640
Views
20
CrossRef citations to date
0
Altmetric
Review

Pharmacodynamic studies of voriconazole: informing the clinical management of invasive fungal infections

, , , , , , , , , , & show all
Pages 731-746 | Received 25 Feb 2016, Accepted 27 Jun 2016, Published online: 15 Jul 2016

References

  • Rüping MJGT, Vehreschild JJ, Cornely OA. Antifungal treatment strategies in high risk patients. Mycoses. 2008;51(Suppl 2):46–51.
  • Baddley JW, Stephens JM, Ji X, et al. Aspergillosis in Intensive Care Unit (ICU) patients: epidemiology and economic outcomes. BMC Infect Dis. 2013;13:29.
  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–163.
  • Maschmeyer G, Haas A, Cornely OA. Invasive aspergillosis: epidemiology, diagnosis and management in immunocompromised patients. Drugs. 2007;67:1567–1601.
  • Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin Infect Dis. 2003;36:630–637.
  • Pemán J, Salavert M, Cantón E, et al. Voriconazole in the management of nosocomial invasive fungal infections. Ther Clin Risk Manag. 2006;2:129–158.
  • Cecil JA, Wenzel RP. Voriconazole: a broad-spectrum triazole for the treatment of invasive fungal infections. Expert Rev Hematol. 2009;2(3):237–254.
  • Peyton LR, Gallagher S, Hashemzadeh M. Triazole antifungals: a review. Drugs Today. 2015;51:705–718.
  • Aigner M, Lass-Flörl C. Treatment of drug-resistant Aspergillus infection. Expert Opin Pharmacother. 2015;16:2267–2270.
  • Cuenca-Estrella M, Verweij PE, Arendrup MC, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clin Microbiol Infect. 2012;18(Suppl 7):9–18.
  • Tucker L, Higgins T, Egelund EF, et al. Voriconazole monitoring in children with invasive fungal infections. J Pediatr Pharmacol Ther. 2015;20:17–23.
  • Smeekens SP, Van De Veerdonk FL, Kullberg BJ, et al. Genetic susceptibility to Candida infections. EMBO Mol Med. 2013;5:805–813.
  • Wójtowicz A, Bochud P-Y. Host genetics of invasive Aspergillus and Candida infections. Semin Immunopathol. 2015;37:173–186.
  • Bourgeois C, Majer O, Frohner IE, et al. Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting. Curr Opin Microbiol. 2010;13:401–408.
  • Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–535.
  • Segal BH, Almyroudis NG, Battiwalla M, et al. Prevention and early treatment of invasive fungal infection in patients with cancer and neutropenia and in stem cell transplant recipients in the era of newer broad-spectrum antifungal agents and diagnostic adjuncts. Clin Infect Dis. 2007;44:402–409.
  • Hamada Y, Seto Y, Yago K, et al. Investigation and threshold of optimum blood concentration of voriconazole: a descriptive statistical meta-analysis. J Infect Chemother. 2012;18:501–507.
  • Dolton MJ, McLachlan AJ. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents. 2014;44:183–193.
  • Mirdamadi M. Neonatal fungal infections. In: Rimawi BH, editor. Infectious comorbidities encountered in obstetrics and neonatology. Foster City (CA): OMICS Group eBooks; 2014; p. 1–7.
  • Tezer H, Canpolat FE, Dilmen U. Invasive fungal infections during the neonatal period: diagnosis, treatment and prophylaxis. Expert Opin Pharmacother. 2012;13:193–205.
  • Hsieh E, Smith PB, Jacqz-Aigrain E, et al. Neonatal fungal infections: when to treat? Early Hum Dev. 2012;88(Suppl 2):S6–S10.
  • Flevari A, Theodorakopoulou M, Velegraki A, et al. Treatment of invasive candidiasis in the elderly: a review. Clin Interv Aging. 2013;8:1199–1208.
  • Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50:1101–1111.
  • Crabol Y, Lortholary O. Invasive mold infections in solid organ transplant recipients. Scientifica (Cairo). 2014;2014:821969.
  • Shoham S, Marr KA. Invasive fungal infections in solid organ transplant recipients. Future Microbiol. 2012;7:639–655.
  • Barnes PD, Marr KA. Risks, diagnosis and outcomes of invasive fungal infections in haematopoietic stem cell transplant recipients. Br J Haematol. 2007;139:519–531.
  • Fukuda T, Boeckh M, Carter RA, et al. Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood. 2003;102:827–833.
  • Kullberg BJ, Sobel JD, Ruhnke M, et al. Voriconazole versus a regimen of amphotericin B followed by fluconazole for candidaemia in non-neutropenic patients: a randomised non-inferiority trial. Lancet. 2005;366(9495):1435–1442.
  • Nesher L, Rolston KVI. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection. 2014;42:5–13.
  • Colombo AL, Guimarães T, Sukienik T, et al. Prognostic factors and historical trends in the epidemiology of candidemia in critically ill patients: an analysis of five multicenter studies sequentially conducted over a 9-year period. Intensive Care Med. 2014;40:1489–1498.
  • Walsh TJ, Gamaletsou MN. Treatment of fungal disease in the setting of neutropenia. Hematol Am Soc Hematol Educ Program. 2013;2013:423–427.
  • Shi X, Sims MD, Hanna MM, et al. Neutropenia during HIV infection: adverse consequences and remedies. Int Rev Immunol. 2014;33:511–536.
  • Xu R-A, Zheng S-L, Xiao -L-L, et al. Therapeutic drug monitoring in voriconazole-associated hyponatremia. Med Mycol Case Rep. 2013;2:134–136.
  • Bassetti M, Merelli M, Ansaldi F, et al. Clinical and therapeutic aspects of candidemia: a five year single centre study. PLoS ONE. 2015;10:e0127534.
  • Kadam RS, Van Den Anker JN. Pediatric clinical pharmacology of voriconazole: role of pharmacokinetic/pharmacodynamic modeling in pharmacotherapy. Clin Pharmacokinet. 2016.. doi:10.1007/s40262-016-0379-2. [Epub ahead of print]
  • Roerig. VFEND®: highlights and prescribing information (LAB-0311-11.2); 2015 [cited 2016 Apr 23]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021266s038,021267s047,021630s028lbl.pdf.
  • Troke P, Aguirrebengoa K, Arteaga C, et al. Treatment of scedosporiosis with voriconazole: clinical experience with 107 patients. Antimicrob Agents Chemother. 2008;52:1743–1750.
  • Tortorano AM, Prigitano A, Esposto MC, et al. European Confederation of Medical Mycology (ECMM) epidemiological survey on invasive infections due to Fusarium species in Europe. Eur J Clin Microbiol Infect Dis. 2014;33:1623–1630.
  • Stempel JM, Hammond SP, Sutton DA, et al. Invasive fusariosis in the voriconazole era: single-center 13-year experience. Open Forum Infect Dis. 2015;2:ofv099.
  • Rangasamy M, Palnati VKR, Bandaru LNR. Formulation development and evaluation of voriconazole sustained release tablets. Int Curr Pharm J. 2013;2:165–169.
  • De Sá FAP, Taveira SF, Gelfuso GM, et al. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B Biointerfaces. 2015;133:331–338.
  • Andrade LM, Rocha KAD, De Sá FAP, et al. Voriconazole-loaded nanostructured lipid carriers for ocular drug delivery. Cornea. 2016;35:866–871.
  • Beinborn NA, Du J, Wiederhold NP, et al. Dry powder insufflation of crystalline and amorphous voriconazole formulations produced by thin film freezing to mice. Eur J Pharm Biopharm. 2012;81:600–608.
  • Arora S, Haghi M, Loo C-Y, et al. Development of an inhaled controlled release voriconazole dry powder formulation for the treatment of respiratory fungal infection. Mol Pharm. 2015;12:2001–2009.
  • Arora S, Mahajan RR, Kushwah V, et al. Development of voriconazole loaded large porous particles for inhalation delivery: effect of surface forces on aerosolisation performance, assessment of in vitro safety potential and uptake by macrophages. RSC Adv. 2015;5:38030–38043.
  • Purkins L, Wood N, Ghahramani P, et al. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother. 2002;46:2546–2553.
  • Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53:935–944.
  • Neely M, Rushing T, Kovacs A, et al. Voriconazole pharmacokinetics and pharmacodynamics in children. Clin Infect Dis. 2010;50:27–36.
  • Purkins L, Wood N, Kleinermans D, et al. Effect of food on the pharmacokinetics of multiple-dose oral voriconazole. Br J Clin Pharmacol. 2003;56(Suppl 1):17–23.
  • Mori M, Kobayashi R, Kato K, et al. Pharmacokinetics and safety of voriconazole intravenous-to-oral switch regimens in immunocompromised Japanese pediatric patients. Antimicrob Agents Chemother. 2015;59:1004–1013.
  • Roffey SJ, Cole S, Comby P, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos. 2003;31:731–741.
  • Vanstraelen K, Wauters J, De Loor H, et al. Protein-binding characteristics of voriconazole determined by high-throughput equilibrium dialysis. J Pharm Sci. 2014;103:2565–2570.
  • Weiler S, Fiegl D, MacFarland R, et al. Human tissue distribution of voriconazole. Antimicrob Agents Chemother. 2011;55:925–928.
  • Autmizguine J, Guptill JT, Cohen-Wolkowiez M, et al. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs. 2014;74:891–909.
  • Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev. 2014;27:68–88.
  • Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): VFEND®; 2003;1–19 [cited 2016 Jun 15]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/021464s000_021466s000_Vfend_biopharmr.pdf.
  • Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31:540–547.
  • Desta Z, Zhao X, Shin J-G, et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41:913–958.
  • Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45:649–663.
  • Hicks JK, Crews KR, Flynn P, et al. Voriconazole plasma concentrations in immunocompromised pediatric patients vary by CYP2C19 diplotypes. Pharmacogenomics. 2014;15:1065–1078.
  • Bouatou Y, Samer CF, Ing Lorenzini KR, et al. Therapeutic drug monitoring of voriconazole: a case report of multiple drug interactions in a patient with an increased CYP2C19 activity. AIDS Res Ther. 2014;11:25.
  • Upreti VV, Wahlstrom JL. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2015;56(3):266–283.
  • Ikeda Y, Umemura K, Kondo K, et al. Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther. 2004;75:587–588.
  • Purkins L, Wood N, Ghahramani P, et al. Coadministration of voriconazole and phenytoin: pharmacokinetic interaction, safety, and toleration. Br J Clin Pharmacol. 2003;56(Suppl 1):37–44.
  • Mikus G, Schöwel V, Drzewinska M, et al. Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther. 2006;80:126–135.
  • Brüggemann RJM, Donnelly JP, Aarnoutse RE, et al. Therapeutic drug monitoring of voriconazole. Ther Drug Monit. 2008;30:403–411.
  • Walsh TJ, Karlsson MO, Driscoll T, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother. 2004;48:2166–2172.
  • Neely M, Margol A, Fu X, et al. Achieving target voriconazole concentrations more accurately in children and adolescents. Antimicrob Agents Chemother. 2015;59:3090–3097.
  • Liu P, Mould DR. Population pharmacokinetic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob Agents Chemother. 2014;58:4718–4726.
  • Davies-Vorbrodt S, Ito JI, Tegtmeier BR, et al. Voriconazole serum concentrations in obese and overweight immunocompromised patients: a retrospective review. Pharmacotherapy. 2013;33:22–30.
  • Pai MP, Lodise TP. Steady-state plasma pharmacokinetics of oral voriconazole in obese adults. Antimicrob Agents Chemother. 2011;55:2601–2605.
  • Friberg LE, Ravva P, Karlsson MO, et al. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother. 2012;56:3032–3042.
  • Liu P, Mould DR. Population pharmacokinetic-pharmacodynamic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob Agents Chemother. 2014;58:4727–4736.
  • Han K, Bies R, Johnson H, et al. Population pharmacokinetic evaluation with external validation and Bayesian estimator of voriconazole in liver transplant recipients. Clin Pharmacokinet. 2011;50:201–214.
  • Han K, Capitano B, Bies R, et al. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 2010;54:4424–4431.
  • Zane NR, Thakker DR. A physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet. 2014;53:1171–1182.
  • Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011;55:4782–4788.
  • Pascual A, Calandra T, Bolay S, et al. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46:201–211.
  • Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55:381–390.
  • Dolton MJ, Ray JE, Chen SC-A, et al. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56:4793–4799.
  • Andes D, Marchillo K, Stamstad T, et al. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:3165–3169.
  • Park WB, Kim N-H, Kim K-H, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55:1080–1087.
  • Mitsani D, Nguyen MH, Shields RK, et al. Prospective, observational study of voriconazole therapeutic drug monitoring among lung transplant recipients receiving prophylaxis: factors impacting levels of and associations between serum troughs, efficacy, and toxicity. Antimicrob Agents Chemother. 2012;56:2371–2377.
  • Karthaus M, Lehrnbecher T, Lipp H-P, et al. Therapeutic drug monitoring in the treatment of invasive aspergillosis with voriconazole in cancer patients – an evidence-based approach. Ann Hematol. 2015;94:547–556.
  • Dolton MJ, McLachlan AJ. Optimizing azole antifungal therapy in the prophylaxis and treatment of fungal infections. Curr Opin Infect Dis. 2014;27:493–500.
  • Wang T, Xie J, Wang Y, et al. Pharmacokinetic and pharmacodynamic properties of oral voriconazole in patients with invasive fungal infections. Pharmacotherapy. 2015;35:797–804.
  • Hope WW, Vanguilder M, Donnelly JP, et al. Software for dosage individualization of voriconazole for immunocompromised patients. Antimicrob Agents Chemother. 2013;57:1888–1894.
  • Blyth CC, Palasanthiran P, O’Brien TA. Antifungal therapy in children with invasive fungal infections: a systematic review. Pediatrics. 2007;119:772–784.
  • Zaoutis TE, Greves HM, Lautenbach E, et al. Risk factors for disseminated candidiasis in children with candidemia. Pediatr Infect Dis J. 2004;23:635–641.
  • Chen S, Slavin M, Nguyen Q, et al. Active surveillance for candidemia, Australia. Emerging Infect Dis. 2006;12:1508–1516.
  • Kossoff EH, Buescher ES, Karlowicz MG. Candidemia in a neonatal intensive care unit: trends during fifteen years and clinical features of 111 cases. Pediatr Infect Dis J. 1998;17:504–508.
  • Nguyen MH, Peacock JE, Morris AJ, et al. The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. Am J Med. 1996;100:617–623.
  • Benjamin DK, Stoll BJ, Gantz MG, et al. Neonatal candidiasis: epidemiology, risk factors, and clinical judgment. Pediatrics. 2010;126:e865–e873.
  • Faix RG. Invasive neonatal candidiasis: comparison of albicans and parapsilosis infection. Pediatr Infect Dis J. 1992;11:88–93.
  • Levy I, Rubin LG, Vasishtha S, et al. Emergence of Candida parapsilosis as the predominant species causing candidemia in children. Clin Infect Dis. 1998;26:1086–1088.
  • Walsh TJ, Lutsar I, Driscoll T, et al. Voriconazole in the treatment of aspergillosis, scedosporiosis and other invasive fungal infections in children. Pediatr Infect Dis J. 2002;21:240–248.
  • Walsh TJ, Driscoll T, Milligan PA, et al. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. Antimicrob Agents Chemother. 2010;54:4116–4123.
  • Stockmann C, Spigarelli MG, Campbell SC, et al. Considerations in the pharmacologic treatment and prevention of neonatal sepsis. Paediatr Drugs. 2014;16:67–81.
  • Soler-Palacín P, Frick MA, Martín-Nalda A, et al. Voriconazole drug monitoring in the management of invasive fungal infection in immunocompromised children: a prospective study. J Antimicrob Chemother. 2012;67:700–706.
  • Choi S-H, Lee S-Y, Hwang J-Y, et al. Importance of voriconazole therapeutic drug monitoring in pediatric cancer patients with invasive aspergillosis. Pediatr Blood Cancer. 2013;60:82–87.
  • Spriet I, Cosaert K, Renard M, et al. Voriconazole plasma levels in children are highly variable. Eur J Clin Microbiol Infect Dis. 2011;30:283–287.
  • Shima H, Miharu M, Osumi T, et al. Differences in voriconazole trough plasma concentrations per oral dosages between children younger and older than 3 years of age. Pediatr Blood Cancer. 2010;54:1050–1052.
  • Bartelink IH, Wolfs T, Jonker M, et al. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. Antimicrob Agents Chemother. 2013;57:235–240.
  • Huurneman LJ, Neely M, Veringa A, et al. Pharmacodynamics of voriconazole in children: further steps along the path to true individualized therapy. Antimicrob Agents Chemother. 2016;60:2336–2342.
  • Celik IH, Demirel G, Oguz SS, et al. Compassionate use of voriconazole in newborn infants diagnosed with severe invasive fungal sepsis. Eur Rev Med Pharmacol Sci. 2013;17:729–734.
  • Roberts JK, Stockmann C, Constance JE, et al. Pharmacokinetics and pharmacodynamics of antibacterials, antifungals, and antivirals used most frequently in neonates and infants. Clin Pharmacokinet. 2014;53:581–610.
  • Ericson J, Manzoni P, Benjamin DK. Old and new: appropriate dosing for neonatal antifungal drugs in the nursery. Early Hum Dev. 2013;89(Suppl 1):S25–S27.
  • Lestner JM, Smith PB, Cohen-Wolkowiez M, et al. Antifungal agents and therapy for infants and children with invasive fungal infections: a pharmacological perspective. Br J Clin Pharmacol. 2013;75:1381–1395.
  • Greenberg RG, Benjamin DK. Neonatal candidiasis: diagnosis, prevention, and treatment. J Infect. 2014;69(Suppl 1):S19–S22.
  • Muldrew KM, Maples HD, Stowe CD, et al. Intravenous voriconazole therapy in a preterm infant. Pharmacotherapy. 2005;25:893–898.
  • Doby EH, Benjamin DK, Blaschke AJ, et al. Therapeutic monitoring of voriconazole in children less than three years of age: a case report and summary of voriconazole concentrations for ten children. Pediatr Infect Dis J. 2012;31:632–635.
  • Frankenbusch K, Eifinger F, Kribs A, et al. Severe primary cutaneous aspergillosis refractory to amphotericin B and the successful treatment with systemic voriconazole in two premature infants with extremely low birth weight. J Perinatol. 2006;26:511–514.
  • Kohli V, Taneja V, Sachdev P, et al. Voriconazole in newborns. Indian Pediatr. 2008;45:236–238.
  • Gerin M, Mahlaoui N, Elie C, et al. Therapeutic drug monitoring of voriconazole after intravenous administration in infants and children with primary immunodeficiency. Ther Drug Monit. 2011;33:464–466.
  • Michael C, Bierbach U, Frenzel K, et al. Voriconazole pharmacokinetics and safety in immunocompromised children compared to adult patients. Antimicrob Agents Chemother. 2010;54:3225–3232.
  • European Medicines Association. Annex I: summary of product characteristics; 2012; p. 1–156 [cited 2016 Apr 24]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000387/WC500049756.pdf.
  • Lat A, Thompson GR. Update on the optimal use of voriconazole for invasive fungal infections. Infect Drug Resist. 2011;4:43–53.
  • Cowen EW, Nguyen JC, Miller DD, et al. Chronic phototoxicity and aggressive squamous cell carcinoma of the skin in children and adults during treatment with voriconazole. J Am Acad Dermatol. 2010;62:31–37.
  • Howard A, Hoffman J, Sheth A. Clinical application of voriconazole concentrations in the treatment of invasive aspergillosis. Ann Pharmacother. 2008;42:1859–1864.
  • Zonios D, Yamazaki H, Murayama N, et al. Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. J Infect Dis. 2014;209:1941–1948.
  • Bayhan GI, Garipardic M, Karaman K, et al. Voriconazole-associated visual disturbances and hallucinations. Cutan Ocul Toxicol. 2016;35:80–82.
  • Xiong W-H, Brown RL, Reed B, et al. Voriconazole, an antifungal triazol that causes visual side effects, is an inhibitor of TRPM1 and TRPM3 channels. Invest Ophthalmol Vis Sci. 2015;56:1367–1373.
  • Imhof A, Schaer DJ, Schanz U, et al. Neurological adverse events to voriconazole: evidence for therapeutic drug monitoring. Swiss Med Wkly. 2006;136:739–742.
  • Singh H, Kilara N, Subramaniyan V, et al. Voriconazole-induced psychosis in a case of acute myeloid leukemia with febrile neutropenia. Indian J Pharmacol. 2015;47:332–333.
  • Agrawal AK, Sherman LK. Voriconazole-induced musical hallucinations. Infection. 2004;32:293–295.
  • Zonios DI, Gea-Banacloche J, Childs R, et al. Hallucinations during voriconazole therapy. Clin Infect Dis. 2008;47:e7–e10.
  • Potoski BA, Brown J. The safety of voriconazole. Clin Infect Dis. 2002;35:1273–1275.
  • Den Hollander JG, Van Arkel C, Rijnders BJ, et al. Incidence of voriconazole hepatotoxicity during intravenous and oral treatment for invasive fungal infections. J Antimicrob Chemother. 2006;57:1248–1250.
  • Denning DW, Ribaud P, Milpied N, et al. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis. 2002;34:563–571.
  • Driscoll TA, Frangoul H, Nemecek ER, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised adolescents and healthy adults. Antimicrob Agents Chemother. 2011;55:5780–5789.
  • Driscoll TA, Yu LC, Frangoul H, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised children and healthy adults. Antimicrob Agents Chemother. 2011;55:5770–5779.
  • Matsumoto K, Ikawa K, Abematsu K, et al. Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents. 2009;34:91–94.
  • McCarthy KL, Playford EG, Looke DFM, et al. Severe photosensitivity causing multifocal squamous cell carcinomas secondary to prolonged voriconazole therapy. Clin Infect Dis. 2007;44:e55–e56.
  • Huang DB, Wu JJ, Lahart CJ. Toxic epidermal necrolysis as a complication of treatment with voriconazole. South Med J. 2004;97:1116–1117.
  • Jeu L, Piacenti FJ, Lyakhovetskiy AG, et al. Voriconazole. Clin Ther. 2003;25:1321–1381.
  • Vandecasteele SJ, Van Wijngaerden E, Peetermans WE. Two cases of severe phototoxic reactions related to long-term outpatient treatment with voriconazole. Eur J Clin Microbiol Infect Dis. 2004;23:656–657.
  • Hansford JR, Cole C, Blyth CC, et al. Idiosyncratic nature of voriconazole photosensitivity in children undergoing cancer therapy. J Antimicrob Chemother. 2012;67:1807–1809.
  • Kramer J, Obejero-Paz CA, Myatt G, et al. MICE models: superior to the HERG model in predicting Torsade de Pointes. Sci Rep. 2013;3:2100.
  • Owens RC, Nolin TD. Antimicrobial-associated QT interval prolongation: pointes of interest. Clin Infect Dis. 2006;43:1603–1611.
  • Elbey MA, Cil H, Onturk E, et al. OTc prolongation and torsade de pointes ventricular tachycardia in a small dose voriconazole therapy. Eur Rev Med Pharmacol Sci. 2012;16:100–102.
  • Philips JA, Marty FM, Stone RM, et al. Torsades de pointes associated with voriconazole use. Transpl Infect Dis. 2007;9:33–36.
  • Alkan Y, Haefeli WE, Burhenne J, et al. Voriconazole-induced QT interval prolongation and ventricular tachycardia: a non-concentration-dependent adverse effect. Clin Infect Dis. 2004;39:e49–e52.
  • Brown JD, Lim -L-L, Koning S. Voriconazole associated torsades de pointes in two adult patients with haematological malignancies. Med Mycol Case Rep. 2014;4:23–25.
  • Eiden C, Peyrière H, Tichit R, et al. Inherited long QT syndrome revealed by antifungals drug-drug interaction. J Clin Pharm Ther. 2007;32:321–324.
  • Prosser JM, Mills A, Rhim ES, et al. Torsade de pointes caused by polypharmacy and substance abuse in a patient with human immunodeficiency virus. Int J Emerg Med. 2008;1:217–220.
  • Teranishi J, Nagatoya K, Kakita T, et al. Voriconazole-associated salt-losing nephropathy. Clin Exp Nephrol. 2010;14:377–380.
  • Kim K-H, Lee S, Lee S, et al. Voriconazole-associated severe hyponatremia. Med Mycol. 2012;50:103–105.
  • Shanmugam VK, Matsumoto C, Pien E, et al. Voriconazole-associated myositis. J Clin Rheumatol. 2009;15:350–353.
  • Skiles JL, Imel EA, Christenson JC, et al. Fluorosis because of prolonged voriconazole therapy in a teenager with acute myelogenous leukemia. J Clin Oncol. 2011;29:e779–e782.
  • Wise SM, Wilson MA. A case of periostitis secondary to voriconazole therapy in a heart transplant recipient. Clin Nucl Med. 2011;36:242–244.
  • Wermers RA, Cooper K, Razonable RR, et al. Fluoride excess and periostitis in transplant patients receiving long-term voriconazole therapy. Clin Infect Dis. 2011;52:604–611.
  • Pearson MM, Rogers PD, Cleary JD, et al. Voriconazole: a new triazole antifungal agent. Ann Pharmacother. 2003;37:420–432.
  • Hoffman HL, Rathbun RC. Review of the safety and efficacy of voriconazole. Expert Opin Investig Drugs. 2002;11:409–429.
  • Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–e50.
  • Kiser TH, Fish DN, Aquilante CL, et al. Evaluation of sulfobutylether-β-cyclodextrin (SBECD) accumulation and voriconazole pharmacokinetics in critically ill patients undergoing continuous renal replacement therapy. Crit Care. 2015;19:32.
  • Tan K, Brayshaw N, Tomaszewski K, et al. Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol. 2006;46:235–243.
  • Pfaller MA, Castanheira M, Messer SA, et al. In vitro antifungal susceptibilities of isolates of Candida spp. and Aspergillus spp. from China to nine systemically active antifungal agents: data from the SENTRY antifungal surveillance program, 2010 through 2012. Mycoses. 2015;58:209–214.
  • Castanheira M, Messer SA, Rhomberg PR, et al. Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013). Diagn Microbiol Infect Dis. 2016;85(2):200–204.
  • Pfaller MA, Diekema DJ, Ghannoum MA, et al. Wild-type MIC distribution and epidemiological cutoff values for Aspergillus fumigatus and three triazoles as determined by the Clinical and Laboratory Standards Institute broth microdilution methods. J Clin Microbiol. 2009;47:3142–3146.
  • Pfaller MA, Messer SA, Boyken L, et al. In vitro survey of triazole cross-resistance among more than 700 clinical isolates of Aspergillus species. J Clin Microbiol. 2008;46:2568–2572.
  • Pfaller MA, Castanheira M, Messer SA, et al. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009). Diagn Microbiol Infect Dis. 2011;69:45–50.
  • Pfaller MA, Castanheira M, Messer SA, et al. Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008–2009). Diagn Microbiol Infect Dis. 2010;68:278–283.
  • Pfaller MA, Messer SA, Jones RN, et al. Antifungal susceptibilities of Candida, Cryptococcus neoformans and Aspergillus fumigatus from the Asia and Western Pacific region: data from the SENTRY antifungal surveillance program (2010–2012). J Antibiot. 2015;68:556–561.
  • Zhanel GG, Kirkpatrick ID, Hoban DJ, et al. Influence of human serum on pharmacodynamic properties of an investigational glycopeptide, LY333328, and comparator agents against Staphylococcus aureus. Antimicrob Agents Chemother. 1998;42:2427–2430.
  • García MT, Llorente MT, Lima JE, et al. Activity of voriconazole: post-antifungal effect, effects of low concentrations and of pretreatment on the susceptibility of Candida albicans to leucocytes. Scand J Infect Dis. 1999;31:501–504.
  • Brüggemann RJM, Alffenaar J-WC, Blijlevens NMA, et al. Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis. 2009;48:1441–1458.
  • Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact. 1997;106:161–182.
  • Rex JH, Pfaller MA. Has antifungal susceptibility testing come of age? Clin Infect Dis. 2002;35:982–989.
  • Nucci M, Perfect JR. When primary antifungal therapy fails. Clin Infect Dis. 2008;46:1426–1433.
  • Siopi M, Mavridou E, Mouton JW, et al. Susceptibility breakpoints and target values for therapeutic drug monitoring of voriconazole and Aspergillus fumigatus in an in vitro pharmacokinetic/pharmacodynamic model–authors’ response. J Antimicrob Chemother. 2015;70:634–635.
  • Lopes Bezerra LM, Filler SG. Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity. Blood. 2004;103:2143–2149.
  • Ballesta S, García I, Perea EJ, et al. Uptake and intracellular activity of voriconazole in human polymorphonuclear leucocytes. J Antimicrob Chemother. 2005;55:785–787.
  • Ben-Ami R, Lewis RE, Kontoyiannis DP. Immunocompromised hosts: immunopharmacology of modern antifungals. Clin Infect Dis. 2008;47:226–235.
  • Fidan I, Yesilyurt E, Kalkanci A, et al. Immunomodulatory effects of voriconazole and caspofungin on human peripheral blood mononuclear cells stimulated by Candida albicans and Candida krusei. Am J Med Sci. 2014;348:219–223.
  • Steinbach WJ, Perfect JR, Schell WA, et al. In vitro analyses, animal models, and 60 clinical cases of invasive Aspergillus terreus infection. Antimicrob Agents Chemother. 2004;48:3217–3225.
  • Elefanti A, Mouton JW, Verweij PE, et al. Amphotericin B- and voriconazole-echinocandin combinations against Aspergillus spp.: effect of serum on inhibitory and fungicidal interactions. Antimicrob Agents Chemother. 2013;57:4656–4663.
  • Marr KA, Schlamm HT, Herbrecht R, et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med. 2015;162:81–89.
  • Manavathu EK, Ramesh MS, Baskaran I, et al. A comparative study of the post-antifungal effect (PAFE) of amphotericin B, triazoles and echinocandins on Aspergillus fumigatus and Candida albicans. J Antimicrob Chemother. 2004;53:386–389.
  • Marr KA, Boeckh M, Carter RA, et al. Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis. 2004;39:797–802.
  • Lo Giudice P, Campo S, De Santis R, et al. Effect of PTX3 and voriconazole combination in a rat model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2012;56:6400–6402.
  • Singh N, Limaye AP, Forrest G, et al. Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: a prospective, multicenter, observational study. Transplantation. 2006;81:320–326.
  • Kirkpatrick WR, Perea S, Coco BJ, et al. Efficacy of caspofungin alone and in combination with voriconazole in a Guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother. 2002;46:2564–2568.
  • Rüping MJ, Vehreschild JJ, Cornely O. Patients at high risk of invasive fungal infections: when and how to treat. Drugs. 2008;68:1941–1962.
  • Inoue K, Yamazaki H, Imiya K, et al. Relationship between CYP2C9 and 2C19 genotypes and tolbutamide methyl hydroxylation and S-mephenytoin 4ʹ-hydroxylation activities in livers of Japanese and Caucasian populations. Pharmacogenetics. 1997;7:103–113.
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141.
  • Nivoix Y, Levêque D, Herbrecht R, et al. The enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin Pharmacokinet. 2008;47:779–792.
  • Jeong S, Nguyen PD, Desta Z. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother. 2009;53:541–551.
  • Owusu Obeng A, Egelund EF, Alsultan A, et al. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy. 2014;34:703–718.
  • Gautier-Veyret E, Fonrose X, Tonini J, et al. Variability of voriconazole plasma concentrations after allogeneic hematopoietic stem cell transplantation: impact of cytochrome p450 polymorphisms and comedications on initial and subsequent trough levels. Antimicrob Agents Chemother. 2015;59:2305–2314.
  • Steere B, Baker JAR, Hall SD, et al. Prediction of in vivo clearance and associated variability of CYP2C19 substrates by genotypes in populations utilizing a pharmacogenetics-based mechanistic model. Drug Metab Dispos. 2015;43:870–883.
  • Motta I, Calcagno A, Baietto L, et al. A probable drug-to-drug interaction between voriconazole and haloperidol in a slow metabolizer of CYP2C19. Infez Med. 2015;23:367–369.
  • Imamura CK, Furihata K, Okamoto S, et al. Impact of cytochrome P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when coadministered with voriconazole. J Clin Pharmacol. 2015;56(4):408–413.
  • Roerig. VFEND®: highlights of prescribing information (LAB-0311-12.0); 2015 [cited 2016 Jun 15]. Available from: http://labeling.pfizer.com/ShowLabeling.aspx?id=618.
  • Wasko JA, Westholder JS, Jacobson PA. Rifampin-sirolimus-voriconazole interaction in a hematopoietic cell transplant recipient. J Oncol Pharm Pract. 2016. doi:10.1177/1078155215624263. [Epub ahead of print].
  • Peksa GD, Schultz K, Fung HC. Dosing algorithm for concomitant administration of sirolimus, tacrolimus, and an azole after allogeneic hematopoietic stem cell transplantation. J Oncol Pharm Pract. 2015;21:409–415.
  • Lecefel C, Eloy P, Chauvin B, et al. Worsening pneumonitis due to a pharmacokinetic drug-drug interaction between everolimus and voriconazole in a renal transplant patient. J Clin Pharm Ther. 2015;40:119–120.
  • Marty FM, Lowry CM, Cutler CS, et al. Voriconazole and sirolimus coadministration after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2006;12:552–559.
  • Romero AJ, Le Pogamp P, Nilsson L-G, et al. Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther. 2002;71:226–234.
  • Spriet I, Grootaert V, Meyfroidt G, et al. Switching from intravenous to oral tacrolimus and voriconazole leads to a more pronounced drug-drug interaction. Eur J Clin Pharmacol. 2013;69:737–738.
  • Inoue Y, Saito T, Takimoto M, et al. Highly activated oral bioavailability of tacrolimus on coadministration of oral voriconazole. Int J Clin Pharmacol Ther. 2011;49:291–292.
  • Lazarus HM, Blumer JL, Yanovich S, et al. Safety and pharmacokinetics of oral voriconazole in patients at risk of fungal infection: a dose escalation study. J Clin Pharmacol. 2002;42:395–402.
  • Kato K, Nagao M, Yamamoto M, et al. Oral administration and younger age decrease plasma concentrations of voriconazole in pediatric patients. J Infect Chemother. 2016;22:27–31.
  • Dodds Ashley ES, Varkey JB, Krishna G, et al. Pharmacokinetics of posaconazole administered orally or by nasogastric tube in healthy volunteers. Antimicrob Agents Chemother. 2009;53:2960–2964.
  • Dodds Ashley ES, Zaas AK, Fang AF, et al. Comparative pharmacokinetics of voriconazole administered orally as either crushed or whole tablets. Antimicrob Agents Chemother. 2007;51:877–880.
  • Ashbee HR, Barnes RA, Johnson EM, et al. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2014;69:1162–1176.
  • Wang T, Chen S, Sun J, et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother. 2014;69:463–470.
  • Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:327–360.
  • Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347:408–415.
  • Pappas PG, Kauffman CA, Andes DR, et al. Executive summary: clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:409–417.
  • Boast A, Curtis N, Cranswick N, et al. Voriconazole dosing and therapeutic drug monitoring in children: experience from a paediatric tertiary care centre. J Antimicrob Chemother. 2016;71:2031–2036.
  • Committee on Infectious Diseases American Academy, American Academy of Pediatrics. Red book: 2015 report of the committee on infectious diseases. Kimberlin DW, Brady MT, Jackson MA, et al., editors. 30th ed. Elk Grove Village (IL): American Academy of Pediatrics; 2015.
  • Kang HM, Lee HJ, Cho EY, et al. The clinical significance of voriconazole therapeutic drug monitoring in children with invasive fungal infections. Pediatr Hematol Oncol. 2015;32(8):557–567.
  • Neofytos D, Lombardi LR, Shields RK, et al. Administration of voriconazole in patients with renal dysfunction. Clin Infect Dis. 2012;54:913–921.
  • Oude Lashof AML, Sobel JD, Ruhnke M, et al. Safety and tolerability of voriconazole in patients with baseline renal insufficiency and candidemia. Antimicrob Agents Chemother. 2012;56:3133–3137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.