397
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

The role of noninvasive diagnostic imaging in monitoring pregnancy and detecting patients at risk for preterm birth: a review of quantitative approaches

, , , , , , , & show all
Pages 568-591 | Received 29 Aug 2019, Accepted 23 Jan 2020, Published online: 23 Feb 2020

References

  • Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 2010;21(6):353–361.
  • Word RA, Li X-H, Hnat M, et al. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Seminars in reproductive medicine. New York, USA: Thieme Publishers, Inc.; 2007.
  • Ananth CV, Ananth CV, Vintzileos AM. Epidemiology of preterm birth and its clinical subtypes. J Matern Fetal Neonatal Med. 2006;19(12):773–782.
  • Akins ML, Luby-Phelps K, Bank RA, et al. Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse. Biol Reprod. 2011;84(5):1053–1062.
  • Frey HA, Klebanoff MA. The epidemiology, etiology, and costs of preterm birth. Semin Fetal Neonat Med. 2016;21(2):68–73.
  • James E, Wood CL, Nair H, et al. Preterm birth and the timing of puberty: a systematic review. BMC Pediatr. 2018;18(1):3.
  • Martin JA, Osterman MJ, Centers for Disease Control and Prevention. Preterm births—United States, 2006 and 2010. MMWR Surveill Summ. 2013;62(suppl 3):136–138.
  • Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–535.
  • Martin JA, Hamilton BE, Osterman MJ. Births in the United States, 2014. NCHS Data Brief. 2015;216:1–8.
  • Greenough A. Long-term respiratory consequences of premature birth at less than 32 weeks of gestation. Early Hum Dev. 2013;89:S25–S27.
  • Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):145–157.
  • Mwaniki MK, Atieno M, Lawn JE, et al. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet. 2012;379(9814):445–452.
  • Hutchinson EA, De Luca CR, Doyle LW, et al. School-age outcomes of extremely preterm or extremely low birth weight children. Pediatrics. 2013;131(4):e1053–e1061.
  • Vohr B. Long-term outcomes of moderately preterm, late preterm, and early term infants. Clin Perinatol. 2013;40(4):739–751.
  • Butler AS, Behrman RE. Preterm birth: causes, consequences, and prevention. National Academies Press; 2007;398–401.
  • Iams JD, Goldenberg RL, Meis PJ, et al. The length of the cervix and the risk of spontaneous premature delivery. N Engl J Med. 1996;334(9):567–573.
  • Berghella V, Tolosa JE, Kuhlman K, et al. Cervical ultrasonography compared with manual examination as a predictor of preterm delivery. Am J Obstet Gynecol. 1997;177(4):723–730.
  • Heath V, Southall TR, Souka AP, et al. Cervical length at 23 weeks of gestation: prediction of spontaneous preterm delivery. Ultrasound Obstet Gynecol. 1998;12(5):312–317.
  • Hassan SS, Romero R, Berry SM, et al. Patients with an ultrasonographic cervical length ≤15 mm have nearly a 50% risk of early spontaneous preterm delivery. Am J Obstet Gynecol. 2000;182(6):1458–1467.
  • Romero R, Yeo L, Miranda J, et al. A blueprint for the prevention of preterm birth: vaginal progesterone in women with a short cervix. J Perinat Med. 2013;41(1):27–44.
  • Lim K, Butt K, Crane JM, et al. Ultrasonographic cervical length assessment in predicting preterm birth in singleton pregnancies. J Obstet Gynaecol Canada. 2011;33(5):486–499.
  • Yost NP, Bloom SL, Twickler DM, et al. Pitfalls in ultrasonic cervical length measurement for predicting preterm birth. Obstet Gynecol. 1999;93(4):510–516.
  • To M, Skentou CA, Royston P, et al. Prediction of patient‐specific risk of early preterm delivery using maternal history and sonographic measurement of cervical length: a population‐based prospective study. Ultrasound Obstet Gynecol. 2006;27(4):362–367.
  • Rozenberg P, Goffinet F, Malagrida L, et al. Evaluating the risk of preterm delivery: a comparison of fetal fibronectin and transvaginal ultrasonographic measurement of cervical length. Am J Obstet Gynecol. 1997;176(1):196–199.
  • Crane J, Hutchens D. Transvaginal sonographic measurement of cervical length to predict preterm birth in asymptomatic women at increased risk: a systematic review. Ultrasound Obstet Gynecol. 2008;31(5):579–587.
  • Crane J, Van den Hof M, Armson BA, et al. Transvaginal ultrasound in the prediction of preterm delivery: singleton and twin gestations. Obstet Gynecol. 1997;90(3):357–363.
  • Chan YL, Lam WW, Lau TK, et al. Cervical assessment by magnetic resonance imaging–its relationship to gestational age and interval to delivery. BJR. 1998;71(842):155–159.
  • Pates JA, Zaretsky MV, Alexander JM, et al. Determining cervical ripeness and labor outcome: the efficacy of magnetic resonance T2 relaxation times. Obstet Gynecol. 2007;109(2):326–330.
  • Oláh KS. The use of magnetic resonance imaging in the assessment of the cervical hydration state. BJOG. 1994;101(3):255–257.
  • House M, O'Callaghan M, Bahrami S, et al. Magnetic resonance imaging of the cervix during pregnancy: effect of gestational age and prior vaginal birth. Am J Obstet Gynecol. 2005;193(4):1554–1560.
  • de Tejada BM, Faltin DL, Kinkel K, et al. Magnetic resonance imaging of the cervix in women at high risk for preterm delivery. J Matern Fetal Neonatal Med. 2011;24(11):1392–1397.
  • Avila C, Santorelli J, Mathai J, et al. Anatomy of the fetal membranes using optical coherence tomography: part 1. Placenta. 2014;35(12):1065–1069.
  • Maul H, Olson G, Fittkow CT, et al. Cervical light-induced fluorescence in humans decreases throughout gestation and before delivery: preliminary observations. Am J Obstet Gynecol. 2003;188(2):537–541.
  • Glassman WS, Liao Q-P, Goodrum L, et al. Fluorescence probe for cervical examination during various reproductive states. Proceedings of SPIE 2980 in San Jose, CA—Advanced Fluorescence Sensing Technology III; 1997.
  • Maul H, Saade G, Garfield RE. Prediction of term and preterm parturition and treatment monitoring by measurement of cervical cross-linked collagen using light-induced fluorescence. Acta Obstet Gynecol Scand. 2005;84(6):534–536.
  • Zhang Y, Akins ML, Murari K, et al. A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy. Proc Natl Acad Sci. 2012;109(32):12878–12883.
  • Kleissl HP, Van der Rest M, Naftolin F, et al. Collagen changes in the human uterine cervix at parturition. Am J Obstet Gynecol. 1978;130(7):748–753.
  • Oxlund BS, Ørtoft G, Brüel A, et al. Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women. Reprod Biol Endocrinol. 2010;8(1):82.
  • Yao W, Gan Y, Myers KM, et al. Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women. PLOS One. 2016;11(11):e0166709.
  • Muñoz-de-Toro M, Varayoud J, Ramos J, et al. Collagen remodeling during cervical ripening is a key event for successful vaginal delivery. Braz J Morphol Sci. 2003;20:75–84.
  • Nott JP, Bonney EA, Pickering JD, et al. The structure and function of the cervix during pregnancy. Transl Res Anat. 2016;2:1–7.
  • Myers KM, Feltovich H, Mazza E, et al. The mechanical role of the cervix in pregnancy. J Biomech. 2015;48(9):1511–1523.
  • Hassan SS, Romero R, Tarca AL, et al. Signature pathways identified from gene expression profiles in the human uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol. 2007;197(3):250 e1–250 e7.
  • Hassan SS, Romero R, Tarca AL, et al. The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: identification of novel molecular functions involved in this process. J Matern Fetal Neonatal Med. 2009;22(12):1183–1193.
  • Hassan SS, Romero R, Haddad R, et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol. 2006;195(3):778–786.
  • Hassan SS, Romero R, Pineles B, et al. MicroRNA expression profiling of the human uterine cervix after term labor and delivery. Am J Obstet Gynecol. 2010;202(1):80 e1–80 e8.
  • Hassan SS, Romero R, Tarca AL, et al. The molecular basis for sonographic cervical shortening at term: identification of differentially expressed genes and the epithelial-mesenchymal transition as a function of cervical length. Am J Obstet Gynecol. 2010;203(5):472 e1–472 e14.
  • Becher N, Hein M, Danielsen CC, et al. Matrix metalloproteinases and their inhibitors in the cervical mucus plug at term of pregnancy. Am J Obstet Gynecol. 2004;191(4):1232–1239.
  • Leppert PC. Anatomy and physiology of cervical ripening. Clinic Obstet Gynecol. 1995;38(2):267–279.
  • Straach KJ. Regulation of hyaluronan expression during cervical ripening. Glycobiology. 2004;15(1):55–65.
  • Uchiyama T, Matsumoto T, Suzuki Y, et al. Endogenous hyaluronan: a cytokine-like factor present in rabbit uterine cervix during pregnancy. Biol Pharm Bull. 2004;27(12):1907–1912.
  • Mahendroo M. Cervical remodeling in term and preterm birth: insights from an animal model. Reproduction. 2012;143(4):429–438.
  • Guerrero QW, Drehfal LC, Rosado-Mendez IM, et al. Monitoring collagen remodeling in the cervix with quantitative ultrasound. In Reproductive sciences. Thousand Oaks, CA USA: Sage Publications Inc; 2007.
  • Hernandez-Andrade E, Hassan SS, Ahn H, et al. Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography. Ultrasound Obstet Gynecol. 2013;41(2):152–161.
  • Burdet J, Rubio A, Salazar A, et al. Inflammation, infection and preterm birth. CPD. 2014;20(29):4741–4748.
  • Agrawal V, Hirsch E. Intrauterine infection and preterm labor. Semin Fetal Neonat Med. Elsevier; 2012;17(1):12–19.
  • Romero R, Chaiworapongsa T, Espinoza J. Micronutrients and intrauterine infection, preterm birth and the fetal inflammatory response syndrome. J Nutr. 2003;133(5):1668S–1673S.
  • House M, Socrate S. The cervix as a biomechanical structure. Ultrasound Obstet Gynecol. 2006;28(6):745–749.
  • Barnett SB, Ter Haar GR, Ziskin MC, et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol. 2000;26(3):355–366.
  • Hershkovitz R, Sheiner E, Mazor M. Ultrasound in obstetrics: a review of safety. Eur J Obstet Gynecol Reprod Biol. 2002;101(1):15–18.
  • Honest H, Bachmann LM, Coomarasamy A, et al. Accuracy of cervical transvaginal sonography in predicting preterm birth: a systematic review. Ultrasound Obstet Gynecol. 2003;22(3):305–322.
  • Mella MT, Berghella V. Prediction of preterm birth: cervical sonography. Semin Perinatol. 2009;33(5):317–324.
  • Burger M, Weber‐Rössler T, Willmann M. Measurement of the pregnant cervix by transvaginal sonography: an interobserver study and new standards to improve the interobserver variability. Ultrasound Obstet Gynecol. 1997;9(3):188–193.
  • Westerway SC, Pedersen LH, Hyett J. Cervical length measurement: comparison of transabdominal and transvaginal approach. Australas J Ultrasound Med. 2015;18(1):19–26.
  • Hassan SS, Romero R, Vidyadhari D, for the PREGNANT Trial, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2011;38(1):18–31
  • Berghella V, Odibo AO, Tolosa JE. Cerclage for prevention of preterm birth in women with a short cervix found on transvaginal ultrasound examination: a randomized trial. Am J Obstet Gynecol. 2004;191(4):1311–1317.
  • To MS, Alfirevic Z, Heath VC, et al. Cervical cerclage for prevention of preterm delivery in woman with short cervix: randomised controlled trial. The Lancet. 2004;363(9424):1849–1853.
  • Parra-Saavedra M, Gómez L, Barrero A, et al. Prediction of preterm birth using the cervical consistency index. Ultrasound Obstet Gynecol. 2011;38(1):44–51.
  • Banos N, Murillo-Bravo C, Julià C, et al. Mid-trimester sonographic cervical consistency index to predict spontaneous preterm birth in a low-risk population. Ultrasound Obstet Gynecol. 2018;51(5):629–636.
  • Kongwattanakul K, Saksiriwuttho P, Komwilaisak R, et al. Short cervix detection in pregnant women by transabdominal sonography with post-void technique. J Med Ultrasonics. 2016;43(4):519–522.
  • Jackson GM, Ludmir J, Bader TJ. The accuracy of digital examination and ultrasound in the evaluation of cervical length. Obstet Gynecol. 1992;79(2):214–218.
  • Roh H-J, Ji YI, Jung CH, et al. Comparison of cervical lengths using transabdominal and transvaginal sonography in midpregnancy. J Ultrasound Med. 2013;32(10):1721–1728.
  • Rust OA, Atlas RO, Reed J et al. Revisiting the short cervix detected by transvaginal ultrasound in the second trimester: why cerclage therapy may not help. Am J Obstetrics Gynecol. 2001;185(5):1098–1105.
  • Severi FM, Bocchi C, Florio P, et al. Comparison of two-dimensional and three-dimensional ultrasound in the assessment of the cervix to predict preterm delivery. Ultrasound Med Biol. 2003;29(9):1261–1265.
  • House M, Feltovich H, Hall TJ, et al. Three-dimensional, extended field-of-view ultrasound method for estimating large strain mechanical properties of the cervix during pregnancy. Ultrason Imaging. 2012;34(1):1–14.
  • Park IY, Kwon, JY, Kwon, JY, et al. Usefulness of cervical volume by three-dimensional ultrasound in identifying the risk for preterm birth. Ultrasound Med Biol. 2011;37(7):1039–1045.
  • Berghella V, Daly SF, Tolosa JE, et al. Prediction of preterm delivery with transvaginal ultrasonography of the cervix in patients with high-risk pregnancies: does cerclage prevent prematurity? Am J Obstet Gynecol. 1999;181(4):809–815.
  • Rust OA, Atlas RO, Kimmel S, et al. Does the presence of a funnel increase the risk of adverse perinatal outcome in a patient with a short cervix? Am J Obstet Gynecol. 2005;192(4):1060–1066.
  • Albayrak E, Dogru HY, Ozmen Z, et al. Is evaluation of placenta with real-time sonoelastography during the second trimester of pregnancy an effective method for the assessment of spontaneous preterm birth risk? Clin Imaging. 2016;40(5):926–930.
  • Berghella V, Bega G, Tolosa JE, et al. Ultrasound assessment of the cervix. Clin Obstet Gynecol. 2003;46(4):947–962.
  • Dziadosz M, Bennett T-A, Dolin C, et al. Uterocervical angle: a novel ultrasound screening tool to predict spontaneous preterm birth. Am J Obstet Gynecol. 2016;215(3):376.e1–376.e7.
  • Sochacki-Wojcicka N, Wojcicki J, Bomba-Opon D, et al. Anterior cervical angle as a new biophysical ultrasound marker for prediction of spontaneous preterm birth. Ultrasound Obstet Gynecol. 2015;46(3):377–378.
  • Yost NP, Owen J, Berghella V, et al. Second-trimester cervical sonography: features other than cervical length to predict spontaneous preterm birth. Obstet Gynecol. 2004;103(3):457–462.
  • Turan OM, Turan S, Funai EF, et al. Fetal adrenal gland volume: a novel method to identify women at risk for impending preterm birth. Obstet Gynecol. 2007;109(4):855–862.
  • Turan OM, Turan S, Funai EF, et al. Ultrasound measurement of fetal adrenal gland enlargement: an accurate predictor of preterm birth. Am J Obstet Gynecol. 2011;204(4):311.e1–311.e10.
  • Romero R, Kusanovic JP, Espinoza J, et al. What is amniotic fluid ‘sludge’? Ultrasound Obstet Gynecol. 2007;30(5):793–798.
  • Espinoza J, Gonçalves LF, Romero R, et al. The prevalence and clinical significance of amniotic fluid ‘sludge’ in patients with preterm labor and intact membranes. Ultrasound Obstet Gynecol. 2005;25(4):346–352.
  • Ventura W, Nazario C, Ingar J, et al. Risk of impending preterm delivery associated with the presence of amniotic fluid sludge in women in preterm labor with intact membranes. Fetal Diagn Ther. 2011;30(2):116–121.
  • Hall TJ, Feltovich H, Rosado-Mendez IM, et al. Quantitative ultrasound of the uterine cervix. J Acoust Soc Am. 2016;140(4):3137–3137.
  • Baños N, Perez-Moreno A, Migliorelli F, et al. Quantitative analysis of the cervical texture by ultrasound and correlation with gestational age. Fetal Diagn Ther. 2017;41(4):265–272.
  • Baños N, Perez-Moreno A, Julià C, et al. Quantitative analysis of cervical texture by ultrasound in mid-pregnancy and association with spontaneous preterm birth. Ultrasound Obstet Gynecol. 2018;51(5):637–643.
  • Feltovich H, Nam K, Hall TJ. Quantitative ultrasound assessment of cervical microstructure. Ultrason Imaging. 2010;32(3):131–142.
  • Feltovich H, Hall TJ, Berghella V. Beyond cervical length: emerging technologies for assessing the pregnant cervix. Am J Obstet Gynecol. 2012;207(5):345–354.
  • Feltovich H, Hall T. Quantitative imaging of the cervix: setting the bar. Ultrasound Obstet Gynecol. 2013;41(2):121–128.
  • Clark K, Ji H, Feltovich H, et al. Mifepristone-induced cervical ripening: structural, biomechanical, and molecular events. Am J Obstet Gynecol. 2006;194(5):1391–1398.
  • Guerrero QW, Carlson LC, Feltovich H, et al. Quantitative ultrasound backscatter parameters in the human cervix. IEEE International Ultrasonics Symposium (IUS); Chicago, IL; 2014. p. 224–227.
  • McFarlin BL, O'Brien WD, Oelze ML, et al. Quantitative ultrasound assessment of the rat cervix. J Ultrasound Med. 2006;25(8):1031–1040.
  • Bigelow TA, McFarlin BL, O’Brien WD, et al. In vivo ultrasonic attenuation slope estimates for detecting cervical ripening in rats: preliminary results. J Acoust Soc Am. 2008;123(3):1794–1800.
  • McFarlin BL, Bigelow TA, Laybed Y, et al. Ultrasonic attenuation estimation of the pregnant cervix: a preliminary report. Ultrasound Obstet Gynecol. 2010;36(2):218–225.
  • Tekesin I, Hellmeyer L, Heller G, et al. Evaluation of quantitative ultrasound tissue characterization of the cervix and cervical length in the prediction of premature delivery for patients with spontaneous preterm labor. Am J Obstet Gynecol. 2003;189(2):532–539.
  • Swiatkowska-Freund M, Preis K. Cervical elastography during pregnancy: clinical perspectives. Int J Women Health. 2017;9:245.
  • Dietrich CF, Barr RG, Farrokh A, et al. Strain elastography-how to do it? Ultrasound Int Open. 2017;3(4):E137.
  • Carlson LC, Feltovich H, Palmeri ML, et al. Estimation of shear wave speed in the human uterine cervix. Ultrasound Obstet Gynecol. 2014;43(4):452–458.
  • Zhi H, Xiao X-Y, Yang H-Y, et al. Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol. 2010;17(10):1227–1233.
  • Hernandez-Andrade E, Garcia M, Ahn H, et al. Strain at the internal cervical os assessed with quasi-static elastography is associated with the risk of spontaneous preterm delivery at ≤34 weeks of gestation. J Perinat Med. 2015;43(6):657–666.
  • Hernandez-Andrade E, Romero R, Korzeniewski SJ, et al. Cervical strain determined by ultrasound elastography and its association with spontaneous preterm delivery. J Perinat Med. 2014;42(2):159–169.
  • Köbbing K, Fruscalzo A, Hammer K, et al. Quantitative elastography of the uterine cervix as a predictor of preterm delivery. J Perinatol. 2014;34(10):774–780.
  • Oturina V, Hammer K, Möllers M, et al. Assessment of cervical elastography strain pattern and its association with preterm birth. J Perinat Med. 2017;45(8).
  • von Schöning D, Fischer T, von Tucher E, et al. Cervical sonoelastography for improving prediction of preterm birth compared with cervical length measurement and fetal fibronectin test. J Perinat Med. 2015;43(5):531–536.
  • Wozniak S, Czuczwar P, Szkodziak P, et al. Elastography in predicting preterm delivery in asymptomatic, low-risk women: a prospective observational study. BMC Pregnancy Childbirth. 2014;14(1):238.
  • Woźniak S, Czuczwar P, Szkodziak P, et al. Elastography for predicting preterm delivery in patients with short cervical length at 18–22 weeks of gestation: a prospective observational study. Ginekologia Polska. 2015;86(6):442–447.
  • Hernandez‐Andrade E, Hassan SS, Ahn H, et al. Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography. Ultrasound Obstet Gynecol. 2013;41(2):152–161.
  • Thomas A. Imaging of the cervix using sonoelastography. Ultrasound Obstet Gynecol. 2006;28(3):356–357.
  • Khalil MR, Thorsen P, Uldbjerg N. Cervical ultrasound elastography may hold potential to predict risk of preterm birth. Dan Med J. 2013;60(1):A4570.
  • Gennisson J-L, Muller M, Gabor P, et al. Quantification of elasticity changes in the myometrium during labor using supersonic shear imaging: a feasibility study. Ultrasonics. 2015;56:183–188.
  • Hernandez-Andrade E, Aurioles-Garibay A, Garcia M, et al. Effect of depth on shear-wave elastography estimated in the internal and external cervical os during pregnancy. J Perinat Med. 2014;42(5):549–557.
  • Li WJ, Wei ZT, Yan RL, et al. Detection of placenta elasticity modulus by quantitative real-time shear wave imaging. Clin Exp Obstet Gynecol. 2012;39(4):470–473.
  • Peralta L, Molina FS, Melchor J, et al. Transient elastography to assess the cervical ripening during pregnancy: a preliminary study. Ultraschall Med. 2017;38(4):395–402.
  • Muller M, Aït-Belkacem D, Hessabi M, et al. Assessment of the cervix in pregnant women using shear wave elastography: a feasibility study. Ultrasound Med Biol. 2015;41(11):2789–2797.
  • Woodward LJ, Anderson PJ, Austin NC, et al. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355(7):685–694.
  • Plaisier A, Raets MMA, van der Starre C, et al. Safety of routine early MRI in preterm infants. Pediatr Radiol. 2012;42(10):1205–1211.
  • Groves AM, Chiesa G, Durighel G, et al. Functional cardiac MRI in preterm and term newborns. Arch Dis Child Fetal Neonatal Ed. 2010;96(2):F86–F91.
  • Habib VVF, Araujo Júnior E, Sun SY, et al. Early indicators of cervical insufficiency assessed using magnetic resonance imaging of the cervix during pregnancy. J Matern Fetal Neonatal Med. 2015;28(6):626–631.
  • Masselli G, Perrone G, Kinkel K, et al. Are second trimester apparent diffusion coefficient values of the short uterine cervix associated with impending preterm delivery? Radiology. 2016;280(3):897–904.
  • House M, Kaplan DL, Socrate S. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Semin Perinatol. 2009;33(5):300–307.
  • Pates JA, Yost NP, Oliver Q, et al. Magnetic resonance signal characteristics of the cervix as pregnancy advances. Reprod Sci. 2007;14(5):440–444.
  • Nunes V, Cross J, Speich JE, et al. Fetal membrane imaging and the prediction of preterm birth: a systematic review, current issues, and future directions. BMC Pregnancy Childbirth. 2016;16(1):387.
  • Moutquin JM. Classification and heterogeneity of preterm birth. BJOG. 2003;110(s20):30–33.
  • Mueller-Heubach E, Rubinstein DN, Schwarz SS. Histologic chorioamnionitis and preterm delivery in different patient populations. Obstet Gynecol. 1990;75(4):622–626.
  • Low G, Kruse SA, Lomas DJ. General review of magnetic resonance elastography. WJR. 2016;8(1):59.
  • Jiang X, Asbach P, Streitberger K-J, et al. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix. Eur Radiol. 2014;24(12):3025–3033.
  • Chen J, Kugel J, Yin M, et al. Magnetic resonance elastrography of other organs. In Magnetic resonance elastography; Venkatesh S, Ehman R (eds). Springer; 2014: p. 119–133.
  • Olson G, et al. Noninvasive measurement of cervical collagen content in women approaching delivery. Am J Obstet Gynecol. 1998;178(1S):91S.
  • Vargis E, Brown N, Williams K, et al. Detecting biochemical changes in the rodent cervix during pregnancy using Raman spectroscopy. Ann Biomed Eng. 2012;40(8):1814–1824.
  • Vargis E, Webb CN, Paria BC, et al. Detecting changes during pregnancy with Raman spectroscopy. IEEE Biomedical Sciences and Engineering Conference (BSEC); Knoxville, TN; 2011.
  • O’brien CM, Vargis E, Rudin A, et al. In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy. Am J Obstet Gynecol. 2018;218(5):528.e1–528.e18.
  • O’brien CM, Vargis E, Paria BC, et al. Raman spectroscopy provides a noninvasive approach for determining biochemical composition of the pregnant cervix in vivo. Acta Paediatr. 2014;103(7):715–721.
  • Chen MM, Coakley FV, Kaimal A, et al. Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet Gynecol. 2008;112(2, Part 1):333–340.
  • Kopelman TR, Bogert JN, Walters JW, et al. Computed tomographic imaging interpretation improves fetal outcomes after maternal trauma. J Trauma Acute Care Surg. 2016;81(6):1131–1135.
  • Sotiriadis A, Papatheodorou S, Kavvadias A, et al. Transvaginal cervical length measurement for prediction of preterm birth in women with threatened preterm labor: a meta‐analysis. Ultrasound Obstet Gynecol. 2010;35(1):54–64.
  • Vayssière C, Favre R, Audibert F, et al. Cervical length and funneling at 22 and 27 weeks to predict spontaneous birth before 32 weeks in twin pregnancies: a French prospective multicenter study. Am J Obstet Gynecol. 2002;187(6):1596–1604.
  • Sochacki‐Wójcicka N, Wojcicki J, Bomba-Opon D, et al. Anterior cervical angle as a new biophysical ultrasound marker for prediction of spontaneous preterm birth. Ultrasound Obstet Gynecol. 2015;46(3):377–378.
  • Carlson LC, Romero ST, Palmeri ML, et al. Changes in shear wave speed pre‐and post‐induction of labor: a feasibility study. Ultrasound Obstet Gynecol. 2015;46(1):93–98.
  • Carlson LC, Feltovich H, Palmeri ML, et al. Statistical analysis of shear wave speed in the uterine cervix. IEEE Trans Ultrason Ferroelect Freq Contr. 2014;61(10):1651–1660.
  • Peralta L, Mourier E, Richard C, et al. In vivo evaluation of cervical stiffness evolution during induced ripening using shear wave elastography, histology and 2 photon excitation microscopy: insight from an animal model. PLOS One. 2015;10(8):e0133377.
  • Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11(4):664–687.
  • Başaran D, Özyüncü Ö, Kara Ö, et al. Ultrasonographic measurement of amniochorionic membrane in asymptomatic pregnant women is not a useful tool for preterm birth prediction. J Obstet Gynaecol Res. 2014;40(1):62–66.
  • O’Brien CM, Herington JL, Brown N, et al. In vivo Raman spectral analysis of impaired cervical remodeling in a mouse model of delayed parturition. Sci Rep. 2017;7(1):6835.
  • Alshahrani S, Yan Y, Avrutsky I, et al. An advanced photoacoustic tomography system based on a ring geometry design. Proceedings, SPIE 10580 Medical Imaging 2018: Ultrasonic Imaging and Tomography, International Society for Optics and Photonics, Houston, Texas, United States, 2018.
  • Qu M, Mehrmohammadi M, Emelianov S. Detection of nanoparticle endocytosis using magneto‐photoacoustic imaging. Small. 2011;7(20):2858–2862.
  • Yan Y, Basij M, Hemandez-Andrade E, et al. Endocavity ultrasound and photoacoustic imaging system to evaluate fetal brain perfusion and oxygenation: preliminary ex vivo studies. In IEEE International Ultrasonics Symposium (IUS); Washington, D.C.; 2017.
  • Mozaffarzadeh M, Yan Y, Mehrmohammadi M, et al. Enhanced linear-array photoacoustic beamforming using modified coherence factor. J Biomed Opt. 2018;23(2):1.
  • Qu M, Mallidi S, Mehrmohammadi M, et al. Magneto-photo-acoustic imaging. Biomed Opt Express. 2011;2(2):385–396.
  • Mehrmohammadi M, Joon Yoon S, Yeager D, et al. Photoacoustic imaging for cancer detection and staging. CMI. 2013;2(1):89–105.
  • Bouchard R, Sahin O, Emelianov S. Ultrasound-guided photoacoustic imaging: current state and future development. IEEE Trans Ultrason Ferroelect Freq Contr. 2014;61(3):450–466.
  • Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77(4):041101.
  • Park S, Shah J, Aglyamov SR, et al. Integrated system for ultrasonic, photoacoustic and elasticity imaging. Proceedings of the 2006 SPIE Medical Imaging Symposium: Ultrasonic Imaging and Signal Processing; San Diego, CA; 2006.
  • Zhang HF, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006;24(7):848–851.
  • Esenaliev RO, Larina IV, Larin KV, et al. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. Appl Opt. 2002;41(22):4722–4731.
  • Hysi E, Saha RK, Kolios MC. Photoacoustic ultrasound spectroscopy for assessing red blood cell aggregation and oxygenation. J Biomed Opt. 2012;17(12):125006–125006.
  • Laufer J, Elwell C, Delpy D, et al. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution. Phys Med Biol. 2005;50(18):4409–4428.
  • Li M-L, Oh J-T, Xie X, et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc IEEE. 2008;96(3):481–489.
  • Yan Y, Dong J, Siddiqu AA, et al. Ultrasound, elasticity, and photoacoustic imaging of cervix: towards a more accurate prediction of preterm delivery. Conference presentation at Medical Imaging 2018: Ultrasonic Imaging and Tomography. Houston, TX: International Society for Optics and Photonics; 2018.
  • Basij M, Yan Y, Alshahrani SS, et al. Combined phased-array ultrasound and photoacoustic endoscope for gynecologic cancer imaging applications. Conference presentation at Medical Imaging 2018: Ultrasonic Imaging and Tomography. Houston, TX: International Society for Optics and Photonics; 2018
  • Yan Y, Gomez-Lopez N, Basij M, et al. Photoacoustic imaging of the uterine cervix to assess collagen and water content changes in murine pregnancy. Biomed Opt Express. 2019;10(9):4643.
  • Hernádi L, Töröcsik M. Screening for fetal anomalies in the 12th week of pregnancy by transvaginal sonography in an unselected population. Prenat Diagn. 1997;17(8):753–759.
  • Paladini D, Volpe P. Ultrasound of congenital fetal anomalies: differential diagnosis and prognostic indicators. 2014. Boca Raton, FL; CRC Press.
  • Dyson RL, Pretorius DH, Budorick NE, et al. Three‐dimensional ultrasound in the evaluation of fetal anomalies. Ultrasound Obstet Gynecol. 2000;16(4):321–328.
  • Jauniaux E, Campbell S. Ultrasonographic assessment of placental abnormalities. Am J Obstet Gynecol. 1990;163(5):1650–1658.
  • Eydoux P, Choiset A, Le Porrier N, et al. Chromosomal prenatal diagnosis: study of 936 cases of intrauterine abnormalities after ultrasound assessment. Prenat Diagn. 1989;9(4):255–269.
  • Rizzo G, Capponi A, Cavicchioni O, et al. First trimester uterine Doppler and three-dimensional ultrasound placental volume calculation in predicting pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2008;138(2):147–151.
  • Berghella V, Rafael TJ, Szychowski JM, et al. Cerclage for short cervix on ultrasonography in women with singleton gestations and previous preterm birth: a meta-analysis. Obstet Gynecol. 2011;117(3):663–671.
  • Kurjak A, Miskovic B, Andonotopo W, et al. How useful is 3D and 4D ultrasound in perinatal medicine? J Perinat Med. 2007;35(1):10–27.
  • Bega G, Lev-Toaff A, Kuhlman K, et al. Three‐dimensional multiplanar transvaginal ultrasound of the cervix in pregnancy. Ultrasound Obstet Gynecol. 2000;16(4):351–358.
  • Aglyamov SR, Karpiouk AB, Mehrmohammadi M, et al. Elasticity imaging and sensing using targeted motion: from macro to nano. Curr Med Imag. 2012;8(1):3–15.
  • Sarvazyan A, Hall JT, Urban WM, et al. An overview of elastography-an emerging branch of medical imaging. CMIR. 2011;7(4):255–282.
  • Zhu Y-Z, Peng G-Q, Tian G-X, et al. New model for predicting preterm delivery during the second trimester of pregnancy. Sci Rep. 2017;7(1):11294.
  • Palmeri M, Feltovich H, Homyk A, et al. Evaluating the feasibility of acoustic radiation force impulse shear wave elasticity imaging of the uterine cervix with an intracavity array: a simulation study. IEEE Trans Ultrason, Ferroelect Freq Contr. 2013;60(10):2053–2064.
  • Carlson LC, Hall TJ, Rosado-Mendez IM, et al. Detection of changes in cervical softness using shear wave speed in early versus late pregnancy: an in vivo cross-sectional study. Ultrasound Med Biol. 2017;44(3):515–521.
  • Swiatkowska‐Freund M, Preis K. Elastography of the uterine cervix: implications for success of induction of labor. Ultrasound Obstet Gynecol. 2011;38(1):52–56.
  • Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–1462.
  • Wang X, Pang Y, Ku G, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol. 2003;21(7):803–806.
  • Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1(4):602–631.
  • Wang X, Xie X, Ku G, et al. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt. 2006;11(2):024015.
  • Yan Y, Basij M, Wang Z, et al. Multi-parametric acoustic imaging of cervix for more accurate detection of patients at risk of preterm birth. IEEE International Ultrasonics Symposium (IUS); Kobe, Japan; 2018.
  • Varrey A, Mehrmohammadi M, Garg A, et al. 17: Photoacoustic imaging of the uterine cervix: a novel method to characterize tissue composition. Am J Obstet Gynecol. 2019;220(1):S14–S15.
  • Basij M, Yan Y, Alshahrani SS, et al. Miniaturized phased-array ultrasound and photoacoustic endoscopic imaging system. Photoacoustics. 2019;15:100139.
  • Alshahrani SS, Yan Y, Alijabbari N, et al. All-reflective ring illumination system for photoacoustic tomography. J Biomed Opt. 2019;24(4):046004.
  • Alijabbari N, Alshahrani SS, Pattyn A, et al. Photoacoustic tomography with a ring ultrasound transducer: a comparison of different illumination strategies. Appl Sci. 2019;9(15):3094.
  • Alshahrani S, Pattyn A, Alijabbari N, et al. The Effectiveness of the omnidirectional illumination in full-ring photoacoustic tomography. IEEE International Ultrasonics Symposium (IUS); Kobe, Japan; 2018.
  • Qu Y, Hu P, Shi J, et al. In vivo characterization of connective tissue remodeling using infrared photoacoustic spectra. J Biomed Opt. 2018;23(12):121621.
  • Mallidi S, Luke GP, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011;29(5):213–221.
  • Rosado-Mendez IM, Palmeri ML, Drehfal LC, et al. Assessment of structural heterogeneity and viscosity in the cervix using shear wave elasticity imaging: initial results from a Rhesus Macaque Model. Ultrasound Med Biol. 2017;43(4):790–803.
  • Reusch LM, Anderson J, Carlson LC, et al. Detecting cervical microstructure via ultrasound and optical microscopy. IEEE International Ultrasonics Symposium (IUS); San Diego, CA; 2010.
  • Liang W, Sakulsaengprapha V, Luby-Phelps K, et al. Quantitative analyses of SHG endomicroscopy images of cervical collagen network for detecting preterm birth in mouse models. Conference presented at Clinical and Translational Biophotonics. Hollywood, FL: Optical Society of America; 2018.
  • Mottley JG, Miller J. Anisotropy of the ultrasonic backscatter of myocardial tissue: I. Theory and measurements in vitro. J Acoust Soc Am. 1988;83(2):755–761.
  • Madaras EI, Perez J, Sobel BE, et al. Anisotropy of the ultrasonic backscatter of myocardial tissue: II. Measurements in vivo. J Acoust Soc Am. 1988;83(2):762–769.
  • Mottley JG, Miller JG. Anisotropy of the ultrasonic attenuation in soft tissues: Measurements in vitro. J Acoust Soc Am. 1990;88(3):1203–1210.
  • Turquin E, Varray F, Petrusca L, et al. 3D ultrasound imaging of tissue anisotropy using spatial coherence: comparison between plane and diverging waves. IEEE International Ultrasonics Symposium (IUS); Washington, D.C.; 2017.
  • Guerrero QW, Feltovich H, Rosado-Mendez IM et al. Anisotropy and spatial heterogeneity in quantitative ultrasound parameters: relevance to the study of the human cervix. Ultrasound Med Biol. 2018;44(7):1493–1503.
  • Buhimschi IA, Dussably L, Buhimschi CS, et al. Physical and biomechanical characteristics of rat cervical ripening are not consistent with increased collagenase activity. Am J Obstet Gynecol. 2004;191(5):1695–1704.
  • Uldbjerg N, Ekman G, Malmström A, et al. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity. Am J Obstet Gynecol. 1983;147(6):662–666.
  • Nallasamy S, Akins M, Tetreault B, et al. Distinct reorganization of collagen architecture in lipopolysaccharide-mediated premature cervical remodeling. Biol Reprod. 2017;98(1):63–74.
  • Kuon RJ, Shi SQ, Maul H, et al. A novel optical method to assess cervical changes during pregnancy and use to evaluate the effects of progestins on term and preterm labor. Am J Obstet Gynecol. 2011;205(1):82.e15–82.e20.
  • Mowa C, Jesmin S, Sakuma I, et al. Characterization of vascular endothelial growth factor (VEGF) in the uterine cervix over pregnancy: effects of denervation and implications for cervical ripening. J Histochem Cytochem. 2004;52(12):1665–1674.
  • Spector W, Willoughby D. The inflammatory response. Bacteriol Rev. 1963;27(2):117–154.
  • Pober JS, Sessa WC. Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol. 2015;7(1):a016345.
  • Hari Kishore A, Li X-H, Word RA. Hypoxia and PGE2 regulate MiTF-CX during cervical ripening. Mol Endocrinol. 2012;26(12):2031–2045.
  • Yellon SM. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol Reprod. 2017;96(1):13–23.
  • Strehl C, Fangradt M, Fearon U, et al. Hypoxia: how does the monocyte‐macrophage system respond to changes in oxygen availability? J Leukocyte Biol. 2014;95(2):233–241.
  • Barnum CE, Fey JL, Weiss SN, et al. Tensile mechanical properties and dynamic collagen fiber re-alignment of the murine cervix are dramatically altered throughout pregnancy. J Biomech Eng. 2017;139(6):061008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.