Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 13, 2018 - Issue 1
333
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Corrosion resistance of pyrolytic graphite in LiCl-KCl-UCl3 molten salt for pyrochemical reprocessing application

, , , ORCID Icon, &
Pages 188-193 | Received 04 Aug 2017, Accepted 15 Oct 2017, Published online: 02 Nov 2017

References

  • Raj B. Materials and manufacturing technologies for sodium cooled fast reactors and associated fuel cycle: innovations and maturity. Energy Procedia. 2011;7:186–198. doi: 10.1016/j.egypro.2011.06.025
  • Nagarajan K, Reddy BP, Ghosh S, et al. Development of pyrochemical reprocessing for spent metal fuels. Energy Procedia. 2011;7:431–436. doi: 10.1016/j.egypro.2011.06.057
  • Mcpheeters C, Pierce R, Mulcahey T. Application of the pyrochemical process to recycle of actinides from LWR spent fuel. Prog Nucl Energy. 1997;31(1–2):175–186. doi: 10.1016/0149-1970(96)00010-8
  • Laidler J, Battles J, Miller W, et al. Development of pyroprocessing technology. Prog Nucl Energy. 1997;31(1–2):131–140. doi: 10.1016/0149-1970(96)00007-8
  • Prabhakara Reddy B, Nagarajan K. Development of pyrochemical reprocessing flow sheet for fast reactor fuels. Proceedings of the Conference on Molten Salts in Nucl. Tech.; 2013 Jan 9–11; Bhabha Atomic Research Centre, Mumbai (India): 2013;44(15):56–61.
  • Raj B, Kamachi Mudali U, Jayakumar T, et al. Meeting the challenges related to material issues in chemical industries. Sadhana. 2000;25(6):519–559. doi: 10.1007/BF02703505
  • Jayakumar T, Kamachi Mudali U. Materials and coating technology for pyrochemical reprocessing applications. Proceedings of the Conference on Molten Salts in Nucl. Tech.; 2013 Jan 9–11; Bhabha Atomic Research Centre, Mumbai (India): 2013;44(15):122–133.
  • Song KC, Lee HS, Hur JM, et al. Status of pyroprocessing technology development in Korea. J Nucl Eng Technol. 2010;42(2):131–144. doi: 10.5516/NET.2010.42.2.131
  • Sure J, Ravi Shankar A, Ramya S, et al. Evaluation of corrosion behaviour of plasma sprayed partially stabilized zirconia coated and uncoated high density graphite in molten LiCl-KCl salt. Surface modification technology-XXV, Edition:1. Chennai, Tamil Nadu: VALAR Docs Publications; 2012. p. 235–244.
  • Sure J, Ravi Shankar A, Ramya S, et al. Molten salt corrosion of high density graphite and partially stabilized zirconia coated high density graphite in molten LiCl–KCl salt. Ceram Int. 2012;38(4):2803–2812. doi: 10.1016/j.ceramint.2011.11.051
  • Takeuchi M, Kato T, Hanada K, et al. Corrosion resistance of ceramic materials in pyrochemical reprocessing condition by using molten salt for spent nuclear oxide fuel. J Phys Chem Solids. 2005;66(2–4):521–525. doi: 10.1016/j.jpcs.2004.06.046
  • Yajima S, Satow T, Hirai T. Microstructure and density of pyrolytic graphite. J Nucl Mater. 1965;17(2):127–135. doi: 10.1016/0022-3115(65)90029-2
  • Rodriguez-Reinoso F, Thrower P, Walker P. Kinetic studies of the oxidation of highly oriented pyrolytic graphites. Carbon N Y. 1974;12(1):63–70. doi: 10.1016/0008-6223(74)90042-6
  • Morant R. Some properties of resistance-grown pyrolytic graphite. J Phys D: Appl Phys 1966;17(1):75–80.
  • Pappis J, Blum S. Properties of pyrolytic graphite. J Am Ceram Soc. 1961;44(12):592–597. doi: 10.1111/j.1151-2916.1961.tb11664.x
  • Levy M. Oxidation of pyrolytic graphite in air between 1250° and 1850°F. Ind Eng Chem Prod Res Dev. 1962;1(1):19–23. doi: 10.1021/i360001a005
  • Sure J, Ravi Shankar A, Ramya S, et al. Corrosion behaviour of carbon materials exposed to molten lithium chloride-potassium chloride salt. Carbon. 2014;67:643–655. doi: 10.1016/j.carbon.2013.10.040
  • Vacik J, Naramoto H, Cervena J, et al. Absorption of molten fluoride salts in glassy carbon, pyrographite and Hastelloy B. J Nucl Mater. 2001;289(3):308–314. doi: 10.1016/S0022-3115(01)00419-6
  • Feng S, Xu L, Li L, et al. Sealing nuclear graphite with pyrolytic carbon. J Nucl Mater. 2013;441(1):449–454. doi: 10.1016/j.jnucmat.2013.06.035
  • Wlodarski R, Nowicki A, Pealska L. Obtaining of pyro-graphite in the indirect heating method. Poland: Institute of Nuclear Chemistry and Technology; 1988. (Report no. INCT-2059/I/ME/A).
  • Subramanian T, Prabhakara Reddy B, Venkatesh P, et al. Studies on the head-end steps for pyro chemical reprocessing of oxide fuels. Proceedings of the Workshop on Pyro chemical Separations; 2000 Mar 14–16; Avignon, France: NEA; 2001. p. 187–193.
  • Davies W, Gray W. A rapid and specific titrimetric method for the precise determination of uranium using iron sulphate as reductant. Talanta. 1964;11(8):1203–1211. doi: 10.1016/0039-9140(64)80171-5
  • Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon N Y. 1995;33(11):1561–1565. doi: 10.1016/0008-6223(95)00117-V
  • Iwashita N, Swain MV, Field JS, et al. Elasto-plastic deformation of glass-like carbons heat-treated at different temperatures. Carbon N Y. 2001;39(10):1525–1532. doi: 10.1016/S0008-6223(00)00272-4
  • Sakai M, Nowak R. In ceramic adding the value. J Aust Ceram Soc 1992;2:922–931.
  • Fan Z, Tan R, He K, et al. Preparation and mechanical properties of carbon fibers with isotropic pyrolytic carbon core by chemical vapor deposition. J Chem Eng. 2015;272:12–16. doi: 10.1016/j.cej.2015.03.022
  • Zhang H, Lopez-Honorato E, Xiao P. Fluidized bed chemical vapor deposition of pyrolytic carbon-III. Relationship between microstructure and mechanical properties. Carbon. 2015;91:346–357. doi: 10.1016/j.carbon.2015.05.009
  • Iwashita N, Park CR, Fujimoto H, et al. Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon N Y. 2004;42(4):701–714. doi: 10.1016/j.carbon.2004.02.008
  • Guentert O. X-ray study of pyrolytic graphites. J Chem Phys. 1962;37(4):884–891. doi: 10.1063/1.1733179
  • Cramer SD, Covino BS. Corrosion: fundamentals, testing and protection. Ohio, USA: ASM International; 2003.
  • Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8(4):235–246. doi: 10.1038/nnano.2013.46
  • Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53(3):1126–1130. doi: 10.1063/1.1674108
  • Mohr M, Maultzsch J, Thomsen C. Splitting of the Raman 2 D band of graphene subjected to strain. Phys Rev B. 2010;82(20):201409(R). doi: 10.1103/PhysRevB.82.201409
  • Sakata H, Dresselhaus G, Dresselhaus M. Effect of uniaxial stress on the Raman spectra of graphite fibers. J Appl Phys. 1988;63(8):2769–2772. doi: 10.1063/1.340975
  • De Wolf I. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semi Sci Technol. 1996;11(2):139–154. doi: 10.1088/0268-1242/11/2/001
  • De Wolf I, Maes H. Mechanical stress measurements using micro-Raman spectroscopy. Microsys Technol. 1998;5(1):13–17. doi: 10.1007/s005420050134
  • Chandran M, Shasha M, Michaelson S, et al. Incorporation of low energy activated nitrogen onto HOPG surface: chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy. Appl Surf Sci 2016;382:192–201. doi: 10.1016/j.apsusc.2016.04.030
  • Yang DQ, Sacher E. Carbon 1s X-ray photoemission line shape analysis of highly oriented pyrolytic graphite: the influence of structural damage on peak asymmetry. Langmuir. 2006;22(3):860–862. doi: 10.1021/la052922r

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.