667
Views
34
CrossRef citations to date
0
Altmetric
Review

An overview of in silico vaccine design against different pathogens and cancer

ORCID Icon, &
Pages 699-726 | Received 08 Mar 2020, Accepted 01 Jul 2020, Published online: 10 Aug 2020

References

  • Who, Unicef. World Bank. State of the world’s vaccines and immunization, Geneva. World Health Org. 2009;130–145.
  • Verma S, Sajid A, Singh Y, et al., Computational tools for modern vaccine development. Hum Vaccin Immunother. Sep 2019: 1–13. DOI:10.1080/21645515.2019.1670035.
  • Josefsberg JO, Buckland B. Vaccine process technology. Biotechnol Bioeng. 2012;109(6):1443–1460.
  • Jarząb A, Skowicki M, Witkowska D. Subunit vaccines: antigens, carriers, conjugation methods and the role of adjuvants. Postepy Higieny Medycyny Doswiadczalnej. 2013;67:1128–1143.
  • Pachuk CJ, McCallus DE, Weiner DB, et al. DNA vaccines: challenges in delivery. Curr Opin Mol Ther. 2000;2(2):188–198. PMID: 11249641.
  • Meza B, Ascencio F, Sierra-Beltrán AP, et al. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: an in silico approach. Infect Genet Evol. 2017;49:309–317.
  • Moise L, Gutierrez A, Kibria F, et al. iVAX: an integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Hum Vaccin Immunother. 2015;11(9):2312–2321.
  • Zhou WY, Shi Y, Wu C, et al. Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model. Vaccine. 2009;27(36):5013–5019.
  • Su JH, Wu A, Scotney E, et al. Immunotherapy for cervical cancer. BioDrugs. 2010;24(2):109–129.
  • Sharmin R, Islam AB. A highly conserved WDYPKCDRA epitope in the RNA directed RNA polymerase of human coronaviruses can be used as epitope-based universal vaccine design. BMC Bioinformatics. 2014;15(1):161.
  • Oany AR, Emran AA, Jyoti TP. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des Devel Ther. 2014;8:1139.
  • De Groot AS, Jesdale B, Martin W, et al. Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach. Vaccine. 2003;21(27-30:4486–4504.
  • Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One. 2019;14(10):e0223844.
  • Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Mol Immunol. 2020;119:106–122.
  • Negahdaripour M, Eslami M, Nezafat N, et al. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infect Genet Evol. 2017;54:402–416.
  • de Oliveira LM, Morale MG, Chaves AA, et al. Design, immune responses and anti-tumor potential of an HPV16 E6E7 multi-epitope vaccine. PLoS One. 2015;10(9):e0138686.
  • Namvar A, Panahi HA, Agi E, et al. Development of HPV 16, 18, 31, 45 E5 and E7 peptides-based vaccines predicted by immunoinformatics tools. Biotechnol Lett. 2020;8:1–6.
  • Ali M, Pandey RK, Khatoon N, et al. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci Rep. 2017;7(1):1–3.
  • Fahimi H, Sadeghizadeh M, Mohammadipour M. In silico analysis of an envelope domain III-based multivalent fusion protein as a potential dengue vaccine candidate. Clin Exp Vaccine Res. 2016;5(1):41–49.
  • Subramaniyan V, Venkatachalam R, Srinivasan P, et al. In silico prediction of monovalent and chimeric tetravalent vaccines for prevention and treatment of dengue fever. J Biomed Res. 2018;32(3):222.
  • Chakraborty S, Chakravorty R, Ahmed M, et al. A computational approach for identification of epitopes in dengue virus envelope protein: a step towards designing a universal dengue vaccine targeting endemic regions. In Silico Biol. 2010;10(5–6):235–246.
  • Ikram A, Zaheer T, Awan FM, et al. Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Sci Rep. 2018;8(1):1–4.
  • Chauhan V, Rungta T, Goyal K, et al. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci Rep. 2019;9(1):1–5.
  • Hasan M, Ghosh PP, Azim KF, et al. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microb Pathog. 2019;130:19–37.
  • Eickhoff CS, Terry FE, Peng L, et al. Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine. 2019;37(36):5371–5381.
  • Ayub G, Waheed Y, Najmi MH. Prediction and conservancy analysis of promiscuous T-cell binding epitopes of Ebola virus L protein: an in silico approach. Asian Pacific J Trop Disease. 2016;6(3):169–173.
  • Khan MA, Hossain MU, Rakib-Uz-Zaman SM, et al. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study. Scand J Immunol. 2015;82(1):25–34.
  • Bazhan SI, Antonets DV, Karpenko LI, et al. In silico designed ebola virus T-cell multi-epitope DNA vaccine constructions are immunogenic in mice. Vaccines (Basel). 2019;7(2):34.
  • Janahi EM, Dhasmana A, Srivastava V, et al. In silico CD4+, CD8+ T-cell and B-cell immunity associated immunogenic epitope prediction and HLA distribution analysis of Zika virus. Excli J. 2017;16:63.
  • Munikumar M, Priyadarshini IV, Pradhan D, et al. Computational approaches to identify common subunit vaccine candidates against bacterial meningitis. Interdiscip Sci. 2013;5(2):155–164.
  • Umamaheswari A, Pradhan D, Hemanthkumar M. Computer aided subunit vaccine design against pathogenic Leptospira serovars. Interdiscip Sci. 2012;4(1):38–45.
  • De Groot AS, McMurry J, Marcon L, et al. Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine. 2005;23(17–18):2121–2131.
  • Shah P, Mistry J, Reche PA, et al. In silico design of Mycobacterium tuberculosis epitope ensemble vaccines. Mol Immunol. 2018;97:56–62.
  • Rashidian E, Gandabeh ZS, Forouharmehr A, et al. Immunoinformatics approach to engineer a potent poly-epitope fusion protein vaccine against Coxiella burnetii. Int J Pept Res Ther. 2019;1.
  • Scholzen A, Richard G, Moise L, et al. Promiscuous Coxiella burnetii CD4 epitope clusters associated with human recall responses are candidates for a novel T-cell targeted multi-epitope Q fever vaccine. Front Immunol. 2019;10:207.
  • Pandey RK, Ali M, Ojha R, et al. Development of multi-epitope driven subunit vaccine in secretory and membrane protein of Plasmodium falciparum to convey protection against malaria infection. Vaccine. 2018;36(30):4555–4565.
  • Kaur R, Arora N, Jamakhani MA, et al. Development of multi-epitope chimeric vaccine against Taenia solium by exploring its proteome: an in silico approach. In: Vol. 19, Expert review of vaccines. 2020. p. 105–114.
  • Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017;7(1):1–2.
  • Seyed N, Taheri T, Vauchy C, et al. Immunogenicity evaluation of a rationally designed polytope construct encoding HLA-A*0201 restricted epitopes derived from Leishmania major related proteins in HLA-A2/DR1 transgenic mice: steps toward polytope vaccine. PLoS One. 2014;9(10):e108848. .
  • Pourseif MM, Yousefpour M, Aminianfar M, et al. A multi-method and structure-based in silico vaccine designing against Echinococcus granulosus through investigating enolase protein. BioImpacts. 2019;9(3):131.
  • Thakur R, Shankar J. In silico identification of potential peptides or allergen shot candidates against Aspergillus fumigatus. BioResearch. 2016;5(1):330–341.
  • Tarang S, Kesherwani V, LaTendresse B, et al. In silico design of a multivalent vaccine against Candida albicans. Sci Rep. 2020;10(1):1–7.
  • Atapour A, Negahdaripour M, Ghasemi Y, et al. In Silico designing a candidate vaccine against breast cancer. Int J Pept Res Ther. 2019;1–2. DOI:10.1007/s10989-019-09843-1.
  • Mahdavi M, Moreau V. In silico designing breast cancer peptide vaccine for binding to MHC class I and II: a molecular docking study. Comput Biol Chem. 2016;65:110–116.
  • Khan KH. DNA vaccines: roles against diseases. Germs. 2013;3(1):26.
  • Lu S, Wang S, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans. Expert Rev Vaccines. 2008;7(2):175–191.
  • Karpenko LI, Bazhan SI, Eroshkin AM, et al. Artificial epitope-based immunogens in HIV-vaccine design. In Advances in HIV and AIDS Control. London (UK): IntechOpen; 2018.
  • Bazhan SI, Karpenko LI, Ilyicheva TN, et al. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses. Mol Immunol. 2010;47(7–8):1507–1515.
  • Hanke T, McMichael AJ. Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med. 2000;6(9):951–955.
  • Karpenko LI, Bazhan SI, Antonets DV, et al. Novel approaches in polyepitope T-cell vaccine development against HIV-1. Expert Rev Vaccines. 2014;13(1):155–173.
  • Jensen KK, Andreatta M, Marcatili P, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394–406.
  • Jurtz V, Paul S, Andreatta M, et al. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 2017;199(9):3360–3368.
  • Van Regenmortel MH. Synthetic peptide vaccines and the search for neutralization B cell epitopes. In: InHIV/AIDS: immunochemistry, reductionism and vaccine design. University of Strasbourg, France; 2019. p. 25–37.
  • De Groot AS, Moise L, Liu R, et al. Immune camouflage: relevance to vaccines and human immunology. Hum Vaccin Immunother. 2014;10(12):3570–3575.
  • Moutaftsi M, Peters B, Pasquetto V, et al. A consensus epitope prediction approach identifies the breadth of murine T CD8+ cell responses to vaccinia virus. Nat Biotechnol. 2006;24(7):817–819.
  • Moise L, De Groot AS. Putting immunoinformatics to the test. Nat Biotechnol. 2006;24(7):791–792.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
  • Kaur D, Patiyal S, Sharma N, et al. PRRDB 2.0: a comprehensive database of pattern-recognition receptors and their ligands. Database. 2019;2019. DOI:10.1093/database/baz076.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373.
  • Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461–488.
  • Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol. 2012;13(4):333.
  • Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343.
  • Tartey S, Takeuchi O. Pathogen recognition and Toll-like receptor targeted therapeutics in innate immune cells. Int Rev Immunol. 2017;36(2):57–73.
  • Hochrein H, Schlatter B, O’Keeffe M, et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and-independent pathways. Proc Nat Acad Sci. 2004;101(31):11416–11421.
  • Krug A, French AR, Barchet W, et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity. 2004;21(1):107–119.
  • Krug A, Luker GD, Barchet W, et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood. 2004;103(4):1433–1437.
  • Lund J, Sato A, Akira S, et al. Toll-like receptor 9–mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med. 2003;198(3):513–520.
  • Tabeta K, Georgel P, Janssen E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Nat Acad Sci. 2004;101(10):3516–3521.
  • Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745.
  • Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20(1):709–760.
  • Gazzinelli RT, Ropert C, Campos MA. Role of the Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites. Immunol Rev. 2004;201(1):9–25.
  • Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature. 2001;413(6857):732–738.
  • Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol. 2000;1(5):398–401.
  • Dhanda SK, Usmani SS, Agrawal P, et al. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform. 2017;18(3):467–478.
  • Usmani SS, Kumar R, Bhalla S, et al. In silico tools and databases for designing peptide-based vaccine and drugs. Adv Protein Chem Struct Biol. 2018;112:221–263.
  • Grimm SK, Ackerman ME. Vaccine design: emerging concepts and renewed optimism. Curr Opin Biotechnol. 2013;24(6):1078–1088.
  • Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010;17(7):1055–1065.
  • Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol. 2003;15(4):461–470.
  • Chen W, Antón LC, Bennink JR, et al. Dissecting the multifactorial causes of immunodominance in class I–restricted T cell responses to viruses. Immunity. 2000;12(1):83–93.
  • van der Most RG, Sette A, Oseroff C, et al. Analysis of cytotoxic T cell responses to dominant and subdominant epitopes during acute and chronic lymphocytic choriomeningitis virus infection. J Immunol. 1996;157(12):5543–5554. PMID: 8955205.
  • Vitiello A, Yuan L, Chesnut RW, et al. Immunodominance analysis of CTL responses to influenza PR8 virus reveals two new dominant and subdominant Kb-restricted epitopes. J Immunol. 1996;157(12):5555–5562. PMID: 8955206.
  • Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I–restricted T lymphocyte responses. Annu Rev Immunol. 1999;17(1):51–88.
  • Livingston BD, Newman M, Crimi C, et al. Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine. 2001;19(32):4652–4660.
  • Sette A, Newman M, Livingston B, et al. Optimizing vaccine design for cellular processing, MHC binding and TCR recognition. Tissue Antigens. 2002;59(6):443–451.
  • Sette A, Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and-B polymorphism. Immunogenetics. 1999;50(3–4):201–212.
  • Sette A, Buus S, Appella E, et al. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Nat Acad Sci. 1989;86(9):3296–3300.
  • Sette A, Vitiello A, Reherman B, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol. 1994;153(12):5586–5592. PMID: 7527444.
  • Barve M, Bender J, Senzer N, et al. Induction of immune responses and clinical efficacy in a phase II trial of IDM-2101, a 10-epitope cytotoxic T-lymphocyte vaccine, in metastatic non–small-cell lung cancer. J clin oncol. 2008;26(27):4418–4425.
  • Kenter GG, Welters MJ, Valentijn AR, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361(19):1838–1847.
  • Flower DR. Towards in silico prediction of immunogenic epitopes. Trends Immunol. 2003;24(12):667–674.
  • Goldberg AL, Cascio P, Saric T, et al. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol. 2002;39(3–4):147–164.
  • Schirle M, Weinschenk T, Stevanović S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J Immunol Methods. 2001;257(1–2):1–6.
  • Falk K, Rötzschke O, Stevanovié S, et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351(6324):290–296.
  • Delisi C, Berzofsky JA. T-cell antigenic sites tend to be amphipathic structures. Proc Nat Acad Sci. 1985;82(20):7048–7052.
  • Stille CJ, Thomas LJ, Reyes VE, et al. Hydrophobic strip-of-helix algorithm for selection of T cell-presented peptides. Mol Immunol. 1987;24(10):1021–1027.
  • Rothbard JB, Taylor WR. A sequence pattern common to T cell epitopes. Embo J. 1988;7(1):93–100. PMCID: PMC454220.
  • Meister GE, Roberts CG, Berzofsky JA, et al. Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine. 1995;13(6):581–591.
  • Deavin AJ, Auton TR, Greaney PJ. Statistical comparison of established T-cell epitope predictors against a large database of human and murine antigens. Mol Immunol. 1996;33(2):145–155.
  • Flower DR, Doytchinova IA, Paine K, et al. Computational vaccine design. Special Pub Royal Soc Chem. 2002;279:136–180.
  • Bisset LR, Fierz W. Using a neural network to identify potential HLA-DR1 binding sites within proteins. J Mol Recog. 1993;6(1):41–48.
  • Brusic V, Rudy G, Honeyman G, et al. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics. 1998;14(2):121–130.
  • Rammensee HG, Bachmann J, Emmerich NP, et al. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(3–4):213–219.
  • Marshall KW, Wilson KJ, Liang J, et al. Prediction of peptide affinity to HLA DRB1* 0401. J Immunol. 1995;154(11):5927–5933. PMID: 7751636.
  • Reche PA, Glutting JP, Zhang H, et al. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 2004;56(6):405–419.
  • Rognan D, Lauemøller SL, Holm A, et al. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. J Med Chem. 1999;42(22):4650–4658.
  • Zhao Y, Pinilla C, Valmori D, et al. Application of support vector machines for T-cell epitopes prediction. Bioinformatics. 2003;19(15):1978–1984.
  • Altuvia Y, Schueler O, Margalit H. Ranking potential binding peptides to MHC molecules by a computational threading approach. J Mol Biol. 1995;249(2):244–250.
  • Stern LJ, Brown JH, Jardetzky TS, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. 1994;368(6468):215–221.
  • Lippolis JD, White FM, Marto JA, et al. Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets. J Immunol. 2002;169(9):5089–5097.
  • Rammensee HG. Chemistry of peptides associated with MHC class I and class II molecules. Curr Opin Immunol. 1995;7(1):85–96.
  • Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, et al. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405–414.
  • Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990;276(1–2):172–174.
  • Fleri W, Paul S, Dhanda SK, et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol. 2017;8:278.
  • Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2(1):2.
  • Haste Andersen P, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 2006;15(11):2558–2567.
  • Kringelum JV, Lundegaard C, Lund O, et al. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol. 2012;8(12):e1002829.
  • Ponomarenko J, Bui HH, Li W, et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9(1):514.
  • Panahi HA, Bolhassani A, Javadi G, et al. A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. PLoS One. 2018;13:10.
  • Khairkhah N, Namvar A, Kardani K, et al. Prediction of cross-clade HIV-1 T-cell epitopes using immunoinformatics analysis. Proteins Struct Funct Bioinf. 2018;86(12):1284–1293.
  • Doolan DL, Southwood S, Chesnut R, et al. HLA-DR-promiscuous T cell epitopes from Plasmodium falciparum pre-erythrocytic stage antigens restricted by multiple HLA class II alleles. J Immunol. 2000;165(2):1123–1137.
  • Wilson CC, Palmer B, Southwood S, et al. Identification and antigenicity of broadly cross-reactive and conserved human immunodeficiency virus type 1-derived helper T-lymphocyte epitopes. J Virol. 2001;75(9):4195–4207.
  • Sette A, Chesnut R, Livingston B, et al. HLA-binding peptides as a therapeutic approach for chronic HIV infection. IDrugs. 2000;3(6):643–648.
  • Bui HH, Sidney J, Dinh K, et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics. 2006;7(1):153.
  • González-Galarza FF, Takeshita LY, Santos EJ, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43(D1):D784–D788.
  • Allergen Nomenclature: International Union of Immunological Societies, Allergen Nomenclature Sub-Committee. 2007 [cited 2007]. Available from: http://www.allergen.org.
  • Cooper PJ. Intestinal worms and human allergy. Parasite Immunol. 2004;26(11–12):455–467.
  • Furmonaviciene R, Sutton BJ, Glaser F, et al. An attempt to define allergen-specific molecular surface features: a bioinformatic approach. Bioinformatics. 2005;21(23):4201–4204.
  • Ivanciuc O, Schein CH, Braun W. SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res. 2003;31(1):359–362.
  • Fiers MW, Kleter GA, Nijland H, et al. Allermatch™, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. BMC Bioinformatics. 2004;5(1):133.
  • Stadler MB, Stadler BM. Allergenicity prediction by protein sequence. Faseb J. 2003;17(9):1141–1143.
  • Dimitrov I, Naneva L, Doytchinova I, et al. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 2014;30(6):846–851.
  • Venkatarajan MS, Braun W. New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical-chemical properties. Mol Model Ann. 2001;7(12):445–453.
  • Tanimoto TT. Elementary mathematical theory of classification and prediction. International Business Machines Corporation. 1958;1–10.
  • Frecer V, Ho B, Ding JL. De novo design of potent antimicrobial peptides. Antimicrob Agents Chemother. 2004;48(9):3349–3357.
  • Raghava GP, Goel A, Singh AM, et al. A simple microassay for computing the hemolytic potency of drugs. Biotechniques. 1994;17(6):1148–1153.
  • Chaudhary K, Kumar R, Singh S, et al. A web server and mobile app for computing hemolytic potency of peptides. Sci Rep. 2016;6(1):1–3.
  • Gautam A, Chaudhary K, Singh S, et al. Hemolytik: a database of experimentally determined hemolytic and non-hemolytic peptides. Nucleic Acids Res. 2014;42(D1):D444–D449.
  • Kanduc D, Shoenfeld Y. Human papillomavirus epitope mimicry and autoimmunity: the molecular truth of peptide sharing. Pathobiology. 2019;86(5–6):285–295.
  • Rino R, Miller HI, Falkow S. The intangible value of vaccination. Science. 2002;297(5583):937–939.
  • Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):4.
  • Doytchinova IA, Flower DR. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J. 2008;1(1):4.
  • Westhof E, Altschuh D, Moras D, et al. Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature. 1984;311(5982):123–126.
  • Novotný J, Handschumacher M, Haber E, et al. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc Nat Acad Sci. 1986;83(2):226–230.
  • Thornton JM, Edwards MS, Taylor WR, et al. Location of ‘continuous’ antigenic determinants in the protruding regions of proteins. Embo J. 1986;5(2):409–413.
  • Baker D, Sali A. Protein structure prediction and structural genomics. Science. 2001;294(5540):93–96.
  • Watson JD, Laskowski RA, Thornton JM. Predicting protein function from sequence and structural data. Curr Opin Struct Biol. 2005;15(3):275–284.
  • Goeddel DV, Kleid DG, Bolivar F, et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Nat Acad Sci. 1979;76(1):106–110.
  • Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21–39.
  • Boohaker JR, Lee WM, Vishnubhotla P, et al. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794–3804.
  • Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15(1–2):40–56.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20(1):122–128.
  • Antosova Z, Mackova M, Kral V, et al. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009;27(11):628–635.
  • Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1443–1467.
  • Di L. Strategic approaches to optimizing peptide ADME properties. Aaps J. 2015;17(1):134–143.
  • Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PloS One. 2017;12(7):e0181748.
  • Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. American Academic Publisher; 2005. p. 571–607.
  • Song X, Zhou T, Jia H, et al. SProtP: A web server to recognize those short-lived proteins based on sequence-derived features in human cells. PLoS One. 2011;6(11):e27836.
  • Sharma A, Singla D, Rashid M, et al. Designing of peptides with desired half-life in intestine-like environment. BMC Bioinformatics. 2014;15(1):282.
  • Mathur D, Singh S, Mehta A, et al. In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS One. 2018;13(6):e0196829.
  • Schueler-Furman O, London N. Modeling peptide-protein interactions: methods and protocols. 1st ed. American Academic Publisher; 2017.
  • Diller DJ, Swanson J, Bayden AS, et al. Rational, computer-enabled peptide drug design: principles, methods, applications and future directions. Future Med Chem. 2015;7(16):2173–2193.
  • London N, Raveh B, Cohen E, et al. Rosetta FlexPepDock web server-high resolution modeling of peptide-protein interactions. Nucleic Acids Res. 2011;39(2):W249–W253.
  • Antes I. DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins Struct Funct Bioinf. 2010;78(5):1084–1104.
  • Yan C, Xu X, Zou X. Fully blind docking at the atomic level for protein-peptide complex structure prediction. Structure. 2016;24(10):1842–1853.
  • Porter KA, Xia B, Beglov D, et al. Efficient global docking of peptide recognition motifs using FFT. Bioinformatics. 2017;33(20):3299–3301.
  • Lee H, Heo L, Lee MS, et al. A protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res. 2015;43(W1):W431–W435.
  • Lensink MF, Velankar S, Wodak SJ. Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins Struct Funct Bioinf. 2017;85(3):359–377.
  • Kundrotas PJ, Zhu Z, Janin J, et al. Templates are available to model nearly all complexes of structurally characterized proteins. Proc Nat Acad Sci. 2012;109(24):9438–9441.
  • Nagpal G, Usmani SS, Raghava GP. A web resource for designing subunit vaccine against major pathogenic species of bacteria. Front Immunol. 2018;2(9):2280.
  • Sayers S, Ulysse G, Xiang Z, et al. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development. Biomed Res Int. 2012;2012:1–13.
  • Glenny AT. The antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol. 1926;29:38–45.
  • Freund J, Casals J, Hosmer EP. Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Pro Soc Exp Biol Med. 1937;37(3):509–513.
  • Stuart-Harris CH. Adjuvant influenza vaccines. Bull World Health Organ. 1969;41(3–4–5):615.
  • Johnson AG, Gaines S, Landy M. Studies on the O antigen of Salmonella typhosa: V. Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J Exp Med. 1956;103(2):225–246.
  • Ellouz F, Adam A, Ciorbaru R, et al. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun. 1974;59(4):1317–1325.
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509.
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33(4):492–503.
  • Aguilar JC, Rodriguez EG. Vaccine adjuvants revisited. Vaccine. 2007;25(19):3752–3762.
  • Lata S, Raghava GPPRRDB. A comprehensive database of pattern-recognition receptors and their ligands. BMC Genomics. 2008;9(1):180.
  • Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374(6522):546–549.
  • Nagpal G, Gupta S, Chaudhary K, et al. VaccineDA: prediction, design and genome-wide screening of oligodeoxynucleotide-based vaccine adjuvants. Sci Rep. 2015;5:12478.
  • Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine. 2012;7:2181.
  • Breuer K, Foroushani AK, Laird MR, et al. InnateDB: systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic Acids Res. 2013;41(D1):D1228–D1233.
  • Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: mechanisms and benefits. Vaccine. 2016;34(4):413–423.
  • Bolhassani A, Kardani K, Vahabpour R, et al. Prime/boost immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. Immunol Lett. 2015;168(2):366–373.
  • Fisk BR, Dague BE, Seifert W, et al. Mass-spectrometric analysis of naturally processed peptides recognized by ovarian tumor-associated CD8 (+) CTL. Int J Oncol. 1997;10(1):159–169.
  • Schirle M, Keilholz W, Weber B, et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol. 2000;30(8):2216–2225.
  • Gupta S, Chaudhary K, Dhanda SK, et al. A platform for designing genome-based personalized immunotherapy or vaccine against cancer. PLoS One. 2016;11(11):e0166372.
  • Dhanda SK, Vir P, Singla D, et al. A web-based platform for designing vaccines against existing and emerging strains of Mycobacterium tuberculosis. PLoS One. 2016;11(4):e0153771.
  • Dhanda SK, Chaudhary K, Gupta S, et al. A web-based resource for designing therapeutics against Ebola virus. Sci Rep. 2016;6(1):1–8.
  • Behr MA. BCG-different strains, different vaccines? Lancet Infect Dis. 2002;2(2):86–92.
  • Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol. 2020;92(5):495–500.
  • Bhattacharya M, Ranjan Sharma A, Patra P, et al. Development of epitope-based peptide vaccine against novel Coronavirus 2019 (SARS-COV-2): immunoinformatics approach. J Med Virol. 2020;92:618–631.
  • Badawi MM, SalahEldin MA, Suliman MM, et al. In silico prediction of a novel universal multi-epitope peptide vaccine in the whole spike glycoprotein of MERS CoV. Am J Microbiol Res. 2016;4(4):101–121.
  • Shi J, Zhang J, Li S, et al. Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases. PLoS One. 2015;10(12):e0144475.
  • Ul Qamar MT, Saleem S, Ashfaq UA, et al. Epitope-based peptide vaccine design and target site depiction against Middle East respiratory syndrome coronavirus: an immune-informatics study. J Transl Med. 2019;17(1):362.
  • De Groot AS, Levitz L, Ardito MT, et al. Further progress on defining highly conserved immunogenic epitopes for a global HIV vaccine: HLA-A3-restricted GAIA vaccine epitopes. Hum Vaccin Immunother. 2012;8(7):987–1000.
  • Pandey RK, Ojha R, Aathmanathan VS, et al. Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine. 2018;36(17):2262–2272.
  • Davoodi S, Bolhassani A, Sadat SM, et al. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett. 2019;41(11):1283–1298.
  • Namvar A, Bolhassani A, Javadi G, et al. In silico/In vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci Rep. 2019 Oct 23;9(1):1–22.
  • Namazi F, Bolhassani A, Sadat SM, et al. Delivery of HIV-1 polyepitope constructs using cationic and amphipathic cell penetrating peptides into mammalian cells. Curr HIV Res. 2019;17(6):408–428.
  • Sabah SN, Gazi MA, Sthity RA, et al. Designing of epitope-focused vaccine by targeting E6 and E7 conserved protein sequences: an immuno-informatics approach in human papillomavirus 58 isolates. Interdiscip Sci. 2018 Jun 1;10(2):251–260.
  • Kaliamurthi S, Selvaraj G, Chinnasamy S, et al. Exploring the papillomaviral proteome to identify potential candidates for a chimeric vaccine against cervix papilloma using immunomics and computational structural vaccinology. Viruses. 2019 Jan;11(1):63.
  • Kaliamurthi S, Selvaraj G, Kaushik AC, et al. Designing of CD8+ and CD8+-overlapped CD4+ epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics. 2018;12:107.
  • Kaliamurthi S, Selvaraj G, Chinnasamy S, et al. Immunomics datasets and tools: to identify potential epitope segments for designing chimeric vaccine candidate to cervix papilloma. Data. 2019 Mar;4(1):31.
  • von Delft A, Donnison TA, Lourenço J, et al. The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes. Vaccine. 2018 Jan 4;36(2):313–321.
  • Atapour A, Mokarram P, MostafaviPour Z, et al. Designing a fusion protein vaccine against HCV: an in silico approach. Int J Pept Res Ther. 2019 Sep 1;25(3):861–872.
  • Kumar A, Pandey R, Yadav IS, et al. Structural and epitope analysis (T-and B-cell epitopes) of hepatitis C virus (HCV) glycoproteins: an in silico approach. J Clin Exp Hepatol. 2018 Dec 1;8(4):352–361.
  • Ramírez-Salinas GL, García-Machorro J, Rojas-Hernández S, et al. Bioinformatics design and experimental validation of influenza A virus multi-epitopes that induce neutralizing antibodies. Arch Virol. 2020 Feb;14:1–21.
  • Dash R, Das R, Junaid M, et al. In silico-based vaccine design against Ebola virus glycoprotein. Adv Appl Bioinf Chem AABC. 2017;10:11.
  • Sharma P, Kaur R, Upadhyay AK, et al. In-silico prediction of peptide based vaccine against Zika virus. Int J Pept Res Ther. 2020;26:85–91.
  • Prasasty VD, Grazzolie K, Rosmalena R, et al. Peptide-based subunit vaccine design of T-and B-cells multi-epitopes against Zika virus using immunoinformatics approaches. Microorganisms. 2019 Aug;7(8):226.
  • Mittal A, Sasidharan S, Raj S, et al. Exploring the Zika genome to design a potential multiepitope vaccine using an immunoinformatics approach. Int J Pept Res Ther. 2020;0(0): 1–10.
  • Salvador EA, de Souza GP, Malaquias LC, et al. Identification of relevant regions on structural and nonstructural proteins of Zika virus for vaccine and diagnostic test development: an in silico approach. New Microbes New Infect. 2019 May 1;29:100506.
  • Kumar Pandey R, Ojha R, Mishra A, et al. Designing B‐and T‐cell multi‐epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J Cell Biochem. 2018 Sep;119(9):7631–7642.
  • Urrutia-Baca VH, Gomez-Flores R, De La Garza-Ramos MA, et al. Immunoinformatics approach to design a novel epitope-based oral vaccine against Helicobacter pylori. J Comput Biol. 2019Oct1;26(10):1177–1190.
  • Khan M, Khan S, Ali A, et al. Immunoinformatics approaches to explore Helicobacter pylori proteome (virulence factors) to design B and T cell multi-epitope subunit vaccine. Sci Rep. 2019 Sep 16;9(1):1–3.
  • Pandey RK, Bhatt TK, Prajapati VK. Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci Rep. 2018 Jan 18;8(1):1.
  • Bordbar A, Bagheri KP, Ebrahimi S, et al. Bioinformatics analyses of immunogenic T-cell epitopes of LeIF and PpSP15 proteins from Leishmania major and sand fly saliva used as model antigens for the design of a multi-epitope vaccine to control leishmaniasis. Infect Genet Evol. 2020 Jan;10:104189.
  • Ebrahimipour M, Afgar A, Barati M, et al. Evaluation of the antigenic epitopes of EgAgB/1 and EgAgB/4 subunit antigens in G1 and G6 genotypes of Echinococcus granulosus using bioinformatics. Gene Rep. 2019 Jun 1;15:100361.
  • Tongchusak S, Leelayuwat C, Brusic V, et al. In silico prediction and immunological validation of common HLA‐DRB1‐restricted T cell epitopes of Candida albicans secretory aspartyl proteinase 2. Microbiol Immunol. 2008 Apr;52(4):231–242.
  • Parvizpour S, Razmara J, Pourseif MM, et al. In silico design of a triple-negative breast cancer vaccine by targeting cancer testis antigens. Bioimpacts. 2019;9(1):45.
  • Taheri-Anganeh M, Amiri A, Movahedpour A, et al. In silico evaluation of PLAC1-fliC as a chimeric vaccine against breast cancer. Iran Biomed J. 2020;24(3):173–182.
  • Safavi A, Kefayat A, Sotoodehnejadnematalahi F, et al. In silico analysis of synaptonemal complex protein 1 (SYCP1) and Acrosin Binding Protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. Int J Pept Res Ther. 2019Dec1;25(4):1343–1359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.