson KM, Kalkowska DA, Duintjer Tebbens RJ. Managing population immunity to reduce or eliminate the risks of circulation following the importation of polioviruses. Vaccine. 2015;33(13):1568–1577.
  • Thompson KM. Good news for billions of children who will receive IPV. Lancet Infect Dis. 2015;15(10):1120–1122.
  • Duintjer Tebbens RJ, Pallansch MA, Wassilak SGF, et al. Combinations of quality and frequency of immunization activities to stop and prevent poliovirus transmission in the high-risk area of Northwest Nigeria. Plos One. 2015;10(6):e0130123. e0130123-e0130123.
  • Duintjer Tebbens RJ, Pallansch MA, Thompson KM. Modeling the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus excretors and the potential benefits of antiviral drugs. BMC Infect Dis. 2015;15(1):379.
  • Duintjer Tebbens RJ, Pallansch MA, Wassilak SGF, et al. An economic analysis of poliovirus risk management policy options for 2013-2052. BMC Infect Dis. 2015;15:389.
  • Thompson KM, Duintjer Tebbens RJ. The differential impact of oral poliovirus vaccine formulation choices on serotype-specific population immunity to poliovirus transmission. BMC Infect Dis. 2015;15(1):376.
  • Duintjer Tebbens RJ, Thompson KM. Managing the risk of circulating vaccine-derived poliovirus during the endgame: oral poliovirus vaccine needs. BMC Infect Dis. 2015;15(1):390.
  • Thompson KM, Duintjer Tebbens RJ. Health and economic consequences of different options for timing the coordinated global cessation of the three oral poliovirus vaccine serotypes. BMC Infect Dis. 2015;15(1):374.
  • Duintjer Tebbens RJ, Pallansch MA, Wassilak SGF, et al. Characterization of outbreak response strategies and potential vaccine stockpile needs for the polio endgame. BMC Infect Dis. 2016;16(1):137.
  • Duintjer Tebbens RJ, Hampton LM, Thompson KM. Implementation of coordinated global serotype 2 oral poliovirus vaccine cessation: risks of potential non-synchronous cessation. BMC Infect Dis. 2016;16(1):231.
  • Duintjer Tebbens RJ, Hampton LM, Thompson KM. Implementation of coordinated global serotype 2 oral poliovirus vaccine cessation: risks of inadvertent trivalent oral poliovirus vaccine use. BMC Infect Dis. 2016;16(1):237.
  • Duintjer Tebbens RJ, Hampton LM, Thompson KM. Planning for globally coordinated cessation of bivalent oral poliovirus vaccine: risks of non-synchronous cessation and unauthorized oral poliovirus vaccine use. BMC Infect Dis. 2018;18(1):165.
  • Duintjer Tebbens RJ, Thompson KM. Uncertainty and sensitivity analysis of cost assumptions for global long-term poliovirus risk management. J Vaccines Vaccin. 2016;7(5):339.
  • Duintjer Tebbens RJ, Hampton LM, Wassilak SGF, et al. Maintenance and intensification of bivalent oral poliovirus vaccine use prior to its coordinated global cessation. J Vaccines Vaccin. 2016;7(5):340.
  • Duintjer Tebbens RJ, Thompson KM. Comprehensive screening for immunodeficiency-associated vaccine-derived poliovirus: an essential oral poliovirus vaccine cessation risk management strategy. Epidemiol Infect. 2017;145(2):217–226.
  • Duintjer Tebbens RJ, Thompson KM. The potential benefits of a new poliovirus vaccine for long-term poliovirus risk management. Future Microbiol. 2016;11(12):1549–1561.
  • Thompson KM, Duintjer Tebbens RJ. How should we prepare for an outbreak of reintroduced live polioviruses? Future Virol. 2017;12(2):41–44.
  • Duintjer Tebbens RJ, Thompson KM. Costs and benefits of including inactivated in addition to oral poliovirus vaccine in outbreak response after cessation of oral poliovirus vaccine use. MDM Policy Pract. 2017;2(1):2381468317697002.
  • Duintjer Tebbens RJ, Thompson KM. Poliovirus vaccination during the endgame: insights from integrated modeling. Expert Rev Vaccines. 2017;16(6):577–586.
  • Duintjer Tebbens RJ, Thompson KM. Modeling the costs and benefits of temporary recommendations for poliovirus exporting countries to vaccinate international travelers. Vaccine. 2017;35(31):3823–3833.
  • Duintjer Tebbens RJ, Zimmermann M, Pallansch MA, et al. Insights from a systematic search for information on designs, costs, and effectiveness of poliovirus environmental surveillance systems. Food Environ Virol. 2017;9(4):361–382.
  • Thompson KM, Duintjer Tebbens RJ. Lessons from globally coordinated cessation of serotype 2 oral poliovirus vaccine for the remaining Serotypes. J Infect Dis. 2017;216(suppl_1):S168–S175.
  • Thompson KM, Duintjer Tebbens RJ. Lessons from the polio endgame: overcoming the failure to vaccinate and the role of subpopulations in maintaining transmission. J Infect Dis. 2017;216(suppl_1):S176–S182.
  • Kalkowska DA, Duintjer Tebbens RJ, Thompson KM. Another look at silent circulation of poliovirus in small populations. Infect Dis Model. 2018;3:107–117.
  • Duintjer Tebbens RJ, Kalkowska DA, Thompson KM. Global certification of wild poliovirus eradication: insights from modeling hard-to-reach subpopulations and confidence about the absence of transmission. BMJ Open. 2019;9(1):e023938. e023938-e023938.
  • Duintjer Tebbens RJ, Kalkowsa DA, Thompson KM. Poliovirus containment risks and their management. Future Virol. 2018;13(9):617–628.
  • Duintjer Tebbens RJ, Pallansch MA, Cochi SL, et al. Modeling poliovirus transmission in pakistan and afghanistan to inform vaccination strategies in undervaccinated subpopulations. Risk Anal. 2018;38(8):1701–1717.
  • Duintjer Tebbens RJ, Thompson KM. Evaluation of proactive and reactive strategies for polio eradication activities in Pakistan and Afghanistan. Risk Anal. 2019;39(2):389–401.
  • Kalkowska DA, Duintjer Tebbens RJ, Thompson KM. Environmental surveillance system characteristics and impacts on confidence about no undetected serotype 1 wild poliovirus circulation. Risk Anal. 2019;39(2):414–425.
  • Kalkowska DA, Duintjer Tebbens RJ, Pallansch MA, et al. Modeling undetected live poliovirus circulation after apparent interruption of transmission: pakistan and Afghanistan. Risk Anal. 2019;39(2):402–413.
  • Duintjer Tebbens RJ, Thompson KM. Polio endgame risks and the possibility of restarting the use of oral poliovirus vaccine. Expert Rev Vaccines. 2018;17(8):739–751.
  • Duintjer Tebbens RJ, Diop OM, Pallansch MA, et al. Characterising the costs of the global polio laboratory network: a survey-based analysis. BMJ Open. 2019;9(1):e023290.
  • Thompson KM. Polio endgame options: will we have the vaccines needed? Lancet. 2019;394(10193):99–100.
  • Thompson KM, Kalkowska DA. Logistical challenges and assumptions for modeling the failure of global cessation of oral poliovirus vaccine (OPV). Expert Rev Vaccines. 2019;18(7):725–736.
  • Kalkowska DA, Pallansch MA, Thompson KM. Updated modeling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters. Epidemiol Infect. 2019;147:e295.
  • Grassly NC, Fraser C, Wenger J, et al. New strategies for the elimination of polio from India. Science. 2006;314(5802):1150–1153.
  • Grassly NC, Wenger J, Durrani S, et al. Protective efficacy of a monovalent oral type 1 poliovirus vaccine: a case-control study. Lancet. 2007;369(9570):1356–1362.
  • Jenkins HE, Aylward RB, Gasasira A, et al. Effectiveness of immunization against paralytic poliomyelitis in Nigeria. N Engl J Med. 2008;359(16):1666–1674.
  • Grassly NC, Jafari H, Bahl S, et al. Mucosal immunity after vaccination with monovalent and trivalent oral poliovirus vaccine in India. The Journal of Infectious Diseases. 2009;200(5):794–801.
  • Grassly NC, Jafari H, Bahl S, et al. Asymptomatic wild-type poliovirus infection among children with previous oral poliovirus vaccination. J Infect Dis. 2010;10:1535–1543.
  • Jenkins HE, Aylward RB, Gasasira A, et al. Implications of a circulating vaccine-derived poliovirus in Nigeria. N Engl J Med. 2010;326(25):2360–2369.
  • Grassly NC, Jafari H, Bahl S, et al. Waning intestinal immunity after vaccination with oral poliovirus vaccines in India. J Infect Dis. 2012;205(10):1554–1561.
  • O’Reilly KM, Durry E, Ul Islam O, et al. The effect of mass immunisation campaigns and new oral poliovirus vaccines on the incidence of poliomyelitis in Pakistan and Afghanistan, 2001-11: a retrospective analysis. Lancet. 2012;380(9840):491–498.
  • John J, Giri S, Karthikeyan AS, et al. Effect of a single inactivated poliovirus vaccine dose on intestinal immunity against poliovirus in children previously given oral vaccine: an open-label, randomised controlled trial. Lancet. 2014;384(9953):1505–1512.
  • Jafari H, Deshpande JM, Sutter RW, et al. Polio eradication. Efficacy of inactivated poliovirus vaccine in India. Science. 2014;345(6199):922–925.
  • Mangal TD, Aylward RB, Mwanza M, et al. Key issues in the persistence of poliomyelitis in Nigeria: a case-control study. Lancet Glob Health. 2014;2(2):e90–7.
  • O’Reilly KM, Chauvin C, Aylward RB, et al. A statistical model of the international spread of wild poliovirus in Africa used to predict and prevent outbreaks. PLoS Med. 2011;8(10): e1001109.
  • Hird TR, Grassly NC, Andino R. Systematic review of mucosal immunity induced by oral and inactivated poliovirus vaccines against virus shedding following oral poliovirus challenge. PLoS Pathog. 2012;8(4):e1002599.
  • Grassly NC. The final stages of the global eradication of poliomyelitis. Philos Trans R Soc Lond B Biol Sci. 2013;368(1623):20120140.
  • Grassly NC. Immunogenicity and effectiveness of routine immunization with 1 or 2 doses of inactivated poliovirus vaccine: systematic review and meta-analysis. J Infect Dis. 2014;210(Suppl 1):S439–46.
  • Mangal TD, Aylward RB, Grassly NC. The potential impact of routine immunization with inactivated poliovirus vaccine on wild-type or vaccine-derived poliovirus outbreaks in a posteradication setting. Am J Epidemiol. 2013;178(10):1579–1587.
  • Blake IM, Martin R, Goel A, et al. The role of older children and adults in wild poliovirus transmission. Proc Natl Acad Sci U S A. 2014;111(29):10604–10609.
  • Li LM, Grassly NC, Fraser C. Quantifying transmission heterogeneity using both pathogen phylogenies and incidence time series. Mol Biol Evol. 2017;34(11):2982–2995.
  • Pons-Salort M, Burns CC, Lyons H, et al. Preventing vaccine-derived poliovirus emergence during the polio endgame. PLoS Pathog. 2016;12(7):e1005728.
  • Mangal TD, Aylward RB, Shuaib F, et al. Spatial Dynamics and high risk transmission pathways of poliovirus in Nigeria 2001-2013. PLoS One. 2016;11(9):e0163065.
  • Molodecky NA, Blake IM, O’Reilly KM, et al. Risk factors and short-term projections for serotype-1 poliomyelitis incidence in Pakistan: A spatiotemporal analysis. PLoS Med. 2017;14(6):e1002323.
  • John J, Giri S, Karthikeyan AS, et al. The duration of intestinal immunity after an inactivated poliovirus vaccine booster dose in children immunized with oral vaccine: a randomized controlled trial.. J Infect Dis. 2017;215(4):529–536.
  • Kaliappan SP, Venugopal S, Giri S, et al. Factors determining anti-poliovirus type 3 antibodies among orally immunised Indian infants. Vaccine. 2016;34(41):4979–4984.
  • Grassly NC, Praharaj I, Babji S, et al. The effect of azithromycin on the immunogenicity of oral poliovirus vaccine: a double-blind randomised placebo-controlled trial in seronegative Indian infants. Lancet Infect Dis. 2016;16(8):905–914.
  • Giri S, Kumar N, Dhanapal P, et al. Quantity of vaccine poliovirus shed determines the titer of the serum neutralizing antibody response in Indian children who received oral vaccine. J Infect Dis. 2018;217(9):1395–1398.
  • Praharaj I, Parker EPK, Giri S, et al. Influence of nonpolio enteroviruses and the bacterial gut microbiota on oral poliovirus vaccine response: a study from South India. J Infect Dis. 2019;219(8):1178–1186.
  • Parker EPK, Whitfield H, Baskar C, et al. FUT2 secretor status is not associated with oral poliovirus vaccine immunogenicity in South Indian Infants. J Infect Dis. 2019;219(4):578–581.
  • O’Reilly KM, Lamoureux C, Molodecky NA, et al., An assessment of the geographical risks of wild and vaccine-derived poliomyelitis outbreaks in Africa and Asia. BMC Infect Dis. 2017;17(1): 367.
  • O’Reilly KM, Cori A, Durry E, et al. A new method for estimating the coverage of mass vaccination campaigns against poliomyelitis from surveillance data. Am J Epidemiol. 2015;182(11):961–970.
  • Pons-Salort M, Molodecky NA, O’Reilly KM, et al. Population immunity against serotype-2 poliomyelitis leading up to the global withdrawal of the oral poliovirus vaccine: spatio-temporal modeling of surveillance data. PLoS Med. 2016;13(10):e1002140.
  • Blake IM, Chenoweth P, Okayasu H, et al. Faster detection of poliomyelitis outbreaks to support polio eradication. Emerg Infect Dis. 2016;22(3):449–456.
  • Blake IM, Pons-Salort M, Molodecky NA, et al. Type 2 poliovirus detection after global withdrawal of trivalent oral vaccine. N Engl J Med. 2018;379(9):834–845.
  • Shirreff G, Wadood MZ, Vaz RG, et al. Estimated effect of inactivated poliovirus vaccine campaigns, Nigeria and Pakistan, January 2014-April 2016. Emerg Infect Dis. 2017;23(2):258–263.
  • Grassly NC, Wadood MZ, Safdar RM, et al. Effect of inactivated poliovirus vaccine campaigns, Pakistan, 2014-2017. Emerg Infect Dis. 2018;24(11):2113–2115.
  • Imran H, Raja D, Grassly NC, et al. Routine immunization in Pakistan: comparison of multiple data sources and identification of factors associated with vaccination. Int Health. 2018;10(2):84–91.
  • O’Reilly KM, Verity R, Durry E, et al. Population sensitivity of acute flaccid paralysis and environmental surveillance for serotype 1 poliovirus in Pakistan: an observational study. BMC Infect Dis. 2018;18(1).
  • Grassly NC. New vaccine strategies to finish polio eradication. Lancet Infect Dis. 2015;15(8):864–865.
  • Parker EPK, Grassly NC. Polio vaccination: preparing for a change of routine. Lancet. 2016;388(10040):107–108.
  • Parker EPK, Grassly NC. Unravelling mucosal immunity to poliovirus. Lancet Infect Dis. 2016;16(12):1310–1311.
  • Grassly NC. Eradicating polio with a vaccine we must stop using. Lancet Infect Dis. 2018;18(6):590–591.
  • Grassly NC, Kang G, Kampmann B. Biological challenges to effective vaccines in the developing world. Philos Trans R Soc Lond B Biol Sci. 2015;370(1671): 20140138.
  • Grassly NC, Orenstein WA. Securing the Eradication of All Polioviruses. Clin Infect Dis. 2018;67(suppl_1):S1–s3.
  • Parker EP, Molodecky NA, Pons-Salort M, et al. Impact of inactivated poliovirus vaccine on mucosal immunity: implications for the polio eradication endgame. Expert Rev Vaccines. 2015;14(8):1113–1123.
  • Macklin G, Liao Y, Takane M, et al. Prolonged excretion of poliovirus among individuals with primary immunodeficiency disorder: an analysis of the World Health Organization registry. Front Immunol. 2017;8:1103.
  • Church JA, Parker EP, Kirkpatrick BD, et al. Interventions to improve oral vaccine performance: a systematic review and meta-analysis. Lancet Infect Dis. 2019;19(2):203–214.
  • Macklin GR, Grassly NC, Sutter RW, et al. Vaccine schedules and the effect on humoral and intestinal immunity against poliovirus: a systematic review and network meta-analysis. Lancet Infect Dis. 2019;19(10):1121–1128.
  • Behrend MR, Hu H, Nigmatulina KR, et al. A quantitative survey of the literature on poliovirus infection and immunity. Int J Infect Dis. 2014;18:4–13.
  • Wagner BG, Behrend MR, Klein DJ, et al. Quantifying the impact of expanded age group campaigns for polio eradication. Plos One. 2014;9(12):e113538. e113538-e113538.
  • Brown AE, Okayasu H, Nzioki MM, et al. Lot quality assurance sampling to monitor supplemental immunization activity quality: an essential tool for improving performance in polio endemic countries. J Infect Dis. 2014;210(Suppl suppl_1):S333–40.
  • Upfill-Brown AM, Lyons HM, Pate MA, et al. Predictive spatial risk model of poliovirus to aid prioritization and hasten eradication in Nigeria. BMC Med. 2014;12(1):92.
  • McCarthy KA, Chabot-Couture G, Shuaib F. A spatial model of wild poliovirus type 1 in Kano State, Nigeria: calibration and assessment of elimination probability. BMC Infect Dis. 2016;16(1):521.
  • McCarthy KA, Chabot-Couture G, Famulare M, et al. The risk of type 2 oral polio vaccine use in post-cessation outbreak response. BMC Med. 2017;15(1):175.
  • Famulare M, Selinger C, McCarthy KA, et al. Assessing the stability of polio eradication after the withdrawal of oral polio vaccine. PLoS Biol. 2018;16(4):e2002468.
  • Taniuchi M, Famulare M, Zaman K, et al. Community transmission of type 2 poliovirus after cessation of trivalent oral polio vaccine in Bangladesh: an open-label cluster-randomised trial and modeling study. Lancet Infect Dis. 2017;17(10):1069–1079.
  • Famulare M, Kapoor A. Has wild poliovirus been eliminated from Nigeria? Plos One. 2015;10(8):e0135765.
  • Chabot-Couture G, Seaman VY, Wenger J, et al. Advancing digital methods in the fight against communicable diseases. Int Health. 2015;7(2):79–81.
  • Famulare M, Hu H. Extracting transmission networks from phylogeographic data for epidemic and endemic diseases: ebola virus in Sierra Leone, 2009 H1N1 pandemic influenza and polio in Nigeria. Int Health. 2015;7(2):130–138.
  • Famulare M, Chang S, Iber J, et al. Sabin vaccine reversion in the field: a comprehensive analysis of Sabin-like poliovirus isolates in Nigeria. J Virol. 2015;90(1):317–331.
  • Voorman A, Lyons HM. Measuring polio immunity to plan immunization activities. Vaccine. 2016;34(48):5946–5952.
  • Upfill-Brown AM, Voorman A, Chabot-Couture G, et al. Analysis of vaccination campaign effectiveness and population immunity to support and sustain polio elimination in Nigeria. BMC Med. 2016;14(1):60.
  • Mercer LD, Safdar RM, Ahmed J, et al., Spatial model for risk prediction and sub-national prioritization to aid poliovirus eradication in Pakistan. BMC Med. 2017;15(1): 180.
  • Kroiss SJ, Famulare M, Lyons H, et al. Evaluating cessation of the type 2 oral polio vaccine by modeling pre- and post-cessation detection rates. Vaccine. 2017;35(42):5674–5681.
  • Bershteyn A, Gerardin J, Bridenbecker D, et al. Implementation and applications of EMOD, an individual-based multi-disease modeling platform. Pathog Dis. 2018;76(5):fty059.
  • Kroiss SJ, Ahmadzai M, Ahmed J, et al. Assessing the sensitivity of the polio environmental surveillance system. PLoS One. 2018;13(12):e0208336.
  • Zimmermann M, Hagedorn B, Lyons H. Projection of costs of polio eradication compared to permanent control. J Infect Dis; 2020;221(4):561–565.
  • Ranta J, Hovi T, Arjas E. Poliovirus surveillance by examining sewage water specimens: studies on detection probability using simulation models. Risk Anal. 2001;21(6):1087–1096.
  • Fine PEM, Sutter RW, Orenstein WA. Stopping a polio outbreak in the post-eradication era. Dev Biol. 2001;105:129–147.
  • Bunimovich-Mendrazitsky S, Stone L. Modeling polio as a disease of development. J Theor Biol. 2005;237(3):302–315.
  • Wagner BG, Earn DJD. Circulating vaccine derived polio viruses and their impact on global polio eradication. Bull Math Biol. 2008;70(1):253–280.
  • Wagner BG, Earn DJD. Population dynamics of live-attenuated virus vaccines. Theor Popul Biol. 2010;77(2):79–94.
  • Agarwal M, Bhadauria AS. Modeling spread of polio with the role of vaccination. Appl Appl Math Int J. 2011;6(2):552–571.
  • Sasaki A, Haraguchi Y, Yoshida H. Estimating the risk of re-emergence after stopping polio vaccination. Front Microbiol. 2012;3:178.
  • Mayer BT, Eisenberg JNS, Henry CJ, et al. Successes and shortcomings of polio eradication: a transmission modeling analysis. Am J Epidemiol. 2013;177(11):1236–1245.
  • Kim J-H, Rho S-H. Transmission dynamics of oral polio vaccine viruses and vaccine-derived polioviruses on networks. J Theor Biol. 2015;364:266–274.
  • Okuonghae D, Gumel AB, Safi MA. Dynamics of a two-strain vaccination model for polio. Nonlinear Anal Real World Appl. 2015;25:167–189.
  • Wilder-Smith A, Leong W-Y, Lopez LF, et al. Potential for international spread of wild poliovirus via travelers. BMC Med. 2015;13(1):133.
  • Martinez-Bakker M, King AA, Rohani P. Unraveling the transmission ecology of polio. PLoS Biol. 2015;13(6):e1002172.
  • Alawieh A, Sabra Z, Langley EF, et al. Assessing the impact of the Lebanese National Polio Immunization Campaign using a population-based computational model. BMC Public Health. 2017;17(1):902.
  • Browne CJ, Smith RJ, Bourouiba L. From regional pulse vaccination to global disease eradication: insights from a mathematical model of poliomyelitis. J Math Biol. 2015;71(1):215–253.
  • Houy N. The case for periodic OPV routine vaccination campaigns. J Theor Biol. 2016;389:20–27.
  • Yaari R, Kaliner E, Grotto I, et al. Modeling the spread of polio in an IPV-vaccinated population: lessons learned from the 2013 silent outbreak in southern Israel. BMC Med. 2016;14(1):95
  • Burgess C, Burgess A, McMullen K. Modeling risk to US military populations from stopping blanket mandatory polio vaccination. Comp Math Meth Med. 2017;7981645.
  • Dénes A, Székely L. Global dynamics of a mathematical model for the possible re-emergence of polio. Math Biosci. 2017;293:64–74.
  • Koopman JS, Henry CJ, Park JH, et al. Dynamics affecting the risk of silent circulation when oral polio vaccination is stopped. Epidemics. 2017;20:21–36.
  • Brouwer AF, Eisenberg JNS, Pomeroy CD, et al. Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data. Proc Natl Acad Sci U S A. 2018;115(45):E10625–E10633
  • Vallejo C, Keesling J, Koopman J, et al. Silent circulation of poliovirus in small populations. Infect Dis Model. 2017;2(4):431–440.
  • Vallejo C, Keesling J, Koopman J, et al. Corrigendum to “Silent circulation of poliovirus in small populations.” Infect Dis Model. 2018;3:136–138.
  • Vallejo C, Pearson CAB, Koopman J, et al. Evaluating the probability of silent circulation of polio in small populations using the silent circulation statistic. Infect Dis Model. 2019;4:239–250.
  • Fu R, Altamirano J, Sarnquist CC, et al. Assessing the risk of vaccine-derived outbreaks after reintroduction of oral poliovirus vaccine in postcessation settings. Clin Infect Dis. 2018;67(suppl_1):S26–s34.
  • Balde C, Lam M, Bah A, et al. Theoretical assessment of the impact of environmental contamination on the dynamical transmission of polio. Int J Biomath. 2019;12,(2):1950012.
  • Jacobson SH, Sewell EC. Using Monte Carlo simulation to determine combination vaccine price distributions for childhood diseases. Health Care Manag Sci. 2002;5(2):135–145.
  • Tucker AW, Isaacs D, Burgess M. Cost-effectiveness analysis of changing from live oral poliovirus vaccine to inactivated poliovirus vaccine in Australia. Aust N Z J Public Health. 2001;25(5):411–416.
  • Jenkins PC, Modlin JF. Decision analysis in planning for a polio outbreak in the United States. Pediatrics. 2006;118(2):611–618.
  • Cohen AL. Economic analysis of prevaccination serotesting compared with presumptive immunization for polio, diphtheria, and tetanus in internationally adopted and immigrant infants. Pediatrics. 2006;117(5):1650–1655.
  • Barrett S. Stop! the polio vaccination cessation game. World Bank Econ Rev. 2010;24(3):361–385.
  • Yang W, Parisi M, Lahue B, et al. The budget impact of controlling wastage with smaller vials: A data driven model of session sizes in Bangladesh, India (Uttar Pradesh), Mozambique, and Uganda. Vaccine. 2014;32(49):6643–6648.
  • Nandi A, Barter DM, Prinja S, et al. The estimated health and economic benefits of three decades of polio elimination efforts in India. Indian Pediatr. 2016;53(Suppl 1):S7–S13.
  • Shendale S, Farrell M, Hampton LM, et al. Financial support to eligible countries for the switch from trivalent to bivalent oral polio vaccine-lessons learned. J Infect Dis. 2017;216(suppl_1):S57–S65.
  • Akil L, Ahmad HA. The recent outbreaks and reemergence of poliovirus in war and conflict-affected areas. Inter J Infect Dis. 2016;49:40–46.
  • Bencsko G, Ferenci T. Effective case/infection ratio of poliomyelitis in vaccinated populations. Epidemiol Infect. 2016;144(9):1933–1942.
  • Escarela G, Mena RH, Castillo-Morales A. A flexible class of parametric transition regression models based on copulas: application to poliomyelitis incidence. Stat Methods Med Res. 2006;15(6):593–609.
  • Hao LX, Toyokawa S, Kobayashi Y. Poisson-model analysis of the risk of vaccine-associated paralytic poliomyelitis in Japan between 1971 and 2000. Jpn J Infect Dis. 2008;61(2):100–103.
  • Kang J, Lee S. Parameter change test for random coefficient integer-valued autoregressive processes with application to polio data analysis. J Time Ser Anal. 2009;30(2):239–258.
  • Nelson KP, Leroux BG. Statistical models for autocorrelated count data. Stat Med. 2006;25(8):1413–1430.
  • Noori N, Drake JM, Rohani P. Comparative epidemiology of poliovirus transmission. Sci Rep. 2017;7(1):17362.
  • Zhou CLE. S2M: a stochastic simulation model of poliovirus genetic state transition. Bioinform Biol Insights. 2016;10:81–95.
  • Lloyd AL. Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor Popul Biol. 2001;60(1):59–71.
  • Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys. 1976;22(4):403–434.
  • World Health Organization. Polio outbreak response: the faster, the better. Polio Eradication Initiative - Polio News, Issue 25, Autumn, pages 2–3 2005 [cited 2014 Jan 4]; Available from: http://www.polioeradication.org/content/polionews/polionews25.pdf.
  • Roberts L. Global health. Polio eradication: is it time to give up? Science. 2006;312(5775):832–835.
  • Edmunds WJ, Medley GF, Nokes DJ. Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective. Stat Med. 1999;18(23):3263–3282.
  • Duintjer Tebbens RJ, Thompson KM, Hunink MGM, et al. Uncertainty and sensitivity analyses of a dynamic economic evaluation model for vaccination programs. Med Decis Mak. 2008;28(2):182–200.
  • Duintjer Tebbens RJ, Thompson KM. Priority shifting and the dynamics of managing eradicable infectious disease. Manage Sci. 2009;55(4):650–663.
  • Thompson KM, Duintjer Tebbens RJ. Economic evaluation of the benefits and costs of disease elimination and eradication initiatives. In: Cochi SL, Dowdle WR, editors. Disease eradication in the 21st century: implications for global health. Cambridge, MA: MIT Press; 2011. p. 115–130.
  • Thompson KM, Rabinovich R, Conteh L, et al. Group report: developing an eradication investment case. In: Cochi SL, Dowdle WReditors. Disease eradication in the 21st century: implications for global health. Cambridge, MA: MIT Press; 2011. p. 133–148.
  • Eichner M, Dietz K. Eradication of poliomyelitis: when can one be sure that polio virus transmission has been terminated? Am J Epidemiol. 1996;143(8):816–822.
  • Eichner M, Hadeler KP. Deterministic models for the eradication of poliomyelitis: vaccination with the inactivated (IPV) and attenuated (OPV) polio virus vaccine. Math Biosci. 1995;127(2):149–166.
  • Eichner M, Hadeler KP, Dietz K. Stochastic models for the eradication of poliomyelitis: minimum population size for polio virus persistence. In: Isham V, Medley GF, editors. Models for infectious human diseases: their structure and relation to data. New York: Cambridge University Press; 1996. p. 315–327.
  • Thompson KM. Valuing prevention as the new paradigm in global health: managing population immunity For vaccine-preventable diseases. ICU Manage. 2012;12(4):9–11.
  • World Health Organization Global Polio Eradication Initiative. Polio eradication and endgame Strategic Plan (2013-2018). Geneva; 2013. Report No: WHO/POLIO/13.02 2013 [cited 2019 Jun 4]; Available from: http://polioeradication.org/wp-content/uploads/2016/07/PEESP_EN_A4.pdf.
  • Kalkowska DA, Pallansch MA, Wassilak SGF, et al. Global transmission of live polioviruses: updated dynamic modeling of the polio endgame. Risk Anal. 2020. DOI:10.1111/risa.13447.
  • Thompson KM, Kalkowska DA, Reflections on modeling poliovirus transmission and the polio eradication endgame. Risk Anal., 2020. DOI:10.1111/risa.13484.
  • Fine PEM. Herd immunity: history, theory, practice. Epidemiol Rev. 1993;15(2):265–302.
  • Fine PE, Carneiro IA. Transmissibility and persistence of oral polio vaccine viruses: implications for the global poliomyelitis eradication initiative. Am J Epidemiol. 1999;150(10):1001–1021.
  • Fine PEM. Gaps in our knowledge about transmission of vaccine-derived polioviruses. Bull World Health Organ. 2000;78(3):358–359.
  • Nathanson N, Fine PEM. Virology. Poliomyelitis eradication–a dangerous endgame. Science. 2002;296(5566):269–270.
  • Fine PEM, Ritchie S. Perspective: determinants of the severity of poliovirus outbreaks in the post eradication era. Risk Anal. 2006;26(6):1533–1540.
  • Wringe A, Fine PEM, Sutter RW, et al. Estimating the extent of vaccine-derived poliovirus infection. PLoS One. 2008;3(10):e3433.
  • Bencskó G, Ferenci T. Effective case/infection ratio of poliomyelitis in vaccinated populations. Epidemiol Infect. 2016;144(9):1933–1942.
  • Nuismer SL, Althouse BM, May B, et al. Eradicating infectious disease using weakly transmissible vaccines. Proc Biol Sci. 2016;283(1841):20161903.
  • Chen CJ, Lin TM, You SL. Epidemiological aspects of a poliomyelitis outbreak in Taiwan, 1982. Ann Acad Med Singapore. 1984;13(2):149–155.
  • Cvjetanovic B, Grab B, Dixon H. Epidemiological models of poliomyelitis and measles and their application in the planning of immunization programmes. Bull World Health Organ. 1982;60(3):405–422.
  • Elveback LR, Ackerman E, Gatewood L, et al. Stochastic two-agent epidemic simulation models for a community of families. Am J Epidemiol. 1971;93(4):267–280.
  • Khan MM, Ehreth J. Costs and benefits of polio eradication: a long-run global perspective. Vaccine. 2003;21:702–705.
  • Sangrujee N, Cáceres VM, Cochi SL. Cost analysis of post-polio certification immunization policies. Bull World Health Organ. 2004;82(1):9–15.
  • Musgrove P. Is polio eradication in the Americas economically justified? Bull Pan Am Health Organ. 1988;22(1):1–16.
  • Bart K, Foulds J, Patriarca P. Global eradication of poliomyelitis: benefit-cost analysis. Bull World Health Organ. 1996;74:35–45.
  • Hinman AR, Koplan JP, Orenstein WA, et al. Live or inactivated poliomyelitis vaccine: an analysis of benefits and risks. Am J Public Health. 1988;78(3):291–295.
  • Hinman AR, Koplan JP, Orenstein WA, et al. Decision analysis and polio immunization policy. Am J Public Health. 1988;78(3):301–303.
  • Miller MA, Sutter RW, Strebel PM, et al. Cost-effectiveness of incorporating inactivated poliovirus vaccine into the routine childhood immunization schedule. J Am Med Assoc. 1996;276(12):967–971.
  • Griffiths UK, Botham L, Schoub BD. The cost-effectiveness of alternative polio immunization policies in South Africa. Vaccine. 2006;24(29–30):5670–5678.
  • Khan MM. Economics of polio vaccination in the post-eradication era: should OPV-using countries adopt IPV? Vaccine. 2008;26(16):2034–2040.
  • Mascarenas A, Salinas J, Tasset-Tisseau A, et al. Polio immunization policy in Mexico: economic assessment of current practice and future alternatives. Public Health. 2005;119(6):542–549.
  • Khan MM, Sharma S, Tripathi B, et al. Budget impact of polio immunization strategy for India: introduction of one dose of inactivated poliomyelitis vaccine and reductions in supplemental polio immunization. Public Health. 2017;142:31–38.
  • Barrett S, Hoel M. Optimal disease eradication. Environ Dev Econ. 2007;12(5):627–652.
  • Barrett S. Polio eradication: strengthening the weakest links. Health Affairs. 2009;28(4):1079–1090.
  • Barrett S. Economic considerations for the eradication endgame. Philos Trans R Soc Lond B Biol Sci. 2013;368(1623):20120149.
  • Sicuri E, Evans DB, Tediosi F. Can economic analysis contribute to disease elimination and eradication? A systematic review. PloS One. 2015;10(6):e0130603.
  • Mvundura M, Hsu J-S, Frivold C, et al. Evaluating the cost per child vaccinated with full versus fractional-dose inactivated poliovirus vaccine. Vaccine X. 2019;2:100032.
  • Voorman A, Hoff NA, Doshi RH, et al. Polio immunity and the impact of mass immunization campaigns in the democratic Republic of the Congo. Vaccine. 2017;35(42):5693–5699.
  • World Health Assembly. Poliomyelitis: mechanism for management of potential risks to eradication (resolution 61.1). 2008 [cited 2019 Jun 4]; Available from: http://apps.who.int/gb/ebwha/pdf_files/WHA61-REC1/A61_Rec1-part2-en.pdf.
  • Kalkowska DA, et al., Modeling poliovirus transmission in Borno and Yobe, northeast Nigeria. Risk Analysis, 2020; DOI:10.1111/risa.13485
  • Kalkowska DA, Thompson KM, Modeling undetected live poliovirus circulation after apparent interruption of transmission: Borno and Yobe in northeast Nigeria. Risk Analysis, 2020; DOI:10.1111/risa.13486
  • World Health Organization. Report from the twentieth meeting of the global commission for certification of poliomyelitis eradication, Geneva, Switzerland, 17 — 18 October 2019. 2019 [cited 2019 Dec 31]; Available from: http://polioeradication.org/wp-content/uploads/2016/07/20th-meeting-of-the-Global-Commission-for-the-Certification-of-Eradication-of-Poliomyelitis-17-18-October-2019.pdf.
  • Duintjer Tebbens RJ, Thompson KM. Evaluation of proactive and reactive strategies for polio eradication activities in Pakistan and Afghanistan. Risk Anal. 2019;39(2):389–401.
  • Kalkowska DA, Thompson KM. Insights from modeling preventive supplemental immunization activities as a strategy to eliminate wild poliovirus transmission in Pakistan and Afghanistan. Risk Anal. 2020. DOI:10.1111/risa.13471.
  • Macklin GR, O’Reilly KM, Grassly NC, et al. Evolving epidemiology of poliovirus serotype 2 following withdrawal of the serotype 2 oral poliovirus vaccine.. Science. 2020;368(6489):401–405.
  • Kalkowska DA, Pallansch MA, Cochi SL, et al. Updated characterization of post-OPV cessation risks: Lessons from 2019 serotype 2 outbreaks and implications for the probability of OPV restart. Risk Anal. 2020. DOI:10.1111/risa.13555.
  • Thompson KM, Kalkowska DA. Potential future use, costs, and value of poliovirus vaccines. Risk Analysis. 2020 [ cited 2020 July 9]. DOI:10.1111/risa.13557.
  • Van Damme P, De Coster I, Bandyopadhyay AS, et al. The safety and immunogenicity of two novel live attenuated monovalent (serotype 2) oral poliovirus vaccines in healthy adults: a double-blind, single-centre phase 1 study. Lancet. 2019;394(10193):148–158.
  • Edens C, Dybdahl-Sissoko NC, Weldon WC, et al. Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine. 2015;33(37):4683–4690.
  • Muller DA, Pearson FE, Fernando GJP, et al. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses. Sci Rep. 2016;6(1):22094.
  • Muller DA, Fernando GJP, Owens NS, et al. High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses. Sci Rep. 2017;7(1):12644.
  • Badizadegan K, Goodson JL, Rota PA, et al. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Rev Vaccines. 2020;19(2):175–194.
  • Barau I, Zubairu M, Mwanza MN, et al. Improving polio vaccination coverage in Nigeria through the use of geographic information system technology. The Journal of Infectious Diseases. 2014;210(Suppl suppl_1):S102–S110.
  • Higgins J, Adamu U, Adewara K, et al. Finding inhabited settlements and tracking vaccination progress: the application of satellite imagery analysis to guide the immunization response to confirmation of previously-undetected, ongoing endemic wild poliovirus transmission in Borno State, Nigeria. Int J Health Geogr. 2019;18(1):11.