436
Views
20
CrossRef citations to date
0
Altmetric
Review

Future therapies targeted towards eliminating Candida biofilms and associated infections

, &
Pages 299-318 | Received 30 Sep 2016, Accepted 01 Dec 2016, Published online: 16 Dec 2016

References

  • Kumamoto CA. Candida biofilms. Curr Opin Microbiol. 2002;5(6):608–611.
  • Ganguly S, Mitchell AP. Mucosal biofilms of Candida albicans. Curr Opin Microbiol. 2011;14(4):380–385.
  • Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev. 2010;23(2):253–273.
  • Cui L, Morris A, Ghedin E. The human mycobiome in health and disease. Genome Med. 2013;5(7):63.
  • Pappas PG, Rex JH, Sobel JD, et al. Guidelines for treatment of candidiasis. Clin Infect Dis. 2004;38(2):161–189.
  • Wenzel RP. Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis. 1995;20(6):1531–1534.
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9(7):327–335.
  • Arendrup MC. Epidemiology of invasive candidiasis. Curr Opin Crit Care. 2010;16(5):445–452.
  • Hidron AI, Edwards JR, Patel J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1011.
  • Wisplinghoff H, Bischoff T, Tallent SM, et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–317.
  • Cleveland AA, Farley MM, Harrison LH, et al. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011. Clin Infect Dis. 2012;55(10):1352–1361.
  • Tortorano AM, Kibbler C, Peman J, et al. Candidaemia inEurope: epidemiology and resistance. Int J Antimicrob Agents. 2006;27(5):359–366.
  • Almirante B, Rodriguez D, Park BJ, et al. Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2002 to 2003. J Clin Microbiol. 2005;43(4):1829–1835.
  • Diekema DJ, Messer SA, Brueggemann AB, et al. Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol. 2002;6(1):50–57.
  • Kao AS, Brandt ME, Pruitt WR, et al. The epidemiology of candidemia in two United States cities: results of a population-based active surveillance. Clin Infect Dis. 1999;29(5):1164–1170.
  • Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125(1):SS3–SS13.
  • Pfaller MA, Diekema DJ, Procop GW, et al. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J Clin Microbiol. 2007;45(11):3522–3528.
  • Pfaller MA, Andes DR, Diekema DJ, et al. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004-2008. PLoS One. 2014;9(7):e101510.
  • Maccallum DM. Hosting infection: experimental models to assay Candida virulence. Int J Microbiol. 2012;2012:363764.
  • Lopez-Martinez R. Candidosis, a new challenge. Clin Dermatol. 2010;28(2):178–184.
  • Miceli MH, Diaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis. 2011;11(2):142–151.
  • Lee WG, Shin JH, Uh Y, et al. First three reported cases of nosocomial fungemia caused byCandida auris. J Clin Microbiol. 2011;49(9):3139–3142.
  • Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Revmicrobiol. 2015;69:71–92.
  • Samaranayake LP. Essential microbiology for dentistry. Edinburgh: Churchill Livingstone; 2011.
  • Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev. 2004;17(2):255–267.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193.
  • National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992-June 2001, issued August 2001. Am J Infect Control. 2001;29(6):404–421.
  • Andes DR, Safdar N, Baddley JW, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis. 2012;54(8):1110–1122.
  • Cornely OA, Bassetti M, Calandra T, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect. 2012;18(Suppl 7):19–37.
  • Lortholary O, Petrikkos G, Akova M, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: patients with HIV infection or AIDS. Clin Microbiol Infect. 2012;18(Suppl 7):68–77.
  • Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the infectious diseases society of America. Clin Infect Dis. 2009;49(1):1–45.
  • Ramage G, Saville SP, Thomas DP, et al. Candida biofilms: an update. Eukaryot Cell. 2005;4(4):633–638.
  • Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–5394.
  • Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9(2):109–118.
  • Perumal P, Mekala S, Chaffin WL. Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother. 2007;51(7):2454–2463.
  • Lal P, Sharma D, Pruthi P, et al. Exopolysaccharide analysis of biofilm-forming Candida albicans. J Appl Microbiol. 2010;109(1):128–136.
  • Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006;55(Pt 8):999–1008.
  • Ramage G, Saville SP, Wickes BL, et al. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 2002;68(11):54595463.
  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633.
  • Nett J, Lincoln L, Marchillo K, et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother. 2007;51(2):510–520.
  • Vediyappan G, Rossignol T, d’Enfert C. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother. 2010;54(5):2096–2111.
  • Nett JE, Crawford K, Marchillo K, et al. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother. 2010;54(8):3505–3508.
  • Mitchell KF, Taff HT, Cuevas MA, et al. Role of matrix beta1,3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob Agents Chemother. 2013;57(4):1918–1920.
  • Kuhn DM, George T, Chandra J, et al. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002;46(6):1773–1780.
  • Nett JE, Sanchez H, Cain MT, et al. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis. 2010;202(1):171–175.
  • Taff HT, Nett JE, Zarnowski R, et al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. Plos Pathog. 2012;8(8):e1002848.
  • Al-Fattani MA, Douglas LJ. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother. 2004;48(9):3291–3297.
  • Martins M, Henriques M, Lopez-Ribot JL, et al. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses. 2012;55(1):80–85.
  • Morschhauser J. The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta. 2002;1587(2–3):240–248.
  • Schubert S, Barker KS, Znaidi S, et al. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans. Antimicrob Agents Chemother. 2011;55(5):2212–2223.
  • White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11(2):382–402.
  • Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev. 2011;75(2):213–267.
  • Bachmann SP, Patterson TF, Lopez-Ribot JL. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol. 2002;40(6):2228–2230.
  • Ramage G, Bachmann S, Patterson TF, et al. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 2002;49(6):973–980.
  • Mukherjee PK, Chandra J, Kuhn DM, et al. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun. 2003;71(8):4333–4340.
  • Mateus C, Crow SA Jr., Ahearn DG. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob Agents Chemother. 2004;48(9):3358–3366.
  • Nett JE, Lepak AJ, Marchillo K, et al. Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis. 2009;200(2):307–313.
  • Ferrari S, Sanguinetti M, Torelli R, et al. Contribution of CgPDR1regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One. 2011;6(3):e17589.
  • Sanglard D, Ischer F, Calabrese D, et al. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother. 1999;43(11):2753–2765.
  • Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology. 2000;146(Pt 11):2743–2754.
  • LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungaltolerant persister cells. Antimicrob Agents Chemother. 2006;50(11):3839–3846.
  • Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol. 2008;322:107–131.
  • Lewis K. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol. 2012;211:121–133.
  • Khot PD, Suci PA, Miller RL, et al. A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob Agents Chemother. 2006;50(11):3708–3716.
  • Al-Dhaheri RS, Douglas LJ. Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species. Antimicrob Agents Chemother. 2008;52(5):1884–1887.
  • Lafleur MD, Qi Q, Lewis K. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother. 2010;54(1):39–44.
  • Bink A, Vandenbosch D, Coenye T, et al. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob Agents Chemother. 2011;55(9):4033–4037.
  • Kumamoto CA. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci U S A. 2005;102(15):5576–5581.
  • Uppuluri P, Nett J, Heitman J, et al. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother. 2008;52(3):1127–1132.
  • Robbins N, Uppuluri P, Nett J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7(9):e1002257.
  • Singh SD, Robbins N, Zaas AK, et al. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 2009;5(7):e1000532.
  • Hill JA, Ammar R, Torti D, et al. Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLoS Genet. 2013;9(4):e1003390.
  • Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003;11(6):272–279.
  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, et al. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov. 2010;9(9):719–727.
  • Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 2009;9(7):1029–1050.
  • Anderson TM, Clay MC, Cioffi AG, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014;10(5):400–406.
  • Pierce CG, Srinivasan A, Uppuluri P, et al. Antifungal therapy with an emphasis on biofilms. Curr Opin Pharmacol. 2013;13(5):726–730.
  • Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002;359(9312):1135–1144.
  • Vandeputte P, Tronchin G, Berges T, et al. Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrob Agents Chemother. 2007;51(3):982–990.
  • Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett. 1997;400(1):80–82.
  • Espinel-Ingroff A. Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev Iberoam Micol. 2008;25(2):101–106.
  • Saag MS, Dismukes WE. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother. 1988;32(1):1–8.
  • Abe F, Hiraki T. Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochim Biophys Acta. 2009;1788(3):743–752.
  • Vazquez JA, Peng G, Sobel JD, et al. Evolution of antifungal susceptibility among Candida species isolates recovered from human immunodeficiency virus-infected women receiving fluconazole prophylaxis. Clin Infect Dis. 2001;33(7):1069–1075.
  • Safdar A, van Rhee F, Henslee-Downey JP, et al. Candida glabrata and Candida krusei fungemia after high-risk allogeneic marrow transplantation: no adverse effect of low-dose fluconazole prophylaxis on incidence and outcome. Bone Marrow Transpl. 2001;28(9):873–878.
  • Skiest DJ, Vazquez JA, Anstead GM, et al. Posaconazole for the treatment of azolerefractory oropharyngeal and esophageal candidiasis in subjects with HIV infection. Clin Infect Dis. 2007;44(4):607–614.
  • Prasad R, Shah AH, Rawal MK. Antifungals: mechanism of action and drug resistance. Adv Exp Med Biol. 2016;892:327–349.
  • Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012;713687:2012.
  • Noel T. The cellular and molecular defense mechanisms of the Candida yeasts against azole antifungal drugs. J Mycol Med. 2012;22(2):173–178.
  • Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009;22(2):291–321. Table of Contents.
  • Miyazaki Y, Geber A, Miyazaki H, et al. Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans. Gene. 1999;236(1):43–51.
  • Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46(2):171–179.
  • Francis P, Walsh TJ. Evolving role of flucytosine in immunocompromised patients: new insights into safety, pharmacokinetics, and antifungal therapy. Clin Infect Dis. 1992;15(6):1003–1018.
  • Kauffman CA, Frame PT. Bone marrow toxicity associated with 5-fluorocytosine therapy. Antimicrob Agents Chemother. 1977;11(2):244–247.
  • Chapeland-Leclerc F, Bouchoux J, Goumar A, et al. Inactivation of the FCY2 gene encoding purine-cytosine permease promotes cross-resistance to flucytosine and fluconazole in Candida lusitaniae. Antimicrob Agents Chemother. 2005;49(8):3101–3108.
  • Vandeputte P, Pineau L, Larcher G, et al. Molecular mechanisms of resistance to 5fluorocytosine in laboratory mutants of Candida glabrata. Mycopathologia. 2011;171(1):11–21.
  • Peman J, Canton E, Espinel-Ingroff A. Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther. 2009;7(4):453–460.
  • Debono M, Gordee RS. Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol. 1994;48:471–497.
  • Nishiyama Y, Uchida K, Yamaguchi H. Morphological changes of Candida albicans induced by micafungin (FK463), a water-soluble echinocandin-like lipopeptide. J Electron Microsc (Tokyo). 2002;51(4):247–255.
  • Pfaller MA, Diekema DJ, Messer SA, et al. In vitro activities of caspofungin compared with those of fluconazole and itraconazole against 3,959 clinical isolates of Candida spp., including 157 fluconazole-resistant isolates. Antimicrob Agents Chemother. 2003;47(3):1068–1071.
  • Cuenca-Estrella M, Rodriguez D, Almirante B, et al. In vitro susceptibilities of bloodstream isolates of Candida species to six antifungal agents: results from a population-based active surveillance programme, Barcelona, Spain, 2002-2003. J Antimicrob Chemother. 2005;55(2):194–199.
  • Zambias RA, Hammond ML, Heck JV, et al. Preparation and structure-activity relationships of simplified analogues of the antifungal agent cilofungin: a total synthesis approach. J Med Chem. 1992;35(15):2843–2855.
  • Glockner A, Steinbach A, Vehreschild JJ, et al. Treatment of invasive candidiasis with echinocandins. Mycoses. 2009;52(6):476–486.
  • Hakki M, Staab JF, Marr KA. Emergence of a Candida krusei isolate with reduced susceptibility to caspofungin during therapy. Antimicrob Agents Chemother. 2006;50(7):2522–2524.
  • Pasquale T, Tomada JR, Ghannoun M, et al. Emergence of Candida tropicalis resistant to caspofungin. J Antimicrob Chemother. 2008;61(1):219.
  • Hernandez S, Lopez-Ribot JL, Najvar LK, et al. Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob Agents Chemother. 2004;48(4):1382–1383.
  • Krogh-Madsen M, Arendrup MC, Heslet L, et al. Amphotericin B and caspofungin resistance in Candida glabrata isolates recovered from a critically ill patient. Clin Infect Dis. 2006;42(7):938–944.
  • Garcia-Effron G, Katiyar SK, Park S, et al. A naturally occurring prolineto-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2008;52(7):2305–2312.
  • Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother. 2006;50(6):2058–2063.
  • Chen SC, Sorrell TC. Antifungal agents. Med J Aust. 2007;187(7):404–409.
  • Song JC, Deresinski S. Hepatotoxicity of antifungal agents. Curr Opin Investig Drugs. 2005;6(2):170–177.
  • Sanglard D, Ischer F, Monod M, et al. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997;143(Pt 2):405–416.
  • Vanden Bossche H, Marichal P, Odds FC, et al. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother. 1992;36(12):26022610.
  • Hawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother. 1995;39(9):2128–2131.
  • Ramage G, Wickes BL, Lopez-Ribot JL. Biofilms of Candida albicans and their associated resistance to antifungal agents. Am Clin Lab. 2001;20(7):42–44.
  • Kucharikova S, Tournu H, Holtappels M, et al. In vivo efficacy of anidulafungin against mature Candida albicans biofilms in a novel rat model of catheterassociated Candidiasis. Antimicrob Agents Chemother. 2010;54(10):4474–4475.
  • Ramage G, Jose A, Sherry L, et al. Liposomal amphotericin B displays rapid dose-dependent activity against Candida albicans biofilms. Antimicrob Agents Chemother. 2013;57(5):2369–2371.
  • Ramage G, VandeWalle K, Bachmann SP, et al. In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob Agents Chemother. 2002;46(11):3634–3636.
  • Bachmann SP, VandeWalle K, Ramage G, et al. In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother. 2002;46(11):3591–3596.
  • Walker LA, Gow NA, Munro CA. Fungal echinocandin resistance. Fungal Genet Biol. 2010;47(2):117–126.
  • King AM, Reid-Yu SA, Wang W, et al. Aspergillomarasmine A overcomes metallo-betalactamase antibiotic resistance. Nature. 2014;510(7506):503–506.
  • Chait R, Craney A, Kishony R. Antibiotic interactions that select against resistance. Nature. 2007;446(7136):668–671.
  • Wood KB, Wood KC, Nishida S, et al. Uncovering scaling laws to infer multidrug response of resistant microbes and cancer cells. Cell Rep. 2014;6(6):1073–1084.
  • Imamovic L, Sommer MO. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med. 2013;5(204):204ra132.
  • Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of Candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2016;62(4):e1–50.
  • Cowen LE, Singh SD, Kohler JR, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci U S A. 2009;106(8):2818–2823.
  • Fox DS, Heitman J. Good fungi gone bad: the corruption of calcineurin. Bioessays. 2002;24(10):894–903.
  • Steinbach WJ, Reedy JL, Cramer RA Jr., et al. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol. 2007;5(6):418–430.
  • Segarra-Newnham M, Martin-Cooper EM. Antibiotic lock technique: a review of the literature. Ann Pharmacother. 2005;39(2):311–318.
  • Raad II, Hachem RY, Hanna HA, et al. Role of ethylene diamine tetra-acetic acid (EDTA) in catheter lock solutions: EDTA enhances the antifungal activity of amphotericin B lipid complex against Candida embedded in biofilm. Int J Antimicrob Agents. 2008;32(6):515–518.
  • Toulet D, Debarre C, Imbert C. Could liposomal amphotericin B (L-AMB) lock solutions be useful to inhibit Candida spp. Biofilms on silicone biomaterials? J Antimicrob Chemother. 2012;67(2):430–432.
  • Walraven CJ, Lee SA. Antifungal lock therapy. Antimicrob Agents Chemother. 2013;57(1):1–8.
  • Chatzimoschou A, Katragkou A, Simitsopoulou M, et al. Activities of triazole-echinocandin combinations against Candida species in biofilms and as planktonic cells. Antimicrob Agents Chemother. 2011;55(5):1968–1974.
  • Cateau E, Rodier MH, Imbert C. In vitro efficacies of caspofungin or micafungin catheter lock solutions on Candida albicans biofilm growth. J Antimicrob Chemother. 2008;62(1):153155.
  • Oncu S. In vitro effectiveness of antifungal lock solutions on catheters infected with Candida species. J Infect Chemother. 2011;17(5):634–639.
  • Miceli MH, Bernardo SM, Ku TS, et al. In vitro analyses of the effects of heparin and parabens on Candida albicans biofilms and planktonic cells. Antimicrob Agents Chemother. 2012;56(1):148–153.
  • Ku TS, Palanisamy SK, Lee SA. Susceptibility of Candida albicans biofilms to azithromycin, tigecycline and vancomycin and the interaction between tigecycline and antifungals. Int J Antimicrob Agents. 2010;36(5):441–446.
  • Miceli MH, Bernardo SM, Lee SA. In vitro analyses of the combination of high-dose doxycycline and antifungal agents against Candida albicans biofilms. Int J Antimicrob Agents. 2009;34(4):326–332.
  • Raad I, Hanna H, Dvorak T, et al. Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob Agents Chemother. 2007;51(1):78–83.
  • Martinez LR, Mihu MR, Tar M, et al. Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J Infect Dis. 2010;201(9):1436–1440.
  • Venkatesh M, Rong L, Raad I, et al. Novel synergistic antibiofilm combinations for salvage of infected catheters. J Med Microbiol. 2009;58(Pt 7):936–944.
  • Shuford JA, Rouse MS, Piper KE, et al. Evaluation of caspofungin and amphotericin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model. J Infect Dis. 2006;194(5):710–713.
  • Lazzell AL, Chaturvedi AK, Pierce CG, et al. Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemother. 2009;64(3):567–570.
  • Krzywda EA, Andris DA, Edmiston CE Jr., et al. Treatment of Hickman catheter sepsis using antibiotic lock technique. Infect Control Hosp Epidemiol. 1995;16(10):596–598.
  • Ozdemir H, Karbuz A, Ciftci E, et al. Successful treatment of central venous catheter infection due to Candida lipolytica by caspofungin-lock therapy. Mycoses. 2011;54(5):e647–e649.
  • Blackwood RA, Klein KC, Micel LN, et al. Ethanol locks therapy for resolution of fungal catheter infections. Pediatr Infect Dis J. 2011;30(12):1105–1107.
  • Samaranayake LP, MacFarlane TW. Oral candidosis. Bristol (UK): Wright; 1990.
  • Kinyon TJ, Schwartz RS, Burgess JO, et al. The use of warm solutions for more rapid disinfection of prostheses. Int J Prosthodont. 1989;2(6):518–523.
  • Yilmaz H, Aydin C, Bal BT, et al. Effects of disinfectants on resilient denture-lining materials contaminated with Staphylococcus aureus, Streptococcus sobrinus, and Candida albicans. Quintessence Int. 2005;36(5):373–381.
  • De Freitas Fernandes FS, Pereira-Cenci T, Da Silva WJ, et al. Efficacy of denture cleansers on Candida spp. biofilm formed on polyamide and polymethyl methacrylate resins. J Prosthet Dent. 2011;105(1):51–58.
  • Nakamoto K, Tamamoto M, Hamada T. Evaluation of denture cleansers with and without enzymes against Candida albicans. J Prosthet Dent. 1991;66(6):792–795.
  • Tamamoto M, Hamada T, Miyake Y, et al. Ability of enzymes to remove Candida. J Prosthet Dent. 1985;53(2):214–216.
  • Ferreira MA, Pereira-Cenci T, Rodrigues De Vasconcelos LM, et al. Efficacy of denture cleansers on denture liners contaminated with Candida species. Clin Oral Investig. 2009;13(2):237–242.
  • Ramage G, Jose A, Coco B, et al. Commercial mouthwashes are more effective than azole antifungals against Candida albicans biofilms in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(4):456–460.
  • Meiller TF, Kelley JI, Jabra-Rizk MA, et al. In vitro studies of the efficacy of antimicrobials against fungi. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(6):663–670.
  • Lamfon H, Porter SR, McCullough M, et al. Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study. J Antimicrob Chemother. 2004;53(2):383–385.
  • Tomas I, Cousido MC, Garcia-Caballero L, et al. Substantivity of a single chlorhexidine mouthwash on salivary flora: influence of intrinsic and extrinsic factors. J Dent. 2010;38(7):541–546.
  • Conway D. Oral health, mouthwashes and cancer–what is the story? Evid Based Dent. 2009;10(1):6–7.
  • La Vecchia C. Mouthwash and oral cancer risk: an update. Oral Oncol. 2009;45(3):198–200.
  • Ellepola ANB, Bandara HMHN. Usage of chlorhexidine as an adjunct therapy in oral candidal infections in: advances in medicine and biology. In: Berhardt LV, Editor. Advances in Medicine and Biology. New York (NY), United States: Nova Science Publishers; 2013. p. 53–74.
  • Machado FC, De Souza IP, Portela MB, et al. Use of chlorhexidine gel (0.2%) to control gingivitis and Candida species colonization in human immunodeficiency virus-infected children: a pilot study. Pediatr Dent. 2011;33(2):153–157.
  • Vila T, Romo JA, Pierce CG, et al. Targeting Candida albicans filamentation for antifungal drug development. Virulence. 2016;1–9.
  • Sardi JC, Scorzoni L, Bernardi T, et al. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(Pt 1):10–24.
  • Sanders ME. Probiotics: definition, sources, selection, and uses. Clin Infect Dis. 2008;46(Suppl 2):SS58-51.
  • Saarela M, Mogensen G, Fonden R, et al. Probiotic bacteria: safety, functional and technological properties. J Biotechnol. 2000;84(3):197–215.
  • Demirel G, Celik IH, Erdeve O, et al. Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants. Eur J Pediatr. 2013;172(10):1321–1326.
  • Kumar S, Singhi S, Chakrabarti A, et al. Probiotic use and prevalence of candidemia and candiduria in a PICU. Pediatr Crit Care Med. 2013;14(9):e409–415.
  • Matsubara VH, Bandara HM, Mayer MP, et al. Probiotics as antifungals in mucosal candidiasis. Clin Infect Dis. 2016;62(9):1143–1153.
  • Kovachev SM, Vatcheva-Dobrevska RS. Local probiotic therapy for vaginal Candida albicans infections. Probiotics Antimicrob Proteins. 2015;7(1):38–44.
  • Hu H, Merenstein DJ, Wang C, et al. Impact of eating probiotic yogurt on colonization by Candida species of the oral and vaginal mucosa in HIV-infected and HIV-uninfected women. Mycopathologia. 2013;176(3–4):175–181.
  • Vicariotto F, Del Piano M, Mogna L, et al. Effectiveness of the association of 2 probiotic strains formulated in a slow release vaginal product, in women affected by vulvovaginal candidiasis: a pilot study. J Clin Gastroenterol. 2012;46(Suppl):S73–80.
  • Martinez RC, Franceschini SA, Patta MC, et al. Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. Lett Appl Microbiol. 2009;48(3):269–274.
  • Roy A, Chaudhuri J, Sarkar D, et al. Role of enteric supplementation of probiotics on late-onset sepsis by Candida species in preterm low birth weight neonates: a randomized, double blind, placebo-controlled trial. N Am J Med Sci. 2014;6(1):50–57.
  • Manzoni P, Mostert M, Leonessa ML, et al. Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clin Infect Dis. 2006;42(12):1735–1742.
  • Romeo MG, Romeo DM, Trovato L, et al. Role of probiotics in the prevention of the enteric colonization by Candida in preterm newborns: incidence of late-onset sepsis and neurological outcome. J Perinatol. 2011;31(1):63–69.
  • Ishikawa KH, Mayer MP, Miyazima TY, et al. A multispecies probiotic reduces oral candida colonization in denture wearers. J Prosthodont. 2015;24(3):194–199.
  • Kraft-Bodi E, Jorgensen MR, Keller MK, et al. Effect of probiotic bacteria on oral Candida in frail elderly. J Dent Res. 2015;94(9 Suppl):181S–186S.
  • Li D, Li Q, Liu C, et al. Efficacy and safety of probiotics in the treatment of Candida associated stomatitis. Mycoses. 2014;57(3):141–146.
  • Mendonça FH, Santos SS, Faria Ida S, et al. Effects of probiotic bacteria on Candida presence and IgA anti-Candida in the oral cavity of elderly. Braz Dent J. 2012;23(5):534–538.
  • Hatakka K, Ahola AJ, Yli-Knuuttila H, et al. Probiotics reduce the prevalence of oral candida in the elderly–a randomized controlled trial. J Dent Res. 2007;86(2):125–130.
  • Matsubara VH, Silva EG, Paula CR, et al. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis. 2012;18(3):260–264.
  • Matsubara VH, Wang Y, Bandara HM, et al. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol. 2016;100:6415–6426.
  • Reid G, Younes JA, van der Mei HC, et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol. 2011;9(1):27–38.
  • Nieminen MT, Novak-Frazer L, Rautemaa W, . A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro. PLoS One. 2014;9(5):e101859.
  • Nieminen MT, Hernandez M, Novak-Frazer L, et al. DL-2-hydroxyisocaproic acid attenuates inflammatory responses in a murine Candida albicans biofilm model. Clin Vaccine Immunol. 2014;21(9):1240–1245.
  • Dixon RA. Natural products and plant disease resistance. Nature. 2001;411(6839):843–847.
  • Holetz FB, Pessini GL, Sanches NR, et al. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz. 2002;97(7):1027–1031.
  • Coleman JJ, Okoli I, Tegos GP, et al. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol. 2010;5(3):321–332.
  • Seleem D, Benso B, Noguti J, et al. In Vitro and In Vivo Antifungal Activity of Lichochalcone-A against Candida albicans Biofilms. PLoS One. 2016;11(6):e0157188.
  • Sherry L, Jose A, Murray C, et al. Carbohydrate derived fulvic acid: an in vitro Investigation of a novel membrane active antiseptic agent against Candida albicans biofilms. Front Microbiol. 2012;3:116.
  • Mandal SM, Migliolo L, Franco OL, et al. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides. 2011;32(8):1741–1747.
  • Rossignol T, Kelly B, Dobson C, et al. Endocytosis-mediated vacuolar accumulation of the human ApoE apolipoprotein-derived ApoEdpL-W antimicrobial peptide contributes to its antifungal activity in Candida albicans. Antimicrob Agents Chemother. 2011;55(10):4670–4681.
  • Evensen NA, Braun PC. The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol. 2009;55(9):1033–1039.
  • Pires RH, Montanari LB, Martins CH, et al. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia. 2011;172(6):453–464.
  • Szweda P, Gucwa K, Kurzyk E, et al. Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J Microbiol. 2015;55(2):175–183.
  • Ansari MA, Fatima Z, Hameed S. Mechanistic insights into the mode of action of anticandidal sesamol. Microb Pathog. 2016;98:140–148.
  • Kumar SN, Aravind SR, Sreelekha TT, et al. Asarones from Acorus calamus in combination with azoles and amphotericin B: a novel synergistic combination to compete against human pathogenic Candida species in vitro. Appl Biochem Biotechnol. 2015;175(8):3683–3695.
  • Lemar KM, Passa O, Aon MA, et al. Allyl alcohol and garlic (Allium sativum) extract produce oxidative stress in Candida albicans. Microbiology. 2005;151(Pt 10):3257–3265.
  • Ali I, Sharma P, Suri KA, et al. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia. J Med Microbiol. 2011;60(Pt 9):1326–1336.
  • Sherry L, Millhouse E, Lappin DF, et al. Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. BMC Oral Health. 2013;13:47.
  • Conner DE, Beuchat LR. Sensitivity of heat-stressed yeasts to essential oils of plants. Appl Environ Microbiol. 1984;47(2):229–233.
  • Duarte AE, De Menezes IR, Bezerra Morais Braga MF, et al. Antimicrobial activity and modulatory effect of essential oil from the leaf of Rhaphiodon echinus (Nees & Mart) schauer on some antimicrobial drugs. Molecules. 2016;21:6.
  • Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006;6:39.
  • Nett JE. Future directions for anti-biofilm therapeutics targeting Candida. Expert Rev Anti Infect Ther. 2014;12(3):375–382.
  • Benderdour M, Hess K, Dzondo-Gadet M, et al. Boron modulates extracellular matrix and TNF alpha synthesis in human fibroblasts. Biochem Biophys Res Commun. 1998;246(3):746–751.
  • Gallardo-Williams MT, Maronpot RR, Turner CH, et al. Effects of boric acid supplementation on bone histomorphometry, metabolism, and biomechanical properties in aged female F-344 rats. Biol Trace Elem Res. 2003;93(1–3):155–170.
  • Iavazzo C, Gkegkes ID, Zarkada IM, et al. Boric acid for recurrent vulvovaginal candidiasis: the clinical evidence. J Womens Health (Larchmt). 2011;20(8):1245–1255.
  • Khameneie KM, Arianpour N, Roozegar R, et al. Fluconazole and boric acid for treatment of vaginal Candidiasis–New words about old issue. East Afr Med J. 2013;90(4):117–123.
  • Powell AM, Gracely E, Nyirjesy P. Non-albicans Candida vulvovaginitis: treatment experience at a tertiary care vaginitis center. J Low Genit Tract Dis. 2016;20(1):85–89.
  • De Seta F, Schmidt M, Vu B, et al. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J Antimicrob Chemother. 2009;63(2):325–336.
  • Pointer BR, Boyer MP, Schmidt M. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans. Yeast. 2015;32(4):389–398.
  • Ivask A, Kurvet I, Kasemets K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One. 2014;9(7):e102108.
  • Panacek A, Kolar M, Vecerova R, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30(31):6333–6340.
  • Kim KJ, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals. 2009;22(2):235–242.
  • Matsubara VH, Igai F, Tamaki R, et al. Use of silver nanoparticles reduces internal contamination of external hexagon implants by Candida albicans. Braz Dent J. 2015;26(5):458–462.
  • Lu X, Zhang B, Wang Y, et al. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J R Soc Interface. 2011;8(57):529–539.
  • Harrasser N, Jussen S, Banke IJ, et al. Antibacterial efficacy of titanium-containing alloy with silver-nanoparticles enriched diamond-like carbon coatings. AMB Express. 2015;5(1):77.
  • Wang XJ, Sui X, Yan L, et al. Vaccines in the treatment of invasive candidiasis. Virulence. 2015;6(4):309–315.
  • Edwards JE Jr. Fungal cell wall vaccines: an update. J Med Microbiol. 2012;61(Pt 7):895–903.
  • Saville SP, Lazzell AL, Chaturvedi AK, et al. Efficacy of a genetically engineered Candida albicans tet-NRG1 strain as an experimental live attenuated vaccine against hematogenously disseminated candidiasis. Clin Vaccine Immunol. 2009;16(3):430–432.
  • De Bernardis F, Boccanera M, Adriani D, et al. Intravaginal and intranasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis. Infect Immun. 2002;70(5):2725–2729.
  • Ibrahim AS, Spellberg BJ, Avenissian V, et al. Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, not humoral, immunity. Infect Immun. 2005;73(2):999–1005.
  • Xin H, Dziadek S, Bundle DR, et al. Synthetic glycopeptide vaccines combining betamannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci U S A. 2008;105(36):13526–13531.
  • Xin H. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis. Vaccine. 2016;34(2):245–251.
  • van de Veerdonk FL, Netea MG, Joosten LA, et al. Novel strategies for the prevention and treatment of Candida infections: the potential of immunotherapy. FEMS Microbiol Rev. 2010;34(6):1063–1075.
  • Pachl J, Svoboda P, Jacobs F, et al. A randomized, blinded, multicenter trial of lipidassociated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis. 2006;42(10):1404–1413.
  • Hodgetts S, Nooney L, Al-Akeel R, et al. Efungumab and caspofungin: pre-clinical data supporting synergy. J Antimicrob Chemother. 2008;61(5):1132–1139.
  • Han Y, Riesselman MH, Cutler JE. Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect Immun. 2000;68(3):1649–1654.
  • Zhang MX, Bohlman MC, Itatani C, et al. Human recombinant antimannan immunoglobulin G1 antibody confers resistance to hematogenously disseminated candidiasis in mice. Infect Immun. 2006;74(1):362–369.
  • Pietrella D, Rachini A, Torosantucci A, et al. A beta-glucan-conjugate vaccine and antibeta-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique. Vaccine. 2010;28(7):1717–1725.
  • Polonelli L, De Bernardis F, Conti S, et al. Idiotypic intravaginal vaccination to protect against candidal vaginitis by secretory, yeast killer toxin-like anti-idiotypic antibodies. J Immunol. 1994;152(6):3175–3182.
  • Vazquez JA, Hidalgo JA, De Bono S. Use of sargramostim (rh-GM-CSF) as adjunctive treatment of fluconazole-refractory oropharyngeal candidiasis in patients with AIDS: a pilot study. HIV Clin Trials. 2000;1(3):23–29.
  • Kullberg BJ, van ‘T Wout JW, Hoogstraten C, et al. Recombinant interferon-gamma enhances resistance to acute disseminated Candida albicans infection in mice. J Infect Dis. 1993;168(2):436–443.
  • Clemons KV, Stevens DA. Treatment of orogastrointestinal candidosis in SCID mice with fluconazole alone or in combination with recombinant granulocyte colony-stimulating factor or interferon-gamma. Med Mycol. 2000;38(3):213–219.
  • Dignani MC, Rex JH, Chan KW, et al. Immunomodulation with interferon-gamma and colony-stimulating factors for refractory fungal infections in patients with leukemia. Cancer. 2005;104(1):199–204.
  • Tramsen L, Schmidt S, Boenig H, et al. Clinical-scale generation of multi-specific antifungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy. 2013;15(3):344351.
  • Tramsen L, Beck O, Schuster FR, et al. Generation and characterization of anti-Candida T cells as potential immunotherapy in patients with Candida infection after allogeneic hematopoietic stem-cell transplant. J Infect Dis. 2007;196(3):485–492.
  • Souza RC, Junqueira JC, Rossoni RD, et al. Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci. 2010;25(3):385389.
  • Pereira Gonzales F, Maisch T. Photodynamic inactivation for controlling Candida albicans infections. Fungal Biol. 2012;116(1):1–10.
  • Carmello JC, Alves F, Basso FG. Treatment of oral Candidiasis using Photodithazine(R)- mediated photodynamic therapy in vivo. PLoS One. 2016;11(6):e0156947.
  • Dovigo LN, Carmello JC, Carvalho MT, et al. Photodynamic inactivation of clinical isolates of Candida using Photodithazine(R). Biofouling. 2013;29(9):1057–1067.
  • Soares BM, Da Silva DL, Sousa GR, et al. In vitro photodynamic inactivation of Candida spp. Growth and adhesion to buccal epithelial cells. J Photochem Photobiol B. 2009;94(1):65–70.
  • Jabra-Rizk MA, Falkler WA Jr, Merz WG, et al. Retrospective identification and characterization of Candida dubliniensis isolates among Candida albicans clinical laboratory isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected individuals. J Clin Microbiol. 2000;38(6):2423–2426.
  • Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol. 2007;45(4):321–346.
  • Jack AA, Daniels DE, Jepson MA, et al. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiology. 2015;161(Pt2):411–421.
  • Jarosz LM, Deng DM, van der Mei HC, et al. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell. 2009;8(11):1658–1664.
  • Bandara HM, Yau JY, Watt RM, et al. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J Med Microbiol. 2009;58(Pt12):1623–1631.
  • Cruz MR, Graham CE, Gagliano BC, et al. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun. 2013;81(1):189–200.
  • Matsubara VH, Wang Y, Bandara HM, et al. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol. 2016;100(14):6415–6426.
  • Bandara HM, Yau JY, Watt RM, et al. Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol. 2010;10:125.
  • Harriott MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother. 2009;53(9):39143922.
  • Bandara HM, Lam OL, Jin LJ, et al. Microbial chemical signaling: a current perspective. Crit Rev Microbiol. 2012;38(3):217–249.
  • Srinivasan A, Gupta CM, Agrawal CM, et al. Drug susceptibility of matrix-encapsulated Candida albicans nano-biofilms. Biotechnol Bioeng. 2014;111(2):418–424.
  • Tobudic S, Lassnigg A, Kratzer C, et al. Antifungal activity of amphotericin B, caspofungin and posaconazole on Candida albicans biofilms in intermediate and mature development phases. Mycoses. 2010;53(3):208–214.
  • Kucharikova S, Sharma N, Spriet I, et al. Activities of systemically administered echinocandins against in vivo mature Candida albicans biofilms developed in a rat subcutaneous model. Antimicrob Agents Chemother. 2013;57(5):2365–2368.
  • Bandara HM, Herpin MJ, Kolacny D Jr., et al. Incorporation of farnesol significantly increases the efficacy of liposomal ciprofloxacin against Pseudomonas aeruginosa biofilms in vitro. Mol Pharm. 2016;13(8):2760–2770.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.