514
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the influence of the microbiome on childhood infections

ORCID Icon, & ORCID Icon
Received 29 Dec 2023, Accepted 04 Apr 2024, Published online: 12 Apr 2024

References

  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016 Aug;14(8):e1002533. doi: 10.1371/journal.pbio.1002533
  • Tierney BT, Yang Z, Luber JM, et al. The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe. 2019;26(2):283–295. e8. doi: 10.1016/j.chom.2019.07.008
  • Beller L, Deboutte W, Falony G, et al. Successional stages in infant gut microbiota maturation. MBio. 2021 Dec 21;12(6):e0185721. doi: 10.1128/mbio.01857-21
  • Arrieta MC, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427. doi: 10.3389/fimmu.2014.00427
  • Xiao L, Wang J, Zheng J, et al. Deterministic transition of enterotypes shapes the infant gut microbiome at an early age. Genome Biol. 2021 Aug 24;22(1):243. doi: 10.1186/s13059-021-02463-3
  • Lopera-Maya EA, Kurilshikov A, van der Graaf A, et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch microbiome project. Nat Genet. 2022 Feb;54(2):143–151.
  • Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021 Feb;53(2):156–165.
  • Shao Y, Forster SC, Tsaliki E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019 Oct;574(7776):117–121.
  • Bosch A, Levin E, van Houten MA, et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine. 2016 Jul;9:336–345. doi: 10.1016/j.ebiom.2016.05.031
  • Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017 Mar;23(3):314–326.
  • Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010 Jun 29;107(26):11971–11975. doi: 10.1073/pnas.1002601107
  • Barnett DJM, Endika MF, Klostermann CE, et al. Human milk oligosaccharides, antimicrobial drugs, and the gut microbiota of term neonates: observations from the KOALA birth cohort study. Gut Microbes. 2023 Jan;15(1):2164152.
  • Holst AQ, Myers P, Rodriguez-Garcia P, et al. Infant formula supplemented with five human milk oligosaccharides shifts the fecal microbiome of formula-fed infants closer to that of breastfed infants. Nutrients. 2023 Jul 10;15(14):3087. doi: 10.3390/nu15143087
  • Reyman M, van Houten MA, Watson RL, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. 2022 Feb 16;13(1):893. doi: 10.1038/s41467-022-28525-z
  • Claassen-Weitz S, Gardner-Lubbe S, Xia Y, et al. Succession and determinants of the early life nasopharyngeal microbiota in a South African birth cohort. Microbiome. 2023 Jun 5;11(1):127. doi: 10.1186/s40168-023-01563-5
  • Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012 May 9;486(7402):222–227. doi: 10.1038/nature11053
  • Hollister EB, Riehle K, Luna RA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015 Aug 26;3(1):36. doi: 10.1186/s40168-015-0101-x
  • Raman AS, Gehrig JL, Venkatesh S, et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science. 2019 Jul 12;365(6449). doi: 10.1126/science.aau4735
  • Smith MI, Yatsunenko T, Manary MJ, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science (New York, NY). Feb 1. 2013;339(6119):548–554. doi: 10.1126/science.1229000
  • Gehrig JL, Venkatesh S, Chang HW, et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science. 2019 Jul 12;365(6449). doi: 10.1126/science.aau4732
  • Korpela K, Salonen A, Virta LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016 Jan 26;7(1):10410. doi: 10.1038/ncomms10410
  • Abushawish A, Haro K, Hoshina T, et al. Environmental factors related to differences in the microbiota in the upper respiratory tract in young children: Focusing on the impact of early nursery attendance. Front Pediatr. 2023;11:1015872. doi: 10.3389/fped.2023.1015872
  • Amir A, Erez-Granat O, Braun T, et al. Gut microbiome development in early childhood is affected by day care attendance. NPJ Biofilms Microbiomes. 2022 Jan 11;8(1):2. doi: 10.1038/s41522-021-00265-w
  • Stewart CJ, Ajami NJ, O’Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018 Oct;562(7728):583–588.
  • Bohnhoff M, Drake BL, Miller CP. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc Soc Exp Biol Med. 1954 May;86(1):132–137. doi: 10.3181/00379727-86-21030
  • Osbelt L, Wende M, Almasi E, et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe. 2021 Nov 10;29(11):1663–1679 e7. doi: 10.1016/j.chom.2021.09.003
  • Robertson RC, Manges AR, Finlay BB, et al. The human microbiome and child growth - first 1000 days and beyond. Trends Microbiol. 2019 Feb;27(2):131–147.
  • Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system. Science. 2016 Apr 29;352(6285):539–544. doi: 10.1126/science.aad9378
  • Torow N, Hornef MW. The neonatal window of opportunity: Setting the stage for life-long host-microbial interaction and immune homeostasis. J Immunol. 2017 Jan 15;198(2):557–563. doi: 10.4049/jimmunol.1601253
  • Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014 Jun;44(6):842–850.
  • Marra F, Marra CA, Richardson K, et al. Antibiotic use in children is associated with increased risk of asthma. Pediatrics. 2009 Mar;123(3):1003–1010.
  • Boutin RCT, Sbihi H, Dsouza M, et al. Mining the infant gut microbiota for therapeutic targets against atopic disease. Allergy. 2020 Aug;75(8):2065–2068.
  • Arildsen AW, Zachariassen LF, Krych L, et al. Delayed gut colonization shapes future allergic responses in a murine model of atopic dermatitis. Front Immunol. 2021;12:650621. doi: 10.3389/fimmu.2021.650621
  • Basha S, Surendran N, Pichichero M. Immune responses in neonates. Expert Rev Clin Immunol. 2014 Sep;10(9):1171–1184. doi: 10.1586/1744666X.2014.942288
  • Neish AS. Mucosal immunity and the microbiome. Ann Am Thorac Soc. 2014 Jan;11(Suppl 1):S28–32. doi: 10.1513/AnnalsATS.201306-161MG
  • Ciabattini A, Olivieri R, Lazzeri E, et al. Role of the microbiota in the modulation of vaccine immune responses. Front Microbiol. 2019;10:1305. doi: 10.3389/fmicb.2019.01305
  • Chiu CY, Chan YL, Tsai MH, et al. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies. World Allergy Organ J. 2019;12(3):100021. doi: 10.1016/j.waojou.2019.100021
  • Bullard BM, VanderVeen BN, McDonald SJ, et al. Cross talk between the gut microbiome and host immune response in ulcerative colitis: nonpharmacological strategies to improve homeostasis. Am J Physiol Gastrointest Liver Physiol. 2022 Dec 1;323(6):G554–G561. doi: 10.1152/ajpgi.00210.2022
  • Zheng L, Kelly CJ, Battista KD, et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor–dependent repression of Claudin-2. J Immunol. 2017 Oct 15;199(8):2976–2984. doi: 10.4049/jimmunol.1700105
  • Correa-Oliveira R, Fachi JL, Vieira A, et al. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology. 2016 Apr;5(4):e73.
  • Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011 Oct 14;334(6053):255–258. doi: 10.1126/science.1209791
  • Brandl K, Plitas G, Mihu CN, et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature. 2008 Oct 9;455(7214):804–807. doi: 10.1038/nature07250
  • Sequeira RP, McDonald JAK, Marchesi JR, et al. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat Microbiol. 2020 Feb;5(2):304–313.
  • Brown RL, Sequeira RP, Clarke TB. The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun. 2017 Nov 15;8(1):1512. doi: 10.1038/s41467-017-01803-x
  • Safiri S, Mahmoodpoor A, Kolahi AA, et al. Global burden of lower respiratory infections during the last three decades. Front Public Health. 2022;10:1028525. doi: 10.3389/fpubh.2022.1028525
  • Kelly MS, Plunkett C, Yu Y, et al. Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy. Isme J. 2022 Mar;16(3):655–665.
  • Stubbendieck RM, Dissanayake E, Burnham PM, et al. Rothia from the human nose inhibit Moraxella catarrhalis Colonization with a secreted Peptidoglycan Endopeptidase. MBio. 2023 Apr 25;14(2):e0046423. doi: 10.1128/mbio.00464-23
  • Deasy AM, Guccione E, Dale AP, et al. Nasal inoculation of the commensal neisseria lactamica inhibits carriage of Neisseria meningitidis by young adults: A controlled human infection study. Clin Infect Dis. 2015 May 15;60(10):1512–1520. doi: 10.1093/cid/civ098
  • Uehara Y, Nakama H, Agematsu K, et al. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp. J Hosp Infect. 2000 Feb;44(2):127–133.
  • de Steenhuijsen Piters WAA, Watson RL, de Koff EM, et al. Early-life viral infections are associated with disadvantageous immune and microbiota profiles and recurrent respiratory infections. Nat Microbiol. 2022 Feb;7(2):224–237.
  • Dissanayake E, Brockman-Schneider RA, Stubbendieck RM, et al. Rhinovirus increases Moraxella catarrhalis adhesion to the respiratory epithelium. Front Cell Infect Microbiol. 2022;12:1060748. doi: 10.3389/fcimb.2022.1060748
  • Gu L, Deng H, Ren Z, et al. Dynamic changes in the microbiome and mucosal immune microenvironment of the lower respiratory tract by influenza virus infection. Front Microbiol. 2019;10:2491. doi: 10.3389/fmicb.2019.02491
  • Hurst JH, McCumber AW, Aquino JN, et al. Age-related changes in the Nasopharyngeal Microbiome are associated with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection and symptoms among children, adolescents, and young adults. Clin Infect Dis. 2022 Aug 24;75(1):e928–e937. doi: 10.1093/cid/ciac184
  • de Steenhuijsen Piters WA, Heinonen S, Hasrat R, et al. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am J Respir Crit Care Med. 2016 Nov 1;194(9):1104–1115. doi: 10.1164/rccm.201602-0220OC
  • Koenen MH, de Groot RCA, de Steenhuijsen Piters WAA, et al. Mycoplasma pneumoniae carriage in children with recurrent respiratory tract infections is associated with a less diverse and altered microbiota. EBioMedicine. 2023 Nov 9;98:104868. doi: 10.1016/j.ebiom.2023.104868
  • Penela-Sanchez D, Rocafort M, Henares D, et al. Impact of the bacterial nasopharyngeal microbiota on the severity of genus enterovirus lower respiratory tract infection in children: a case–control study. Pediatr Pulmonol. 2023 Jun;58(6):1728–1737.
  • Ling Z, Liu X, Jia X, et al. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children. Sci Rep. 2014 Dec 15;4(1):7485. doi: 10.1038/srep07485
  • Schubert AM, Rogers MA, Ring C, et al. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio. 2014 May 6;5(3):e01021–14. doi: 10.1128/mBio.01021-14
  • Berkell M, Mysara M, Xavier BB, et al. Microbiota-based markers predictive of development of clostridioides difficile infection. Nat Commun. 2021 Apr 14;12(1):2241. doi: 10.1038/s41467-021-22302-0
  • Smith AB, Jenior ML, Keenan O, et al. Enterococci enhance clostridioides difficile pathogenesis. Nature. 2022 Nov;611(7937):780–786.
  • Brennhofer SA, Rogawski McQuade ET, Liu J, et al. Clostridioides difficile colonization among very young children in resource-limited settings. Clin Microbiol Infect. 2022 Jul;28(7):996–1002.
  • Mani J, Levy S, Angelova A, et al. Epidemiological and microbiome associations of Clostridioides difficile carriage in infancy and early childhood. Gut Microbes. 2023 Jan;15(1):2203969.
  • Kociolek LK, Espinosa RO, Gerding DN, et al. Natural clostridioides difficile toxin immunization in colonized infants. Clin Infect Dis. 2020 May 6;70(10):2095–2102. doi: 10.1093/cid/ciz582
  • Couturier J, Lepage P, Jolivet S, et al. Gut microbiota diversity of preterm neonates is associated with clostridioides difficile colonization. Front Cell Infect Microbiol. 2022;12:907323. doi: 10.3389/fcimb.2022.907323
  • Singer JR, Blosser EG, Zindl CL, et al. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nat Med. 2019 Nov;25(11):1772–1782.
  • Heston SM, Lim CSE, Ong C, et al. Strain-resolved metagenomic analysis of the gut as a reservoir for bloodstream infection pathogens among premature infants in Singapore. Gut Pathog. 2023;15(1):55. doi: 10.1186/s13099-023-00583-8
  • Kelly MS, Ward DV, Severyn CJ, et al. Gut colonization preceding mucosal barrier injury bloodstream infection in pediatric hematopoietic stem cell transplantation recipients. Biol Blood Marrow Transplant. 2019 Nov;25(11):2274–2280.
  • Margolis EB, Alfaro GM, Sun Y, et al. Microbiota predict infections and acute graft-versus-host disease after pediatric allogeneic hematopoietic stem cell transplantation. J Infect Dis. 2023 May 30;228(5):627–636. doi: 10.1093/infdis/jiad190
  • Bargheet A, Klingenberg C, Esaiassen E, et al. Development of early life gut resistome and mobilome across gestational ages and microbiota-modifying treatments. EBioMedicine. 2023 Jun;92:104613. doi: 10.1016/j.ebiom.2023.104613
  • Moore AM, Patel S, Forsberg KJ, et al. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLOS ONE. 2013;8(11):e78822. doi: 10.1371/journal.pone.0078822
  • Carvalho MJ, Sands K, Thomson K, et al. Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Nat Microbiol. 2022 Sep;7(9):1337–1347.
  • Pereira-Dias J, Nguyen Ngoc Minh C, Tran Thi Hong C, et al. The gut microbiome of healthy vietnamese adults and children is a major reservoir for resistance genes against critical antimicrobials. J Infect Dis. 2021 Dec 20;224(12 Suppl 2):S840–S847. doi: 10.1093/infdis/jiab398
  • Doan T, Worden L, Hinterwirth A, et al. Macrolide and nonmacrolide resistance with mass Azithromycin distribution. N Engl J Med. 2020 Nov 12;383(20):1941–1950. doi: 10.1056/NEJMoa2002606
  • Gibson MK, Wang B, Ahmadi S, et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat Microbiol. 2016 Mar 7;1(4):16024. doi: 10.1038/nmicrobiol.2016.24
  • Centers for Disease Control and Prevention. Sexually transmited diseases surveillance 2021. Available at: https://www.cdc.gov/std/statistics/2021/default.htm. Accessed Dec 15, 2023.
  • Centers for Disease Control and Prevention. Estimated HIV incidence and prevalence in the United States, 2017-2021. cited 2023 Dec 15. Available from: https://www.cdc.gov/hiv/library/reports/hiv-surveillance/vol-28-no-3/index.html
  • Sexually transmitted disease surveillance 2021 cdc.Gov: center for disease control and prevention; 2023 [updated April 11, 2023; cited 2023 November 20]. Available from: https://www.cdc.gov/std/statistics/2021/tables.htm
  • Chen X, Lu Y, Chen T, et al. The female vaginal microbiome in health and bacterial vaginosis. Front Cell Infect Microbiol. 2021;11:631972. doi: 10.3389/fcimb.2021.631972
  • Witkin SS, Linhares IM. Why do lactobacilli dominate the human vaginal microbiota? BJOG: An Int J Obstetrics Gynaecol. 2017;124(4):606–611. doi: 10.1111/1471-0528.14390
  • Tuddenham S, Ravel J, Marrazzo JM. Protection and risk: Male and female genital microbiota and sexually transmitted infections. J Infect Dis. 2021 Jun 16;223(12 Suppl 2):S222–S235. doi: 10.1093/infdis/jiaa762
  • Sena AC, Goldstein LA, Ramirez G, et al. Bacterial vaginosis and its association with incident Trichomonas vaginalis infections: A systematic review and meta-analysis. Sex Transm Dis. 2021 Dec 1;48(12):e192–e201. doi: 10.1097/OLQ.0000000000001537
  • Tamarelle J, Thiebaut ACM, de Barbeyrac B, et al. The vaginal microbiota and its association with human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium infections: a systematic review and meta-analysis. Clin Microbiol Infect. 2019 Jan;25(1):35–47.
  • Gholizadeh O, Yekanipour Z, Kivi S, et al. Review of the evidence of the effects of human papillomavirus infection and Gardnerella vaginalis, and their co-infection on infertility. Microb Pathog. 2023 Feb;175:105980. doi: 10.1016/j.micpath.2023.105980
  • Nicolo S, Tanturli M, Mattiuz G, et al. Vaginal lactobacilli and vaginal dysbiosis-associated bacteria differently affect cervical epithelial and immune homeostasis and anti-viral defenses. Int J Mol Sci. 2021 Jun 17;22(12):6487. doi: 10.3390/ijms22126487
  • Lovett A, Sena AC, Macintyre AN, et al. Cervicovaginal microbiota predicts neisseria gonorrhoeae clinical presentation. Front Microbiol. 2021;12:790531. doi: 10.3389/fmicb.2021.790531
  • Atashili J, Poole C, Ndumbe PM, et al. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS. 2008 Jul 31;22(12):1493–1501. doi: 10.1097/QAD.0b013e3283021a37
  • McClelland RS, Lingappa JR, Srinivasan S, et al. Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case-control study. Lancet Infect Dis. 2018 May;18(5):554–564.
  • Karim SS, Kashuba AD, Werner L, et al. Drug concentrations after topical and oral antiretroviral pre-exposure prophylaxis: implications for HIV prevention in women. Lancet. 2011 Jul 16;378(9787):279–281. doi: 10.1016/S0140-6736(11)60878-7
  • Grant RM, Lama JR, Anderson PL, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010 Dec 30;363(27):2587–2599. doi: 10.1056/NEJMoa1011205
  • McCormack S, Dunn DT, Desai M, et al. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. Lancet. 2016 Jan 2;387(10013):53–60. doi: 10.1016/S0140-6736(15)00056-2
  • Molina JM, Capitant C, Spire B, et al. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N Engl J Med. 2015 Dec 3;373(23):2237–2246. doi: 10.1056/NEJMoa1506273
  • Klatt NR, Cheu R, Birse K, et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science. 2017 Jun 2;356(6341):938–945. doi: 10.1126/science.aai9383
  • Dashper SG, Mitchell HL, Le Cao KA, et al. Temporal development of the oral microbiome and prediction of early childhood caries. Sci Rep. 2019 Dec 24;9(1):19732. doi: 10.1038/s41598-019-56233-0
  • Kim D, Barraza JP, Arthur RA, et al. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12375–12386. doi: 10.1073/pnas.1919099117
  • Okada M, Kawamura M, Oda Y, et al. Caries prevalence associated with Streptococcus mutans and Streptococcus sobrinus in Japanese schoolchildren. Int J Paediatr Dent. 2012 Sep;22(5):342–348.
  • Havsed K, Stensson M, Jansson H, et al. Bacterial composition and metabolomics of dental plaque from adolescents. Front Cell Infect Microbiol. 2021;11:716493. doi: 10.3389/fcimb.2021.716493
  • Teng F, Yang F, Huang S, et al. Prediction oF early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe. 2015 Sep 9;18(3):296–306. doi: 10.1016/j.chom.2015.08.005
  • Wang Y, Florez ID, Morgan RL, et al. Probiotics, prebiotics, lactoferrin, and combination products for prevention of mortality and morbidity in preterm infants: A systematic review and network meta-analysis. JAMA Pediatr. 2023 Nov 1;177(11):1158–1167. doi: 10.1001/jamapediatrics.2023.3849
  • Beck LC, Masi AC, Young GR, et al. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol. 2022 Oct;7(10):1525–1535.
  • Samara J, Moossavi S, Alshaikh B, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 2022 May 11;30(5):696–711.e5. doi: 10.1016/j.chom.2022.04.005
  • Jacobsen CN, Rosenfeldt Nielsen V, Hayford A, et al. Screening of probiotic activities of forty-seven strains of lactobacillus spp. By in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl environ microbiol. 1999;65(11):4949–4956. doi: 10.1128/AEM.65.11.4949-4956.1999
  • Kristensen NB, Bryrup T, Allin KH, et al. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):1–11. doi: 10.1186/s13073-016-0300-5
  • Guitor AK, Yousuf EI, Raphenya AR, et al. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. Microbiome. 2022 Aug 26;10(1):136. doi: 10.1186/s40168-022-01327-7
  • Casaburi G, Duar RM, Vance DP, et al. Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria. Antimicrob Resist Infect Control. 2019;8(1):131. doi: 10.1186/s13756-019-0583-6
  • Mourey F, Sureja V, Kheni D, et al. A multicenter, randomized, double-blind, placebo-controlled trial of saccharomyces boulardii in infants and children with Acute Diarrhea. Pediatr Infect Dis J. 2020 Nov;39(11):e347–e351.
  • Horne RG, Freedman SB, Johnson-Henry KC, et al. Intestinal microbial composition of children in a randomized controlled trial of probiotics to treat acute gastroenteritis. Front Cell Infect Microbiol. 2022;12:883163. doi: 10.3389/fcimb.2022.883163
  • Guo Q, Goldenberg JZ, Humphrey C, et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev. 2019 Apr 30;4(4):Cd004827. doi: 10.1002/14651858.CD004827.pub5
  • Goldenberg JZ, Yap C, Lytvyn L, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017 Dec 19;12(12):Cd006095. doi: 10.1002/14651858.CD006095.pub4
  • Nicholson MR, Mitchell PD, Alexander E, et al. Efficacy of fecal microbiota transplantation for Clostridium difficile infection in children. Clin Gastroenterol Hepatol. 2020;18(3):612–619. e1. doi: 10.1016/j.cgh.2019.04.037
  • Merli P, Putignani L, Ruggeri A, et al. Decolonization of multi-drug resistant bacteria by fecal microbiota transplantation in five pediatric patients before allogeneic hematopoietic stem cell transplantation: gut microbiota profiling, infectious and clinical outcomes. Haematologica. 2020;105(11):2686. doi: 10.3324/haematol.2019.244210
  • Goyal A, Yeh A, Bush BR, et al. Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(2):410–421. doi: 10.1093/ibd/izx035
  • Goloshchapov OV, Bakin EA, Stanevich OV, et al. Clinical and immune effects of fecal microbiota transplantation in children with acute graft-versus-host disease. Cellular Therapy And Transplant. 2021;10(1):69–78. doi: 10.18620/ctt-1866-8836-2021-10-1-69-78
  • Korpela K, Helve O, Kolho KL, et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: A proof-of-concept study. Cell. 2020 Oct 15;183(2):324–334.e5. doi: 10.1016/j.cell.2020.08.047
  • Sarker SA, Sultana S, Reuteler G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine. 2016 Feb;4:124–137. doi: 10.1016/j.ebiom.2015.12.023
  • Duplessis C, Biswas B, Hanisch B, et al. Refractory Pseudomonas Bacteremia in a 2-year-old sterilized by bacteriophage therapy. J Pediatric Infect Dis Soc. 2018 Aug 17;7(3):253–256. doi: 10.1093/jpids/pix056
  • Paul K, Merabishvili M, Hazan R, et al. Bacteriophage rescue therapy of a vancomycin-resistant enterococcus faecium infection in a one-year-old child following a third liver transplantation. Viruses. 2021 Sep 7;13(9):1785. doi: 10.3390/v13091785
  • Bradley JS, Hajama H, Akong K, et al. Bacteriophage therapy of multidrug-resistant achromobacter in an 11-year-old boy with cystic fibrosis assessed by metagenome analysis. Pediatr Infect Dis J. 2023 Sep 1;42(9):754–759. doi: 10.1097/INF.0000000000004000
  • Dedrick RM, Smith BE, Cristinziano M, et al. Phage therapy of mycobacterium infections: Compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin Infect Dis. 2023 Jan 6;76(1):103–112. doi: 10.1093/cid/ciac453
  • Khatami A, Foley DA, Warner MS, et al. Standardised treatment and monitoring protocol to assess safety and tolerability of bacteriophage therapy for adult and paediatric patients (STAMP study): protocol for an open-label, single-arm trial. BMJ Open. 2022 Dec 9;12(12):e065401. doi: 10.1136/bmjopen-2022-065401
  • Secretary-General U Progress at mid-decade on implementation of general assembly resolution 45/217 on the world summit for children: report of the secretary-general. 1996.
  • Armah GE, Sow SO, Breiman RF, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;376(9741):606–614. doi: 10.1016/S0140-6736(10)60889-6
  • Vesikari T, Karvonen A, Prymula R, et al. Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European infants: randomised, double-blind controlled study. Lancet. 2007;370(9601):1757–1763. doi: 10.1016/S0140-6736(07)61744-9
  • Zaman K, Anh DD, Victor JC, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;376(9741):615–623. doi: 10.1016/S0140-6736(10)60755-6
  • Madhi SA, Cunliffe NA, Steele D, et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med. 2010;362(4):289–298. doi: 10.1056/NEJMoa0904797
  • Lynn MA, Tumes DJ, Choo JM, et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host Microbe. 2018;23(5):653–660. e5. doi: 10.1016/j.chom.2018.04.009
  • Swaminathan G, Citron M, Xiao J, et al. Vaccine hyporesponse induced by individual antibiotic treatment in mice and non-human primates is diminished upon recovery of the gut microbiome. Vaccines. 2021;9(11):1340. doi: 10.3390/vaccines9111340
  • Yitbarek A, Astill J, Hodgins DC, et al. Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2. Vaccine. 2019;37(44):6640–6647. doi: 10.1016/j.vaccine.2019.09.046
  • Nadeem S, Maurya SK, Das DK, et al. Gut dysbiosis thwarts the efficacy of vaccine against Mycobacterium tuberculosis. Front Immunol. 2020;11:726. doi: 10.3389/fimmu.2020.00726
  • Zhang Y, Wu Q, Zhou M, et al. Composition of the murine gut microbiome impacts humoral immunity induced by rabies vaccines. Clin Transl Med. 2020;10(4):e161. doi: 10.1002/ctm2.161
  • Praharaj I, Parker EPK, Giri S, et al. Influence of nonpolio enteroviruses and the bacterial gut microbiota on oral poliovirus vaccine response: a study from South India. J Infect Dis. 2018;219(8):1178–1186. doi: 10.1093/infdis/jiy568
  • Zhao T, Li J, Fu Y, et al. Influence of gut microbiota on mucosal IgA antibody response to the polio vaccine. NPJ Vaccin. 2020 Jun 09;5(1):47. doi: 10.1038/s41541-020-0194-5
  • Harris VC, Armah G, Fuentes S, et al. Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana. J Infect Dis. 2017;215(1):34–41. doi: 10.1093/infdis/jiw518
  • Harris V, Ali A, Fuentes S, et al. Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbes. 2018;9(2):93–101. doi: 10.1080/19490976.2017.1376162
  • Parker EP, Praharaj I, Zekavati A, et al. Influence of the intestinal microbiota on the immunogenicity of oral rotavirus vaccine given to infants in south India. Vaccine. 2018;36(2):264–272. doi: 10.1016/j.vaccine.2017.11.031
  • Fix J, Chandrashekhar K, Perez J, et al. Association between gut microbiome composition and rotavirus vaccine response among Nicaraguan infants. Am J Trop Med Hyg. 2020;102(1):213. doi: 10.4269/ajtmh.19-0355
  • Huda MN, Lewis Z, Kalanetra KM, et al. Stool microbiota and vaccine responses of infants. Pediatrics. 2014;134(2):e362–e372. doi: 10.1542/peds.2013-3937
  • de Koff EM, van Baarle D, van Houten MA, et al. Mode of delivery modulates the intestinal microbiota and impacts the response to vaccination. Nat Commun. 2022 Nov 15;13(1):6638. doi: 10.1038/s41467-022-34155-2
  • Isolauri E, Joensuu J, Suomalainen H, et al. Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by lactobacillus casei GG. Vaccine. 1995;13(3):310–312. doi: 10.1016/0264-410X(95)93319-5
  • Kukkonen K, Nieminen T, Poussa T, et al. Effect of probiotics on vaccine antibody responses in infancy–a randomized placebo-controlled double-blind trial. Pediatr Allergy Immunol. 2006 Sep;17(6):416–421.
  • Soh SE, Ong DQR, Gerez I, et al. Effect of probiotic supplementation in the first 6 months of life on specific antibody responses to infant Hepatitis B vaccination. Vaccine. 2010 Mar 19;28(14):2577–2579. doi: 10.1016/j.vaccine.2010.01.020
  • Youngster I, Kozer E, Lazarovitch Z, et al. Probiotics and the immunological response to infant vaccinations: a prospective, placebo controlled pilot study. Arch dischildhood. 2011;96(4):345–349. doi: 10.1136/adc.2010.197459
  • Wu BB, Yang Y, Xu X, et al. Effects of Bifidobacterium supplementation on intestinal microbiota composition and the immune response in healthy infants. World J Pediatr. 2016 May;12(2):177–182.
  • Grassly NC, Praharaj I, Babji S, et al. The effect of azithromycin on the immunogenicity of oral poliovirus vaccine: a double-blind randomised placebo-controlled trial in seronegative Indian infants. Lancet Infect Dis. 2016;16(8):905–914. doi: 10.1016/S1473-3099(16)30023-8
  • Tsang AKL, Lee HH, Yiu SM, et al. Failure of phylogeny inferred from multilocus sequence typing to represent bacterial phylogeny. Sci Rep. 2017 Jul 3;7(1):4536. doi: 10.1038/s41598-017-04707-4
  • Deleo FR, Chen L, Porcella SF, et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci USA. 2014 Apr 1;111(13):4988–4993. doi: 10.1073/pnas.1321364111