57
Views
0
CrossRef citations to date
0
Altmetric
Review

Revisiting the antigen markers of vector-borne parasitic diseases identified by immunomics: identification and application to disease control

, , , &
Pages 205-216 | Received 05 Sep 2023, Accepted 03 Mar 2024, Published online: 08 Apr 2024

References

  • WHO. Vector-borne diseases. 2017. Available from: http://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
  • Kassegne K, Zhou XN, Chen JH. Editorial: vectors and vector-borne parasitic diseases: infection, immunity, and evolution. Front Immunol. 2021;12:729415.
  • Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol. 2005;35(11–12):1309–1318. doi: 10.1016/j.ijpara.2005.06.005
  • Zhao HQ, Fei SW, Yin JX, et al. Assessment of performance for a key indicator of one health: evidence based on one health index for zoonoses in Sub-Saharan Africa. Infect Dis Poverty. 2022;11(1):109. doi: 10.1186/s40249-022-01020-9
  • Schussek S, Trieu A, Doolan DL. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design. Biotechnol Adv. 2014;32(2):403–414. doi: 10.1016/j.biotechadv.2013.12.006
  • Kassegne K, Abe EM, Chen JH, et al. Immunomic approaches for antigen discovery of human parasites. Expert Rev Proteomics. 2016;13(12):1091–1101. doi: 10.1080/14789450.2016.1252675
  • Ndao M. Diagnosis of parasitic diseases: old and new approaches. Interdiscip Perspect Infect Dis. 2009;2009:1–15. doi: 10.1155/2009/278246
  • Fan YT, Wang Y, Ju C, et al. Systematic analysis of natural antibody responses to P. falciparum merozoite antigens by protein arrays. J Proteomics. 2013;78:148–158. doi: 10.1016/j.jprot.2012.11.020
  • Kassegne K, Abe EM, Cui YB, et al. Contribution of Plasmodium immunomics: potential impact for serological testing and surveillance of malaria. Expert Rev Proteomics. 2019;16(2):117–129. doi: 10.1080/14789450.2019.1554441
  • King CL, Davies DH, Felgner P, et al. Biosignatures of exposure/transmission and immunity. Am J Trop Med Hyg. 2015;93(3 Suppl):16–27. doi: 10.4269/ajtmh.15-0037
  • Gaze S, Driguez P, Pearson MS, et al. An immunomics approach to schistosome antigen discovery: antibody signatures of naturally resistant and chronically infected individuals from endemic areas. PLoS Pathog. 2014;10(3):e1004033. doi: 10.1371/journal.ppat.1004033
  • Riveau G, Deplanque D, Remoue F, et al. Safety and immunogenicity of rSh28GST antigen in humans: phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl Trop Dis. 2012;6(7):e1704. doi: 10.1371/journal.pntd.0001704
  • Wang H, Wang Y, Huang J, et al. Babesia microti protein BmSP44 is a novel protective antigen in a mouse model of babesiosis. Front Immunol. 2020;11:1437. doi: 10.3389/fimmu.2020.01437
  • Tayipto Y, Liu Z, Mueller I, et al. Serology for Plasmodium vivax surveillance: a novel approach to accelerate towards elimination. Parasitol Int. 2022;87:102492.
  • Pearson MS, Tedla BA, Mekonnen GG, et al. Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis: a biomarker identification study. Lancet Microbe. 2021;2(11):e617–e626. doi: 10.1016/S2666-5247(21)00150-6
  • Baum E, Badu K, Molina DM, et al. Protein microarray analysis of antibody responses to Plasmodium falciparum in western Kenyan highland sites with differing transmission levels. PloS One. 2013;8(12):e82246. doi: 10.1371/journal.pone.0082246
  • Doolan DL, Mu Y, Unal B, et al. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics. 2008;8(22):4680–4694. doi: 10.1002/pmic.200800194
  • Nnedu ON, O’Leary MP, Mutua D, et al. Humoral immune responses to Plasmodium falciparum among HIV-1-infected Kenyan adults. Proteomics Clin Appl. 2011;5(11–12):613–623. doi: 10.1002/prca.201100021
  • Chen JH, Chen SB, Wang Y, et al. An immunomics approach for the analysis of natural antibody responses to Plasmodium vivax infection. Mol Biosyst. 2015;11(8):2354–2363. doi: 10.1039/C5MB00330J
  • Baum E, Sattabongkot J, Sirichaisinthop J, et al. Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malar J. 2015;14(1):95. doi: 10.1186/s12936-015-0611-9
  • Xu X, Zhang Y, Lin D, et al. Serodiagnosis of Schistosoma japonicum infection: genome-wide identification of a protein marker, and assessment of its diagnostic validity in a field study in China. Lancet Infect Dis. 2014;14(6):489–497. doi: 10.1016/S1473-3099(14)70067-2
  • Chen JH, Zhang T, Ju C, et al. An integrated immunoproteomics and bioinformatics approach for the analysis of Schistosoma japonicum tegument proteins. J Proteomics. 2014;98:289–299. doi: 10.1016/j.jprot.2014.01.010
  • McWilliam HE, Driguez P, Piedrafita D, et al. Discovery of novel Schistosoma japonicum antigens using a targeted protein microarray approach. Parasites Vectors. 2014;7(1):290. doi: 10.1186/1756-3305-7-290
  • de Assis RR, Ludolf F, Nakajima R, et al. A next-generation proteome array for Schistosoma mansoni. Int J Parasitol. 2016;46(7):411–415. doi: 10.1016/j.ijpara.2016.04.001
  • Lage DP, Ludolf F, Silveira PC, et al. Screening diagnostic candidates from Leishmania infantum proteins for human visceral leishmaniasis using an immunoproteomics approach. Parasitology. 2019;146(11):1467–1476. doi: 10.1017/S0031182019000714
  • Zhou X, Huang JL, Shen HM, et al. Immunomics analysis of Babesia microti protein markers by high-throughput screening assay. Ticks Tick Borne Dis. 2018;9(6):1468–1474.
  • Xu B, Liu XF, Cai YC, et al. Screening for biomarkers reflecting the progression of Babesia microti infection. Parasites Vectors. 2018;11(1):379. doi: 10.1186/s13071-018-2951-0
  • Cornillot E, Dassouli A, Pachikara N, et al. A targeted immunomic approach identifies diagnostic antigens in the human pathogen Babesia microti. Transfusion. 2016;56(8):2085–2099. doi: 10.1111/trf.13640
  • Elisei RMT, Matos CS, Carvalho A, et al. Immunogenomic screening approach to identify new antigens for the serological diagnosis of chronic Chagas’ disease. Appl Microbiol Biotechnol. 2018;102(14):6069–6080. doi: 10.1007/s00253-018-8992-7
  • Carmona SJ, Nielsen M, Schafer-Nielsen C, et al. Towards high-throughput immunomics for infectious diseases: use of next-generation peptide microarrays for rapid discovery and mapping of antigenic determinants. Mol Cell Proteomics. 2015;14(7):1871–1884. doi: 10.1074/mcp.M114.045906
  • List C, Qi W, Maag E, et al. Serodiagnosis of Echinococcus spp. infection: explorative selection of diagnostic antigens by peptide microarray. PLoS Negl Trop Dis. 2010;4(8):e771. doi: 10.1371/journal.pntd.0000771
  • Tang YT, Gao X, Rosa BA, et al. Genome of the human hookworm Necator americanus. Nat Genet. 2014;46(3):261–269. doi: 10.1038/ng.2875
  • Felgner J, Juarez S, Hung C, et al. Identification of Toxoplasma gondii antigens associated with different types of infection by serum antibody profiling. Parasitology. 2015;142(6):827–838. doi: 10.1017/S0031182014001978
  • Maksimov P, Zerweck J, Maksimov A, et al. Peptide microarray analysis of in silico-predicted epitopes for serological diagnosis of Toxoplasma gondii infection in humans. Clin Vaccine Immunol. 2012;19(6):865–874. doi: 10.1128/CVI.00119-12
  • Liang L, Doskaya M, Juarez S, et al. Identification of potential serodiagnostic and subunit vaccine antigens by antibody profiling of toxoplasmosis cases in Turkey. Mol Cell Proteomics. 2011;10(7):M110 006916. doi: 10.1074/mcp.M110.006916
  • Lueking A, Horn M, Eickhoff H, et al. Protein microarrays for gene expression and antibody screening. Anal Biochem. 1999;270(1):103–111. doi: 10.1006/abio.1999.4063
  • Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science. 2001;293(5537):2101–2105. doi: 10.1126/science.1062191
  • Kung LA, Snyder M. Proteome chips for whole-organism assays. Nat Rev Mol Cell Biol. 2006;7(8):617–622. doi: 10.1038/nrm1941
  • Sundaresh S, Doolan DL, Hirst S, et al. Identification of humoral immune responses in protein microarrays using DNA microarray data analysis techniques. Bioinformatics. 2006;22(14):1760–1766. doi: 10.1093/bioinformatics/btl162
  • Zhou AE, Jain A, Nakajima R, et al. Protein microarrays as a tool to analyze antibody responses to variant surface antigens expressed on the surface of Plasmodium falciparum-infected erythrocytes. Methods Mol Biol. 2022;2470:343–358.
  • He QY, Chiu JF. Proteomics in biomarker discovery and drug development. J Cell Biochem. 2003;89(5):868–886. doi: 10.1002/jcb.10576
  • Finney OC, Danziger SA, Molina DM, et al. Predicting antidisease immunity using proteome arrays and sera from children naturally exposed to malaria. Mol Cell Proteomics. 2014;13(10):2646–2660. doi: 10.1074/mcp.M113.036632
  • Uplekar S, Rao PN, Ramanathapuram L, et al. Characterizing antibody responses to Plasmodium vivax and Plasmodium falciparum antigens in India using genome-scale protein microarrays. PloS Negl Trop Dis. 2017;11(1):e0005323. doi: 10.1371/journal.pntd.0005323
  • Arevalo-Herrera M, Lopez-Perez M, Dotsey E, et al. Antibody profiling in naive and semi-immune individuals experimentally challenged with Plasmodium vivax sporozoites. PLoS Negl Trop Dis. 2016;10(3):e0004563. doi: 10.1371/journal.pntd.0004563
  • Trieu A, Kayala MA, Burk C, et al. Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol Cell Proteomics. 2011;10(9):M111 007948. doi: 10.1074/mcp.M111.007948
  • Crompton PD, Kayala MA, Traore B, et al. A prospective analysis of the ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci USA. 2010;107(15):6958–6963. doi: 10.1073/pnas.1001323107
  • Gray JC, Corran PH, Mangia E, et al. Profiling the antibody immune response against blood stage malaria vaccine candidates. Clin Chem. 2007;53(7):1244–1253. doi: 10.1373/clinchem.2006.081695
  • Chen JH, Jung JW, Wang Y, et al. Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. J Proteome Res. 2010;9(12):6479–6489. doi: 10.1021/pr100705g
  • Azcarate IG, Marin-Garcia P, Abad P, et al. Plasmodium falciparum immunodominant IgG epitopes in subclinical malaria. Sci Rep. 2020;10(1):9398. doi: 10.1038/s41598-020-66384-0
  • Bailey JA, Berry AA, Travassos MA, et al. Microarray analyses reveal strain-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 variants following natural infection and vaccination. Sci Rep. 2020;10(1):3952. doi: 10.1038/s41598-020-60551-z
  • Abdulla S, Oberholzer R, Juma O, et al. Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants. N Engl J Med. 2008;359(24):2533–2544. doi: 10.1056/NEJMoa0807773
  • Sheehy SH, Duncan CJ, Elias SC, et al. Phase ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors. PloS One. 2012;7(2):e31208. doi: 10.1371/journal.pone.0031208
  • Payne RO, Milne KH, Elias SC, et al. Demonstration of the blood-stage Plasmodium falciparum controlled human malaria infection model to assess efficacy of the P. falciparum apical membrane antigen 1 vaccine, FMP2.1/AS01. J Infect Dis. 2016;213(11):1743–1751. doi: 10.1093/infdis/jiw039
  • Sirima SB, Cousens S, Druilhe P. Protection against malaria by MSP3 candidate vaccine. N Engl J Med. 2011;365(11):1062–1064. doi: 10.1056/NEJMc1100670
  • Chitnis CE, Mukherjee P, Mehta S, et al. Correction: phase I clinical trial of a recombinant blood stage vaccine candidate for Plasmodium falciparum malaria based on MSP1 and EBA175. PLoS One. 2015;10(9):e0137816. doi: 10.1371/journal.pone.0137816
  • Bennett JW, Yadava A, Tosh D, et al. Phase 1/2a trial of Plasmodium vivax malaria vaccine candidate VMP001/AS01B in malaria-naive adults: safety, immunogenicity, and efficacy. PLoS Negl Trop Dis. 2016;10(2):e0004423. doi: 10.1371/journal.pntd.0004423
  • Longley RJ, White MT, Takashima E, et al. Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nat Med. 2020;26(5):741–749. doi: 10.1038/s41591-020-0841-4.
  • Chen Y, Chan CK, Kerishnan JP, et al. Identification of circulating biomarkers in sera of plasmodium knowlesi-infected malaria patients–comparison against Plasmodium vivax infection. BMC Infect Dis. 2015;15(1):49. doi: 10.1186/s12879-015-0786-2
  • Kassegne K, Fei SW, Ananou K, et al. A molecular investigation of malaria infections from high-transmission areas of Southern Togo reveals different species of Plasmodium parasites. Front Microbiol. 2021;12:732923. doi: 10.3389/fmicb.2021.732923
  • Dent AE, Nakajima R, Liang L, et al. Plasmodium falciparum protein microarray antibody profiles correlate with protection from symptomatic malaria in Kenya. J Infect Dis. 2015;212(9):1429–1438. doi: 10.1093/infdis/jiv224
  • Singh S, Soe S, Weisman S, et al. A conserved multi-gene family induces cross-reactive antibodies effective in defense against Plasmodium falciparum. PLoS One. 2009;4(4):e5410. doi: 10.1371/journal.pone.0005410
  • Torres KJ, Castrillon CE, Moss EL, et al. Genome-level determination of Plasmodium falciparum blood-stage targets of malarial clinical immunity in the Peruvian Amazon. J Infect Dis. 2015;211(8):1342–1351. doi: 10.1093/infdis/jiu614
  • Bailey JA, Pablo J, Niangaly A, et al. Seroreactivity to a large panel of field-derived Plasmodium falciparum apical membrane antigen 1 and merozoite surface protein 1 variants reflects seasonal and lifetime acquired responses to malaria. Am J Trop Med Hyg. 2015;92(1):9–12. doi: 10.4269/ajtmh.14-0140
  • Doolan DL. Plasmodium immunomics. Int J Parasitol. 2011;41(1):3–20. doi: 10.1016/j.ijpara.2010.08.002
  • Barry AE, Trieu A, Fowkes FJ, et al. The stability and complexity of antibody responses to the major surface antigen of Plasmodium falciparum are associated with age in a malaria endemic area. Mol Cell Proteomics. 2011;10(11):M111 008326. doi: 10.1074/mcp.M111.008326
  • Chen JH, Wang Y, Ha KS, et al. Measurement of naturally acquired humoral immune responses against the C-terminal region of the Plasmodium vivax MSP1 protein using protein arrays. Parasitol Res. 2011;109(5):1259–1266. doi: 10.1007/s00436-011-2370-z
  • Cheng Y, Wang Y, Ito D, et al. The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax. Infect Immun. 2013;81(5):1585–1595. doi: 10.1128/IAI.01117-12
  • Chuquiyauri R, Molina DM, Moss EL, et al. Genome-scale protein microarray comparison of human antibody responses in Plasmodium vivax relapse and reinfection. Am J Trop Med Hyg. 2015;93(4):801–809. doi: 10.4269/ajtmh.15-0232
  • Molina DM, Finney OC, Arevalo-Herrera M, et al. Plasmodium vivax pre-erythrocytic-stage antigen discovery: exploiting naturally acquired humoral responses. Am J Trop Med Hyg. 2012;87(3):460–469. doi: 10.4269/ajtmh.2012.12-0222
  • Li J, Ito D, Chen JH, et al. Pv12, a 6-cys antigen of Plasmodium vivax, is localized to the merozoite rhoptry. Parasitol Int. 2012;61(3):443–449. doi: 10.1016/j.parint.2012.02.008
  • Cheng Y, Wang B, Sattabongkot J, et al. Immunogenicity and antigenicity of Plasmodium vivax merozoite surface protein 10. Parasitol Res. 2014;113(7):2559–2568.
  • Driguez P, Li Y, Gaze S, et al. Antibody signatures reflect different disease pathologies in patients with schistosomiasis due to schistosoma japonicum. J Infect Dis. 2016;213(1):122–130. doi: 10.1093/infdis/jiv356
  • Driguez P, McWilliam HE, Gaze S, et al. Specific humoral response of hosts with variable schistosomiasis susceptibility. Immunol Cell Biol. 2016;94(1):52–65. doi: 10.1038/icb.2015.61
  • Pearson MS, Becker L, Driguez P, et al. Of monkeys and men: immunomic profiling of sera from humans and non-human primates resistant to schistosomiasis reveals novel potential vaccine candidates. Front Immunol. 2015;6:213. doi: 10.3389/fimmu.2015.00213
  • Driguez P, McManus DP, Gobert GN. Clinical implications of recent findings in schistosome proteomics. Expert Rev Proteomics. 2016;13(1):19–33. doi: 10.1586/14789450.2016.1116390
  • Driguez P, Doolan DL, Loukas A, et al. Schistosomiasis vaccine discovery using immunomics. Parasites Vectors. 2010 28;3(1):4. doi: 10.1186/1756-3305-3-4
  • Molehin AJ, Rojo JU, Siddiqui SZ, et al. Development of a schistosomiasis vaccine. Expert Rev Vaccines. 2016;15(5):619–627. doi: 10.1586/14760584.2016.1131127
  • Almeida R, Norrish A, Levick M, et al. From genomes to vaccines: leishmania as a model. Philos Trans R Soc Lond B Biol Sci. 2002;357(1417):5–11. doi: 10.1098/rstb.2001.0985
  • Rashidi S, Kalantar K, Hatam G. Using proteomics as a powerful tool to develop a vaccine against Mediterranean visceral leishmaniasis. J Parasit Dis. 2018;42(2):162–170.
  • Alcolea PJ, Alonso A, Garcia-Tabares F, et al. Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins. Acta Trop. 2016;158:240–247. doi: 10.1016/j.actatropica.2016.03.015
  • Garcia GC, Carvalho A, Duarte MC, et al. Development of a chimeric protein based on a proteomic approach for the serological diagnosis of human tegumentary leishmaniasis. Appl Microbiol Biotechnol. 2021;105(18):6805–6817. doi: 10.1007/s00253-021-11518-1
  • Caraballo-Guzman AJ, Ospina-Villa JD, Cuesta-Caicedo AP, et al. Immunoproteomics characterization of leishmania panamensis proteins for potential clinical diagnosis of mucosal leishmaniasis. Parasite Immunol. 2021;43(6):e12824. doi: 10.1111/pim.12824
  • Machado AS, Ramos FF, Santos TTO, et al. A new Leishmania hypothetical protein can be used for accurate serodiagnosis of canine and human visceral leishmaniasis and as a potential prognostic marker for human disease. Exp Parasitol. 2020;216:107941. doi: 10.1016/j.exppara.2020.107941
  • Silva JC, Cornillot E, McCracken C, et al. Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions. Sci Rep. 2016;6(1):35284. doi: 10.1038/srep35284
  • Lopez MG, Pallares HM, Alfonso V, et al. Novel biotechnological platform based on baculovirus occlusion bodies carrying Babesia bovis small antigenic peptides for the design of a diagnostic enzyme-linked immunosorbent assay (ELISA). Appl Microbiol Biotechnol. 2018;102(2):885–896. doi: 10.1007/s00253-017-8662-1
  • Mendes TA, Reis Cunha JL, de Almeida Lourdes R, et al. Identification of strain-specific B-cell epitopes in Trypanosoma cruzi using genome-scale epitope prediction and high-throughput immunoscreening with peptide arrays. PLoS Negl Trop Dis. 2013;7(10):e2524. doi: 10.1371/journal.pntd.0002524.
  • Balouz V, Bracco L, Ricci AD, et al. Serological Approaches for Trypanosoma cruzi Strain Typing. Trends Parasitol. 2021;37(3):214–225. doi: 10.1016/j.pt.2020.12.002
  • McNulty SN, Rosa BA, Fischer PU, et al. An integrated multiomics approach to identify candidate antigens for serodiagnosis of human onchocerciasis. Mol Cell Proteomics. 2015;14(12):3224–3233. doi: 10.1074/mcp.M115.051953
  • Bennuru S, Cotton JA, Ribeiro JM, et al. Stage-specific transcriptome and proteome analyses of the filarial parasite Onchocerca volvulus and its wolbachia endosymbiont. MBio. 2016;7(6). doi: 10.1128/mBio.02028-16
  • Morris CP, Bennuru S, Kropp LE, et al. A proteomic analysis of the body wall, digestive tract, and reproductive tract of Brugia malayi. PloS Negl Trop Dis. 2015;9(9):e0004054. doi: 10.1371/journal.pntd.0004054.
  • Lustigman S, Grote A, Ghedin E, et al. The role of ‘omics’ in the quest to eliminate human filariasis. PLoS Negl Trop Dis. 2017;11(4):e0005464. doi: 10.1371/journal.pntd.0005464
  • Perez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82–94. doi: 10.1016/S0140-6736(17)31612-4
  • Hinz R, Schwarz NG, Hahn A, et al. Serological approaches for the diagnosis of schistosomiasis - a review. Mol Cell Probes. 2017;31:2–21.
  • Vigil A, Davies DH, Felgner PL. Defining the humoral immune response to infectious agents using high-density protein microarrays. Future Microbiol. 2010;5(2):241–251. doi: 10.2217/fmb.09.127

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.