181
Views
0
CrossRef citations to date
0
Altmetric
Review

An update on the myriad antifungal resistance mechanisms in dermatophytes and the place of experimental and existential therapeutic agents for Trichophyton complex implicated in tinea corporis and cruris

ORCID Icon, , &
Pages 977-991 | Received 28 Feb 2023, Accepted 17 Aug 2023, Published online: 29 Aug 2023

References

  • Paião FG, Segato F, Cursino-Santos JR, et al. Analysis of Trichophyton rubrum gene expression in response to cytotoxic drugs. FEMS Microbiol Lett. 2007;271:180–186. doi: 10.1111/j.1574-6968.2007.00710.x
  • Peres NTA, Maranhão FC, Rossi A, et al. Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol. 2010;85:657–667. doi: 10.1590/S0365-05962010000500009
  • Antifungals drugs-summary. [cited 2023 13 Apr]. Available from: https://manualofmedicine.com/topics/pharmacology/antifungal-drugs-summary/.
  • Ghelardi E, Celandroni F, Gueye SA, et al. Potential of ergosterol synthesis inhibitors to cause resistance or cross-resistance in Trichophyton rubrum. Antimicrob Agents Chemother. 2014;58(5):2825–2829. doi: 10.1128/AAC.02382-13.
  • Delarze E, Sanglard D. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist Updat. 2015;23:12–19. doi: 10.1016/j.drup.2015.10.001
  • Sharma M, Manoharlal R, Shukla S, et al. Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob Agents Chemother. 2009;53(8):3256–3265. doi: 10.1128/AAC.01497-08
  • Coleman JJ, Mylonakis E. Efflux in fungi: la piece de resistance. PLOS Pathog. 2009;5:e1000486. doi: 10.1371/journal.ppat.1000486
  • Martinez-Rossi NM, Peres NTA, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia. 2008;166(5–6):369–383. doi: 10.1007/s11046-008-9110-7.
  • Xiong J, Feng JM, Yuan DX, et al. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Sci Rep. 2015;5(1):16724. doi: 10.1038/srep16724
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769–1792. doi: 10.3390/cancers6031769
  • Fachin AL, Ferreira-Nozawa MS, Maccheroni JW, et al. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol. 2006;55(8):1093–1099. doi: 10.1099/jmm.0.46522-0
  • Petrucelli MF, Matsuda JB, Peroni K, et al. The Transcriptional profile of Trichophyton rubrum co-cultured with human keratinocytes shows New Insights about gene modulation by terbinafine. Pathogens. 2019;8(4):274. doi: 10.3390/pathogens8040274
  • Yu L, Zhang W, Wang L, et al. Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother. 2007;51(1):144–153. doi: 10.1128/AAC.00755-06
  • Monod M, Feuermann M, Salamin K, et al. Trichophyton rubrum azole resistance mediated by a New ABC transporter, TruMDR3. Antimicrob Agents Chemother. 2019;63(11):e00863–19. doi: 10.1128/AAC.00863-19.
  • Kano R, Kimura U, Noguchi H, et al. Clinical isolate of a multi-antifungal-resistant Trichophyton rubrum. Antimicrob Agents Chemother. 2022;66(4):e0239321. doi: 10.1128/aac.02393-21
  • Yamada T, Yaguchi T, Salamin K, et al. MFS1, a pleiotropic transporter in dermatophytes that plays a key role in their intrinsic resistance to Chloramphenicol and fluconazole. J Fungi. 2021;7(7):542. doi: 10.3390/jof7070542
  • Yamada T, Yaguchi T, Tamura T, et al. Itraconazole resistance of Trichophyton rubrum mediated by the ABC transporter TruMDR2. Mycoses. 2021;64(8):936–946. doi: 10.1111/myc.13286
  • Gnat S, Łagowski D, Nowakiewicz A, et al. Complementary effect of mechanism of multidrug resistance in Trichophyton mentagrophytes isolated from human dermatophytoses of animal origin. Mycoses. 2021;64(5):537–549. doi: 10.1111/myc.13242
  • Martins MP, Franceschini AC, Jacob TR, et al. Compensatory expression of multidrug-resistance genes encoding ABC transporters in dermatophytes. J Med Microbiol. 2016;65:605–610. doi: 10.1099/jmm.0.000268
  • Yamada T, Yaguchi T, Maeda M, et al. Gene amplification of CYP51B: a New mechanism of resistance to azole compounds in Trichophyton indotineae. Antimicrob Agents Chemother. 2022;66(6):e0005922. doi: 10.1128/aac.00059-22.
  • Bhattacharyya A, Sadhasivam S, Sinha M, et al. Treatment recalcitrant cases of tinea corporis/cruris caused by T. mentagrophytes – interdigitale complex with mutations in ERG11 ERG 3, ERG4, MDR1 MFS genes & SQLE and their potential implications. Int J Dermatology. 2023;62(5):637–648. doi: 10.1111/ijd.16622.
  • Kano R, Hsiao YH, Han HS, et al. Resistance mechanism in a terbinafine-resistant strain of microsporum canis. Mycopathologia. 2018;183(3):623–627. doi: 10.1007/s11046-018-0242-0
  • Graminha MA, Rocha EM, Prade RA, et al. Terbinafine resistance mediated by salicylate 1-monooxygenase in Aspergillus nidulans. Antimicrob Agents Chemother. 2004;48(9):3530–3535. doi: 10.1128/AAC.48.9.3530-3535.2004
  • Santos HL, Lang EAS, Segato F, et al. Terbinafine resistance conferred by multiple copies of the salicylate 1-monooxygenase gene in Trichophyton rubrum. Med Mycol. 2018;56(3):378–381. doi: 10.1093/mmy/myx044
  • Persinoti GF, de Aguiar Peres NT, Jacob TR, et al. RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine. BMC Genomics. 2014;15(S7):1–3. doi: 10.1186/1471-2164-15-S7-S1
  • Mendes NS, Bitencourt TA, Sanches PR, et al. Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Sci Rep. 2018;8(1):1–4. doi: 10.1038/s41598-018-20738-x
  • Zhang W, Yu L, Yang J, et al. Transcriptional profiles of response to terbinafine in Trichophyton rubrum. Appl Microbiol Biotechnol. 2009;82(6):1123–1130. doi: 10.1007/s00253-009-1908-9
  • Garaizar J, Brena S, Bikandi J, et al. Use of DNA microarray technology and gene expression profiles to investigate the pathogenesis, cell biology, antifungal susceptibility and diagnosis of Candida albicans. FEMS Yeast Res. 2006;6:987–998. doi: 10.1111/j.1567-1364.2006.00108.x
  • Gomes EV, Bortolossi JC, Sanches PR, et al. STE20/PAKA protein kinase gene releases an autoinhibitory domain through pre-mRNA alternative splicing in the dermatophyte Trichophyton rubrum. Int J Mol Sci. 2018;19(11):3654. doi: 10.3390/ijms19113654
  • Achterman RR, Moyes DL, Thavaraj S, et al. Dermatophytes activate skin keratinocytes via mitogen-activated protein kinase signaling and induce immune responses. Infect Immun. 2015;83(4):1705–1714. doi: 10.1128/IAI.02776-14
  • Faway E, Cambier L, De Vuyst E, et al. Responses of reconstructed human epidermis to trichophyton rubrum infection and impairment of infection by the inhibitor PD169316. J Invest Dermatol. 2019;139(10):2080–89.e6. doi: 10.1016/j.jid.2019.03.1147
  • Tiwari S, Thakur R, Shankar J. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int. 2015;2015:1–11. doi: 10.1155/2015/132635
  • Tamayo D, Munoz JF, Torres I, et al. Involvement of the 90 kDa heat shock protein during adaptation of Paracoccidioides brasiliensis to different environmental conditions. Fungal Genet Biol. 2013;51:34–41. doi: 10.1016/j.fgb.2012.11.005
  • Jacob TR, Peres NT, Martins MP, et al. Heat shock protein 90 (Hsp90) as a molecular target for the development of novel drugs against the dermatophyte Trichophyton rubrum. Front Microbiol. 2015;6:1241. doi: 10.3389/fmicb.2015.01241
  • Martinez-Rossi NM, Jacob TR, Sanches PR, et al. Heat shock proteins in dermatophytes: current advances and perspectives. Curr Genomics. 2016;17:99–111.
  • Bignell E, Negrete-Urtasun S, Calcagno AM, et al. The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol Microbiol. 2005;55:1072–1084. doi: 10.1111/j.1365-2958.2004.04472.x
  • Ferreira-Nozawa MS, Silveira HCS, Ono CJ, et al. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol. 2006;44(7):641–645. doi: 10.1080/13693780600876553
  • Gong Y, Li T, Yu C, et al. Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal targets. Front Cell Infect Microbiol. 2017;7:520. doi: 10.3389/fcimb.2017.00520
  • Safi-Samghabadi A, Atyabi SM, Razzaghi-Abyaneh M. Anti-dermatophytic activity of cold atmospheric plasma against Trichophyton rubrum via affecting fungal growth, morphology, drug susceptibility and HSP90 gene expression. Sci Rep. 2022;12(1):9481. doi: 10.1038/s41598-022-13828-4
  • Uehara Y. Natural product origins of Hsp90 inhibitors. Curr Cancer Drug Targets. 2003;3(5):325–330. doi: 10.2174/1568009033481796
  • Liu JF, Xia JJ, Nie KL, et al. Outline of the biosynthesis and regulation of ergosterol in yeast. World J Microbiol Biotechnol. 2019;35(7):98. doi: 10.1007/s11274-019-2673-2
  • Singh A, Masih A, Khurana A, et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses. 2018;61(7):477–484. doi: 10.1111/myc.12772.
  • Jabet A, Brun S, Normand AC, et al. Extensive dermatophytosis caused by terbinafine-resistant Trichophyton indotineae, France. Emerg Infect Dis. 2022;28:229–233. doi: 10.3201/eid2801.210883
  • Siopi M, Efstathiou I, Theodoropoulos K, et al. Molecular epidemiology and antifungal susceptibility of Trichophyton isolates in Greece: emergence of terbinafine-resistant Trichophyton mentagrophytes type VIII locally and globally. J Fungi (Basel). 2021;7(6):419. doi: 10.3390/jof7060419
  • Posso-De Los Rios CJ, Tadros E, Summerbell RC, et al. Terbinafine resistant Trichophyton indotineae isolated in patients with superficial dermatophyte infection in Canadian patients. J Cutan Med Surg. 2022;26(4):371–376. doi: 10.1177/12034754221077891
  • Taghipour S, Shamsizadeh F, Pchelin IM, et al. Emergence of terbinafine resistant Trichophyton mentagrophytes in Iran, harboring mutations in the Squalene Epoxidase (SQLE) gene. Infect Drug Resist. 2020; 13: 845–850. 10.2147/IDR.S246025.
  • Bhattacharya S, Esquivel BD, White TC, et al. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. MBio. 2018;9(4):e01291–18. doi: 10.1128/mBio.01291-18
  • Sanglard D, Ischer F, Parkinson T, et al. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother. 2003;47(8):2404–2412. doi: 10.1128/AAC.47.8.2404-2412.2003
  • Nyilasi I, Kocsubé S, Krizsán K, et al. Susceptibility of clinically important dermatophytes against statins and different statin-antifungal combinations. Med Mycol. 2014;52:140–148. doi: 10.3109/13693786.2013.828160
  • Yamada T, Maeda M, Alshahni MM, et al. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob Agents Chemother. 2017;61(7):e00115–17. doi: 10.1128/AAC.00115-17
  • Chowdhary A, Singh A, Kaur A, et al. The emergence and worldwide spread of the species Trichophyton indotineae causing difficult-to-treat dermatophytosis: a new challenge in the management of dermatophytosis. PLOS Pathog. 2022;18(9):e1010795. doi: 10.1371/journal.ppat.1010795.
  • Kong X, Tang C, Singh A, et al. Antifungal susceptibility and mutations in the squalene epoxidase gene in dermatophytes of the Trichophyton mentagrophytes species complex. Antimicrob Agents Chemother. 2021;65(8):e0005621. doi: 10.1128/AAC.00056-21
  • Ebert A, Monod M, Salamin K, et al. Alarming India-wide phenomenon of antifungal resistance in dermatophytes: a multicentre study. Mycoses. 2020;63(7):717–728. doi: 10.1111/myc.13091.
  • Burmester A, Hipler UC, Elsner P, et al. Point mutations in the squalene epoxidase erg1 and sterol 14-α demethylase erg11 gene of T indotineae isolates indicate that the resistant mutant strains evolved independently. Mycoses. 2022;65(1):97–102. doi: 10.1111/myc.13393
  • Fanning S, Mitchell AP, Heitman J. Fungal biofilms. PLOS Pathog. 2012;8(4):e1002585. doi: 10.1371/journal.ppat.1002585
  • Gupta AK, Daigle D, Carviel JL. The role of biofilms in onychomycosis. J Am Acad Dermatol. 2016;74(6):1241–1246. doi: 10.1016/j.jaad.2016.01.008
  • Burkhart CN, Burkhart CG, Gupta AK. Dermatophytoma: recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol. 2002;47:629–631. doi: 10.1067/mjd.2002.124699
  • Castelo-Branco DSCM, de Aguiar L, Araújo GDS, et al. In vitro and ex vivo biofilms of dermatophytes: a new panorama for the study of antifungal drugs. Biofouling. 2020;36:783–791. doi: 10.1080/08927014.2020.1811856
  • Yazdanpanah S, Sasanipoor F, Khodadadi H, et al. Quantitative analysis of in vitro biofilm formation by clinical isolates of dermatophyte and antibiofilm activity of common antifungal drugs. Int J Dermatol. 2022. doi: 10.1111/ijd.16337.
  • Chapman SW, Sullivan DC, Cleary JD. In search of the holy grail of antifungal therapy. Trans Am Clin Climatol Assoc. 2008;119:197–216.
  • Sardana K, Mathachan SR. The science and rationale of arriving at the correct drug and dosimetry of griseofulvin, fluconazole, terbinafine and itraconazole in superficial dermatophyte infections: an important step before a pragmatic trial. Br J Dermatol. 2021;184(2):376–377. doi: 10.1111/bjd.19562
  • Medeiros Silva RN, Nóbrega da Rocha MA, Silva EP, et al. In vitro and ex vivo antibiofilm activity of riparin 1, and its nor and dinor homologs, against dermatophytes. Mycologia. 2023;115(2):206–215. doi: 10.1080/00275514.2023.2170209
  • Kano R. ATP-binding cassette (ABC) transporter proteins in highly terbinafine-resistant strains of Trichophyton indotineae (Former species name: Trichophyton interdigitale). Med Mycol J. 2021;62:21–25. doi: 10.3314/mmj.20-00014
  • Khurana A, Agarwal A, Agrawal D, et al. Effect of different itraconazole dosing regimens on cure rates, treatment duration, safety, and relapse rates in adult patients with tinea corporis/cruris: a randomized clinical trial. JAMA Dermatol. 2022;158(11):e223745. doi: 10.1001/jamadermatol.2022.3745.
  • Sardana K, Khurana A, Gupta A. Parameters that determine dissolution and efficacy of itraconazole and its relevance to recalcitrant dermatophytoses. Expert Rev Clin Pharmacol. 2019;12(5):443–452. doi: 10.1080/17512433.2019.1604218
  • Sardana K, Khurana A, Singh A, et al. A pilot analysis of morphometric assessment of itraconazole brands using dermoscopy and its relevance in the current scenario. Indian Dermatol Online J. 2018;9(6):426–431. doi: 10.4103/idoj.IDOJ_339_17
  • Sardana K, Khurana A, Panesar S, et al. An exploratory pilot analysis of the optimal pellet number in 100 mg of itraconazole capsule to maximize the surface area to satisfy the Noyes-Whitney equation. J DermatolTreat. 2021;32:788–794. doi: 10.1080/09546634.2019.1708848
  • Khurana A, Agarwal A, Singh A, et al. Predicting a therapeutic cut-off serum level of itraconazole in recalcitrant tinea corporis and cruris-A prospective trial. Mycoses. 2021;64:1480–1488. doi: 10.1111/myc.13367
  • Khurana A, Sardana K. Reinterpreting minimum inhibitory concentration (MIC) data of itraconazole versus terbinafine for dermatophytosis - time to look beyond the MIC data? Indian J Dermatol Venereol Leprol. 2018;84:61–62. doi: 10.4103/ijdvl.IJDVL_715_17
  • Sardana K, Mathachan SR. Super bioavailable itraconazole and its place and relevance in recalcitrant dermatophytosis: revisiting skin levels of itraconazole and minimum inhibitory concentration data. Indian Dermatol Online J. 2021;12(1):1–5. doi: 10.4103/idoj.IDOJ_618_20.
  • Carmo PHF, Costa MC, Leocádio VAT, et al. Exposure to itraconazole influences the susceptibility to antifungals, physiology, and virulence of Trichophyton interdigitale. Med Mycol. 2022;60(11):myac088. doi: 10.1093/mmy/myac088
  • Khurana A, Masih A, Chowdhary A, et al. Correlation of in vitro susceptibility based on MICs and squalene epoxidase mutations with clinical response to terbinafine in patients with tinea corporis/cruris. Antimicrob Agents Chemother. 2018;62(12):e01038–18. doi: 10.1128/AAC.01038-18
  • Sardana K, Gupta A, Sadhasivam S, et al. Checkerboard analysis to evaluate synergistic combinations of existing antifungal drugs and propylene glycol monocaprylate in isolates from recalcitrant tinea corporis and cruris patients harboring squalene epoxidase gene mutation. Antimicrob Agents Chemother. 2021;65(8):e0032121. doi: 10.1128/AAC.00321-21.
  • Johnson MD, MacDougall C, Ostrosky-Zeichner L, et al. Combination antifungal therapy. Antimicrob Agents Chemother. 2004;48(3):693–715. doi: 10.1128/AAC.48.3.693-715.2004
  • Polak A. Combination of amorolfine with various antifungal drugs in dermatophytosis. Mycoses. 1993;36:43–49. doi: 10.1111/j.1439-0507.1993.tb00686.x
  • Tamura T, Asahara M, Yamamoto M, et al. In vitro susceptibility of dermatomycoses agents to six antifungal drugs and evaluation by fractional inhibitory concentration index of combined effects of amorolfine and itraconazole in dermatophytes. Microbiol Immunol. 2014;58(1):1–8. doi: 10.1111/1348-0421.12109
  • Laurent A, Monod M. Production of Trichophyton rubrum microspores in large quantities and its application to evaluate amorolfine/azole compound interactions in vitro. Mycoses. 2017;60(9):581–586. doi: 10.1111/myc.12632
  • Santos DA, Hamdan JS. In vitro antifungal oral drug and drug-combination activity against onychomycosis causative dermatophytes. Med Mycol. 2006;44(4):357–362. doi: 10.1080/13693780500536893
  • Sugiura K, Masumoto A, Tachibana H, et al. In vitro combination effect of topical and oral anti-onychomycosis drugs on Trichophyton rubrum and Trichophyton interdigitale. J Fungi (Basel). 2021;7(3):208. doi: 10.3390/jof7030208
  • Tullio V, Roana J, Scalas D, et al. Evaluation of the antifungal activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) essential oil and its synergistic interaction with azoles. Molecules. 2019;24(17):3148. doi: 10.3390/molecules24173148
  • Zhang J, Tan J, Yang L, et al. Tacrolimus, not triamcinolone acetonide, interacts synergistically with itraconazole, terbinafine, bifonazole, and amorolfine against clinical dermatophyte isolates. J Mycol Med. 2018;28(4):612–616. doi: 10.1016/j.mycmed.2018.09.003
  • Yamamoto T, Nishioka K. Deep dermatophytosis during topical tacrolimus therapy for psoriasis. Acta Derm Venereol. 2003;83(4):291–292. doi: 10.1080/00015550310016571
  • Lee Y, Lee KT, Lee SJ, et al. Vitro and in vivo assessment of FK506 analogs as novel antifungal drug candidates. Antimicrob Agents Chemother. 2018;62:e01627–e1718. doi: 10.1128/AAC.01627-18
  • Nyilasi I, Kocsubé S, Krizsán K, et al. In vitro synergistic interactions of the effects of various statins and azoles against some clinically important fungi. FEMS Microbiol Lett. 2010;307(2):175–184. doi: 10.1111/j.1574-6968.2010.01972.x
  • Tang Q, Yang C, Li W, et al. Evaluation of short-chain antimicrobial peptides with combined antimicrobial and anti-inflammatory bioactivities for the treatment of zoonotic skin pathogens from Canines. Front Microbiol. 2021;12:684650. doi: 10.3389/fmicb.2021.684650
  • Simonetti O, Arzeni D, Ganzetti G, et al. In vitro activity of the lipopeptide derivative (Pal-lys-lys-NH2), alone and in combination with antifungal agents, against clinical isolates of dermatophytes. Br J Dermatol. 2009;161(2):249–252. doi: 10.1111/j.1365-2133.2009.09166.x
  • Harman S, Ashbee HR, Evans EG. Testing of antifungal combinations against yeasts and dermatophytes. J DermatolTreat. 2004;15(2):104–107. doi: 10.1080/09546630410025988
  • Gupta AK, Kohli Y. In vitro susceptibility testing of ciclopirox, terbinafine, ketoconazole and itraconazole against dermatophytes and nondermatophytes, and in vitro evaluation of combination antifungal activity. Br J Dermatol. 2003;149(2):296–305. doi: 10.1046/j.1365-2133.2003.05418.x
  • Zhang M, Yang X, Wang D, et al. Antifungal activity of immunosuppressants used alone or in combination with fluconazole. J Appl Microbiol. 2019;126(5):1304–1317. doi: 10.1111/jam.14126
  • Rocha CH, Rocha FM, Bitencourt TA, et al. Synergism between the antidepressant sertraline and caspofungin as an approach to minimise the virulence and resistance in the dermatophyte Trichophyton rubrum. J Fungi. 2022;8:815. doi: 10.3390/jof8080815
  • Gnat S, Łagowski D, Dyląg M, et al. In vitro activity of ebselen and diphenyl diselenide alone and in combination with drugs against Trichophyton mentagrophytes strains. Pharmaceutics. 2022;14(6):1158. doi: 10.3390/pharmaceutics14061158
  • Aneke CI, Rhimi W, Otranto D, et al.synergistic effects of efflux pump modulators on the azole antifungal susceptibility of microsporum canis. Mycopathologia. 2020;185:279–288. doi: 10.1007/s11046-019-00419-7
  • Pyun MS, Shin S. Antifungal effects of the volatile oils from allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine. 2006;13(6):394–400. doi: 10.1016/j.phymed.2005.03.011
  • Glavinas H, Krajcsi P, Cserepes J, et al. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 2004;1(1):27–42. doi: 10.2174/1567201043480036
  • Perrins N, Bond R. Synergistic inhibition of the growth in vitro of microsporum canis by miconazole and chlorhexidine. Vet Dermatol. 2003;14:99–102. doi: 10.1046/j.1365-3164.2003.00325.x
  • Holmes AR, Keniya MV, Ivnitski-Steele I, et al. The monoamine oxidase a inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother. 2012;56(3):1508–1515. doi: 10.1128/AAC.05706-11
  • Bitencourt TA, Neves-da-Rocha J, Martins MP, et al. StuA-regulated processes in the dermatophyte Trichophyton rubrum: transcription profile, cell-cell adhesion, and immunomodulation. Front Cell Infect Microbiol. 2021;11:447. doi: 10.3389/fcimb.2021.643659
  • Kröber A, Etzrodt S, Bach M, et al. The transcriptional regulators SteA and StuA contribute to keratin degradation and sexual reproduction of the dermatophyte Arthroderma benhamiae. Curr Genet. 2017;63(1):103–116. doi: 10.1007/s00294-016-0608-0
  • Yamada T, Makimura K, Abe S. Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med Mycol. 2006;44(3):243–252. doi: 10.1080/13693780500410909
  • Yamada T, Makimura K, Satoh K, et al. Agrobacterium tumefaciens-mediated transformation of the dermatophyte, Trichophyton mentagrophytes: an efficient tool for gene transfer. Med Mycol. 2009;47(5):485–494. doi: 10.1080/13693780802322240
  • Yuan R, Tu J, Sheng C, et al. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans. Front Microbiol. 2021;12:1280. doi: 10.3389/fmicb.2021.680382
  • Jia C, Zhang J, Zhuge Y, et al. Synergistic effects of geldanamycin with fluconazole are associated with reactive oxygen species in Candida tropicalis resistant to azoles and amphotericin B. Free Radic Res. 2019;53(6):618–628. doi: 10.1080/10715762.2019.1610563

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.