112
Views
0
CrossRef citations to date
0
Altmetric
Review

Proteomics applications in next generation induced pluripotent stem cell models

, &
Pages 217-228 | Received 14 Jun 2023, Accepted 08 Mar 2024, Published online: 27 Mar 2024

References

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024
  • Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17(3):183–193. doi: 10.1038/nrm.2016.8
  • Sekine K, Tsuzuki S, Yasui R, et al. Robust detection of undifferentiated iPSC among differentiated cells. Sci Rep. 2020;10(1):10293. doi: 10.1038/s41598-020-66845-6
  • Zhou Y, Wang L, Liu Z, et al. Comparative gene expression analyses reveal distinct molecular signatures between differentially reprogrammed cardiomyocytes. Cell Rep. 2017;20(13):3014–3024. doi: 10.1016/j.celrep.2017.09.005
  • Müller F-J, Schuldt BM, Williams R, et al. A bioinformatic assay for pluripotency in human cells. Nat Methods. 2011;8(4):315–317. doi: 10.1038/nmeth.1580
  • Cho S, Discher DE, Leong KW, et al. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods. 2022;19(9):1064–1071. doi: 10.1038/s41592-022-01591-3
  • Sharma A, Sances S, Workman MJ, et al. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell. 2020;26(3):309–329. doi: 10.1016/j.stem.2020.02.011
  • Clark DJ, Dhanasekaran SM, Petralia F, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell. 2019;179(4):964–983.e31. doi: 10.1016/j.cell.2019.10.007
  • Srivastava H, Lippincott MJ, Currie J, et al. Protein prediction models support widespread post-transcriptional regulation of protein abundance by interacting partners. In: Käll L, editor PLoS Comput Biol. Vol. 18, 2022. p. e1010702. doi:10.1371/journal.pcbi.1010702
  • Franks A, Airoldi E, Slavov N, et al. Post-transcriptional regulation across human tissues. PLoS Comput Biol. 2017;13(5):e1005535. doi: 10.1371/journal.pcbi.1005535
  • Mann M, Kumar C, Zeng W-F, et al. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021;12(8):759–770. doi: 10.1016/j.cels.2021.06.006
  • Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics. 2020;17(1):17. doi: 10.1186/s12014-020-09283-w
  • Shuken SR. An introduction to mass spectrometry-based proteomics. J Proteome Res. 2023;22(7):2151–2171. doi: 10.1021/acs.jproteome.2c00838
  • Jiang Y, Rex DAB, Schuster D, et al. Comprehensive Overview of Bottom-Up Proteomics using Mass spectrometry. ArXiv. 2023;arXiv:2311.07791v1.
  • Wiśniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362. doi: 10.1038/nmeth.1322
  • Hughes CS, Moggridge S, Müller T, et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc. 2019;14(1):68–85. doi: 10.1038/s41596-018-0082-x
  • Johnston SM, Webber KGI, Xie X, et al. Rapid, one-step sample processing for label-free single-cell proteomics. J Am Soc Mass Spectrom. 2023;34(8):1701–1707. doi: 10.1021/jasms.3c00159
  • Bennett HM, Stephenson W, Rose CM, et al. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat Methods. 2023;20(3):363–374. doi: 10.1038/s41592-023-01791-5
  • Han Y, Thomas CT, Wennersten SA, et al. 2021. Shotgun proteomics sample processing automated by an open-source lab robot. J Vis Exp JoVE. (176). doi: 10.3791/63092-v
  • Ctortecka C, Hartlmayr D, Seth A, et al. An automated nanowell-array workflow for quantitative multiplexed single-cell proteomics sample preparation at high sensitivity. Mol & Cell Proteomics. 2023;22(12):100665. doi: 10.1016/j.mcpro.2023.100665
  • Müller T, Kalxdorf M, Longuespée R, et al. Automated sample preparation with SP 3 for low‐input clinical proteomics. Mol Syst Biol. 2020;16(1):e9111. doi: 10.15252/msb.20199111
  • Borteçen T, Müller T, Krijgsveld J. An integrated workflow for quantitative analysis of the newly synthesized proteome. Nat Commun. 2023;14(1):8237. doi: 10.1038/s41467-023-43919-3
  • Vargas-Diaz D, Altelaar M. Automated high-throughput method for the fast, robust, and reproducible enrichment of newly synthesized proteins. J Proteome Res. 2022;21(1):189–199. doi: 10.1021/acs.jproteome.1c00743
  • Van Oostrum M, Campbell B, Seng C, et al. Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity. Nat Commun. 2020;11(1):4990. doi: 10.1038/s41467-020-18494-6
  • Rajczewski AT, Jagtap PD, Griffin TJ. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev Proteomics. 2022;19(3):165–181. doi: 10.1080/14789450.2022.2070476
  • Ludwig C, Gillet L, Rosenberger G, et al. Data‐independent acquisition‐based SWATH ‐ MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018;14(8):e8126. doi: 10.15252/msb.20178126
  • Demichev V, Messner CB, Vernardis SI, et al. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17(1):41–44. doi: 10.1038/s41592-019-0638-x
  • Yu F, Teo GC, Kong AT, et al. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform. Nat Commun. 2023;14(1):4154. doi: 10.1038/s41467-023-39869-5
  • Kohler D, Staniak M, Tsai T-H, et al. Msstats version 4.0: statistical analyses of quantitative mass spectrometry-based proteomic experiments with chromatography-based quantification at scale. J Proteome Res. 2023;22(5):1466–1482. doi: 10.1021/acs.jproteome.2c00834
  • Munoz J, Low TY, Kok YJ, et al. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells. Mol Syst Biol. 2011;7(1):550. doi: 10.1038/msb.2011.84
  • Phanstiel DH, Brumbaugh J, Wenger CD, et al. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods. 2011;8(10):821–827. doi: 10.1038/nmeth.1699
  • Hao J, Li W, Dan J, et al. Reprogramming- and pluripotency-associated membrane proteins in mouse stem cells revealed by label-free quantitative proteomics. J Proteomics. 2013;86:70–84. doi: 10.1016/j.jprot.2013.04.018
  • Tien W-S, Chen P-M, Chuang C-Y, et al. Combining membrane proteomics and computational three-way pathway analysis revealed signalling pathways preferentially regulated in human iPscs and human ESCs. Sci Rep. 2017;7(1):15055. doi: 10.1038/s41598-017-15347-z
  • Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 2011;13(5):541–549. doi: 10.1038/ncb2239
  • Wang Y, Zhao C, Hou Z, et al. Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPscs) at naïve state. Elife. 2018;7:e29518. doi: 10.7554/eLife.29518
  • Apostolou E, Stadtfeld M. Cellular trajectories and molecular mechanisms of iPSC reprogramming. Curr Opin Genet Dev. 2018;52:77–85. doi: 10.1016/j.gde.2018.06.002
  • Hansson J, Rafiee MR, Reiland S, et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2012;2(6):1579–1592. doi: 10.1016/j.celrep.2012.10.014
  • Sabatier P, Beusch CM, Saei AA, et al. An integrative proteomics method identifies a regulator of translation during stem cell maintenance and differentiation. Nat Commun. 2021;12(1):6558. doi: 10.1038/s41467-021-26879-4
  • Sridharan R, Gonzales-Cope M, Chronis C, et al. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol. 2013;15(7):872–882. doi: 10.1038/ncb2768
  • Brenes AJ, Yoshikawa H, Bensaddek D, et al. Erosion of human X chromosome inactivation causes major remodeling of the iPSC proteome. Cell Rep. 2021;35(4):109032. doi: 10.1016/j.celrep.2021.109032
  • Pripuzova NS, Getie-Kebtie M, Grunseich C, et al. Development of a protein marker panel for characterization of human induced pluripotent stem cells (hiPscs) using global quantitative proteome analysis. Stem Cell Res. 2015;14(3):323–338. doi: 10.1016/j.scr.2015.01.009
  • Beekhuis-Hoekstra SD, Watanabe K, Werme J, et al. Systematic assessment of variability in the proteome of iPSC derivatives. Stem Cell Res. 2021;56:102512. doi: 10.1016/j.scr.2021.102512
  • Brenes A, Bensaddek D, Hukelmann J, et al. The iPSC proteomic compendium. Biochemistry. 2018 Nov. doi: 10.1101/469916
  • Kilpinen H, Goncalves A, Leha A, et al. Common genetic variation drives molecular heterogeneity in human iPscs. Nature. 2017;546(7658):370–375. doi: 10.1038/nature22403
  • Mirauta BA, Seaton DD, Bensaddek D, et al. Population-scale proteome variation in human induced pluripotent stem cells. Elife. 2020;9:e57390. doi: 10.7554/eLife.57390
  • Matlock AD, Vaibhav V, Holewinski R, et al. NeuroLINCS proteomics: defining human-derived iPSC proteomes and protein signatures of pluripotency. Sci Data. 2023;10(1):24. doi: 10.1038/s41597-022-01687-7
  • Mallanna SK, Waas M, Duncan SA, et al. N-glycoprotein surfaceome of human induced pluripotent stem cell derived hepatic endoderm. Proteomics. 2017;17(5):17. doi: 10.1002/pmic.201600397
  • Cui M, Wu W, Li Q, et al. Unlocking the potential of human-induced pluripotent stem cells: cellular responses and secretome profiles in peptide hydrogel 3D culture. Cells. 2024;13(2):143. doi: 10.3390/cells13020143
  • Gundry RL, Riordon DR, Tarasova Y, et al. A cell surfaceome map for immunophenotyping and sorting pluripotent stem cells. Mol & Cell Proteomics. 2012;11(8):303–316. doi: 10.1074/mcp.M112.018135
  • Boheler KR, Bhattacharya S, Kropp EM, et al. A human pluripotent stem Cell surface N-Glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep. 2014;3(1):185–203. doi: 10.1016/j.stemcr.2014.05.002
  • Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. Adv Exp Med Biol. 2019;1123:71–94. doi: 10.1007/978-3-030-11096-3_6
  • Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis Model Mech. 2020;13(1):dmm042317. doi: 10.1242/dmm.042317
  • Berg Luecke L, Waas M, Littrell J, et al. Surfaceome mapping of primary human heart cells with CellSurfer uncovers cardiomyocyte surface protein LSMEM2 and proteome dynamics in failing hearts. Nat Cardiovasc Res. 2023;2(1):76–95. doi: 10.1038/s44161-022-00200-y
  • Varderidou-Minasian S, Verheijen BM, Schätzle P, et al. Deciphering the proteome dynamics during development of neurons derived from induced pluripotent stem cells. J Proteome Res. 2020;19(6):2391–2403. doi: 10.1021/acs.jproteome.0c00070
  • Reilly L, Lara E, Ramos D, et al. A fully automated FAIMS-DIA mass spectrometry-based proteomic pipeline. Cell Rep Methods. 2023;3(10):100593. doi: 10.1016/j.crmeth.2023.100593
  • Vethe H, Bjørlykke Y, Ghila LM, et al. Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci Rep. 2017;7(1):4780. doi: 10.1038/s41598-017-04979-w
  • Urasawa T, Koizumi T, Kimura K, et al. Quantitative proteomics for the development and manufacturing of human-induced pluripotent stem Cell-derived neural stem cells using Data-independent acquisition mass spectrometry. J Proteome Res. 2023;22(6):1843–1854. doi: 10.1021/acs.jproteome.2c00841
  • Djuric U, Rodrigues DC, Batruch I, et al. Spatiotemporal proteomic profiling of human cerebral development. Mol & Cell Proteomics. 2017;16(9):1548–1562. doi: 10.1074/mcp.M116.066274
  • Tyleckova J, Valekova I, Zizkova M, et al. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation. J Proteomics. 2016;132:13–20. doi: 10.1016/j.jprot.2015.11.008
  • Van Hoof D, Dormeyer W, Braam SR, et al. Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res. 2010;9(3):1610–1618. doi: 10.1021/pr901138a
  • Dubois NC, Craft AM, Sharma P, et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011;29(11):1011–1018. doi: 10.1038/nbt.2005
  • Protze SI, Liu J, Nussinovitch U, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol. 2017;35(1):56–68. doi: 10.1038/nbt.3745
  • Funakoshi S, Miki K, Takaki T, et al. Enhanced engraftment, proliferation and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep. 2016;6(1):19111. doi: 10.1038/srep19111
  • Veevers J, Farah EN, Corselli M, et al. Cell-surface marker signature for enrichment of ventricular cardiomyocytes derived from human embryonic stem cells. Stem Cell Rep. 2018;11(3):828–841. doi: 10.1016/j.stemcr.2018.07.007
  • Cyganek L, Tiburcy M, Sekeres K, et al. Deep phenotyping of human induced pluripotent stem cell–derived atrial and ventricular cardiomyocytes. JCI Insight. 2018;3(12):e99941. doi: 10.1172/jci.insight.99941
  • Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17(6):341–359. doi: 10.1038/s41569-019-0331-x
  • Krumm J, Sekine K, Samaras P, et al. High temporal resolution proteome and phosphoproteome profiling of stem cell-derived hepatocyte development. Cell Rep. 2022;38(13):110604. doi: 10.1016/j.celrep.2022.110604
  • Mallanna SK, Cayo MA, Twaroski K, et al. Mapping the Cell-surface N-Glycoproteome of human hepatocytes reveals markers for selecting a homogeneous population of iPSC-derived hepatocytes. Stem Cell Rep. 2016;7(3):543–556. doi: 10.1016/j.stemcr.2016.07.016
  • Hurrell T, Segeritz C-P, Vallier L, et al. A proteomic time course through the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. Sci Rep. 2019;9(1):3270. doi: 10.1038/s41598-019-39400-1
  • Hellen N, Pinto Ricardo C, Vauchez K, et al. Proteomic analysis reveals temporal changes in protein expression in human induced pluripotent stem Cell-derived cardiomyocytes in vitro. Stem Cells Dev. 2019;28(9):565–578. doi: 10.1089/scd.2018.0210
  • Cai W, Zhang J, de Lange WJ, et al. An unbiased proteomics method to assess the maturation of human pluripotent stem cell–derived cardiomyocytes. Circ Res. 2019;125(11):936–953. doi: 10.1161/CIRCRESAHA.119.315305
  • Poon EN-Y, Luo X, Webb SE, et al. The cell surface marker CD36 selectively identifies matured, mitochondria-rich hPSC-cardiomyocytes. Cell Res. 2020;30(7):626–629. doi: 10.1038/s41422-020-0292-y
  • Haller C, Chaskar P, Piccand J, et al. Insights into islet differentiation and maturation through proteomic characterization of a human iPSC-derived pancreatic endocrine model. Proteomics - Clin Appl. 2018;12(5):1600173. doi: 10.1002/prca.201600173
  • Trakarnsanga K, Wilson MC, Griffiths RE, et al. Qualitative and quantitative comparison of the proteome of erythroid cells differentiated from human iPscs and adult erythroid cells by multiplex TMT labelling and NanoLC-MS/MS. In: Pant A, editor. PLoS ONE. Vol. 9, 2014. p. e100874. doi: 10.1371/journal.pone.0100874
  • Soontararak S, Chow L, Johnson V, et al. Mesenchymal stem cells (MSC) derived from induced pluripotent stem cells (iPSC) equivalent to adipose-derived MSC in promoting intestinal healing and microbiome normalization in mouse inflammatory bowel disease model. Stem Cells Transl Med. 2018;7(6):456–467. doi: 10.1002/sctm.17-0305
  • Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905
  • Sarantopoulos CN, Banyard DA, Ziegler ME, et al. Elucidating the preadipocyte and its role in adipocyte formation: a Comprehensive Review. Stem Cell Rev and Rep. 2018;14(1):27–42. doi: 10.1007/s12015-017-9774-9
  • Pogodziński D, Ostrowska L, Smarkusz-Zarzecka J, et al. Secretome of adipose tissue as the key to understanding the endocrine function of adipose tissue. Int J Mol Sci. 2022;23(4):2309. doi: 10.3390/ijms23042309
  • Deshmukh AS, Peijs L, Beaudry JL, et al. Proteomics-based comparative mapping of the secretomes of human Brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab. 2019;30(5):963–975.e7. doi: 10.1016/j.cmet.2019.10.001
  • Gupta S, Krishnakumar V, Soni N, et al. Comparative proteomic profiling of small extracellular vesicles derived from iPscs and tissue specific mesenchymal stem cells. Exp Cell Res. 2022;420(2):113354. doi: 10.1016/j.yexcr.2022.113354
  • Park DS, Kozaki T, Tiwari SK, et al. iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer. Nature. 2023;623(7986):397–405. doi: 10.1038/s41586-023-06713-1
  • Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526(7574):564–568. doi: 10.1038/nature15695
  • de Lange WJ, Farrell ET, Kreitzer CR, et al. Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. Am J Physiol Heart Circ Physiol. 2021;320(4):H1670–H1686. doi: 10.1152/ajpheart.00941.2020
  • Rossler KJ, De Lange WJ, Mann MW, et al. Lactate- and immunomagnetic-purified hiPSC–derived cardiomyocytes generate comparable engineered cardiac tissue constructs. JCI Insight. 2024;9(1):e172168. doi: 10.1172/jci.insight.172168
  • Nascimento JM, Saia-Cereda VM, Sartore RC, et al. Human cerebral organoids and fetal brain tissue share proteomic similarities. Front Cell Dev Biol. 2019;7:303. doi: 10.3389/fcell.2019.00303
  • Notaras M, Lodhi A, Fang H, et al. The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors. Transl Psychiatry. 2021;11(1):541. doi: 10.1038/s41398-021-01664-5
  • Ilieva M, Aldana BI, Vinten KT, et al. Proteomic phenotype of cerebral organoids derived from autism spectrum disorder patients reveal disrupted energy metabolism, cellular components, and biological processes. Mol Psychiatry. 2022;27(9):3749–3759. doi: 10.1038/s41380-022-01627-2
  • McClure-Begley TD, Ebmeier CC, Ball KE, et al. Cerebral organoid proteomics reveals signatures of dysregulated cortical development associated with human trisomy 21. Systems Biology. 2018 May. doi:10.1101/315317
  • Pellegrini L, Bonfio C, Chadwick J, et al. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;369(6500):eaaz5626. doi: 10.1126/science.aaz5626
  • Hale LJ, Howden SE, Phipson B, et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat Commun. 2018;9(1):5167. doi: 10.1038/s41467-018-07594-z
  • Gatto L, Aebersold R, Cox J, et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat Methods. 2023;20(3):375–386. doi: 10.1038/s41592-023-01785-3
  • Petelski AA, Emmott E, Leduc A, et al. Multiplexed single-cell proteomics using SCoPE2. Nat Protoc. 2021;16(12):5398–5425. doi: 10.1038/s41596-021-00616-z
  • Wang M, Yu H, Zhang T, et al. In-depth comparison of matrigel dissolving methods on proteomic profiling of organoids. Mol & Cell Proteomics. 2022;21(1):100181. doi: 10.1016/j.mcpro.2021.100181
  • Kelly MI, Albahrani M, Castro C, et al. Importance of evaluating protein glycosylation in pluripotent stem cell-derived cardiomyocytes for research and clinical applications. Pflugers Arch - Eur J Physiol. 2021;473(7):1041–1059. doi: 10.1007/s00424-021-02554-x
  • Lau E, Han Y, Williams DR, et al. Splice-junction-based mapping of alternative isoforms in the human proteome. Cell Rep. 2019;29(11):3751–3765.e5. doi: 10.1016/j.celrep.2019.11.026
  • Laflamme C, McKeever PM, Kumar R, et al. Implementation of an antibody characterization procedure and application to the major ALS/FTD disease gene C9ORF72. Elife. 2019;8:e48363. doi: 10.7554/eLife.48363
  • Baker M. Reproducibility crisis: blame it on the antibodies. Nature. 2015;521(7552):274–276. doi: 10.1038/521274a
  • Bradbury A, Plückthun A. Reproducibility: standardize antibodies used in research. Nature. 2015;518(7537):27–29. doi: 10.1038/518027a
  • Lund-Johansen F. A strong case for third-party testing. Elife. 2023;12:e93329. doi: 10.7554/eLife.93329
  • Connor-Robson N, Booth H, Martin JG, et al. An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2. Neurobiol Dis. 2019;127:512–526. doi: 10.1016/j.nbd.2019.04.005
  • Iannotti MJ, MacArthur R, Jones R, et al. Detecting secretory proteins by acoustic droplet ejection in multiplexed high-throughput applications. ACS Chem Biol. 2019;14(3):497–505. doi: 10.1021/acschembio.9b00001
  • Oh H-H, Rutledge J, Nachun D, et al. Organ aging signatures in the plasma proteome track health and disease. Nature. 2023;624(7990):164–172. doi: 10.1038/s41586-023-06802-1
  • Eldjarn GH, Ferkingstad E, Lund SH, et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature. 2023;622(7982):348–358. doi: 10.1038/s41586-023-06563-x
  • Pietzner M, Wheeler E, Carrasco-Zanini J, et al. Synergistic insights into human health from aptamer- and antibody-based proteomic profiling. Nat Commun. 2021;12(1):6822. doi: 10.1038/s41467-021-27164-0
  • Joshi A, Mayr M. In aptamers they trust: caveats of the SOMAscan biomarker discovery platform from SomaLogic. Circulation. 2018;138(22):2482–2485. doi: 10.1161/CIRCULATIONAHA.118.036823
  • Wollscheid B, Bausch-Fluck D, Henderson C, et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009;27(4):378–386. doi: 10.1038/nbt.1532
  • Bausch-Fluck D, Hofmann A, Bock T, et al. A Mass spectrometric-derived cell surface protein atlas. In: Wanjin H, editor. PLOS ONE. Vol. 10, 2015. p. e0121314. doi: 10.1371/journal.pone.0121314
  • Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–791. doi: 10.1016/j.cell.2016.04.019
  • Im I, Son YS, Jung KB, et al. Mass cytometry–based single-cell analysis of human stem cell reprogramming uncovers differential regulation of specific pluripotency markers. J Biol Chem. 2019;294(49):18547–18556. doi: 10.1074/jbc.RA119.009061
  • Zunder ER, Lujan E, Goltsev Y, et al. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell. 2015;16(3):323–337. doi: 10.1016/j.stem.2015.01.015
  • Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev. 2015;82–83:1–11. doi: 10.1016/j.addr.2014.10.007
  • Jennbacken K, Wågberg F, Karlsson U, et al. Phenotypic screen with the human secretome identifies FGF16 as inducing proliferation of iPSC-derived cardiac progenitor cells. Int J Mol Sci. 2019;20(23):6037. doi: 10.3390/ijms20236037
  • Knecht S, Eberl HC, Kreisz N, et al. An introduction to analytical challenges, approaches, and applications in mass spectrometry–based secretomics. Mol & Cell Proteomics. 2023;22(9):100636. doi: 10.1016/j.mcpro.2023.100636
  • Tüshaus J, Müller SA, Kataka ES, et al. An optimized quantitative proteomics method establishes the cell type-resolved mouse brain secretome. EMBO J. 2020;39(20):e105693. doi: 10.15252/embj.2020105693
  • Hammond DE, Kumar JD, Raymond L, et al. Stable isotope dynamic labeling of secretomes (SIDLS) identifies authentic secretory proteins released by cancer and stromal cells. Mol Cell Proteomics Mcp. 2018;17:1837–1849. doi: 10.1074/mcp.TIR117.000516

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.