96
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Prioritization of genes for translation: a computational approach

ORCID Icon, , , & ORCID Icon
Pages 125-147 | Received 26 May 2023, Accepted 21 Feb 2024, Published online: 09 Apr 2024

References

  • Gudjonsson A, Gudmundsdottir V, Axelsson GT. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat Commun. 2022;13(1):480. doi: 10.1038/s41467-021-27850-z
  • Glinge C, Lahrouchi N, Jabbari R, et al. Genome-wide association studies of cardiac electrical phenotypes. Cardiovasc Res. 2020;116(9):1620–1634. doi: 10.1093/cvr/cvaa144
  • Wang S, Wu R, Lu J, et al. Protein-protein interaction networks as miners of biological discovery. Proteomics. 2022;22(15–16):e2100190. doi: 10.1002/pmic.202100190
  • Hu L, Wang X, Huang YA, et al. A survey on computational models for predicting protein-protein interactions. Brief Bioinform. 2021;22(5). doi: 10.1093/bib/bbab036
  • Lin Y, Zhao X, Miao Z, et al. Data-driven translational prostate cancer research: from biomarker discovery to clinical decision. J Transl Med. 2020;18(1):119. doi: 10.1186/s12967-020-02281-4
  • Barzegar Behrooz A, Latifi-Navid H, da Silva Rosa SC, et al. Integrating multi-omics analysis for enhanced diagnosis and treatment of glioblastoma: a comprehensive data-driven approach. Cancers (Basel). 2023;15(12):3158. doi: 10.3390/cancers15123158
  • Barzegar Behrooz A, Latifi-Navid H, da Silva Rosa SC, et al Integrating multi-omics analysis for enhanced diagnosis and treatment of Glioblastoma: a comprehensive data-driven approach. Cancers (Basel). 2023;15:3158. doi: 10.3390/cancers15123158
  • Lima T, Ferreira R, Freitas M, et al. Integration of automatic text mining and genomic and proteomic analysis to unravel prostate cancer biomarkers. J Proteome Res. 2022;21(2):447–458. doi: 10.1021/acs.jproteome.1c00763
  • Goh KI, Cusick ME, Valle D, et al. The human disease network. Proc Natl Acad Sci, USA. 2007;104(21):8685–8690. doi: 10.1073/pnas.0701361104
  • Cheng L, Zhao H, Wang P, et al. Computational methods for identifying similar diseases. Mol Ther Nucl Acids. 2019;18:590–604. doi: 10.1016/j.omtn.2019.09.019
  • Serin EA, Nijveen H, Hilhorst HW, et al. Learning from Co-expression networks: possibilities and challenges. Front Plant Sci. 2016;7:444. doi: 10.3389/fpls.2016.00444
  • Gonçalves JP, Francisco AP, Moreau Y, et al. Interactogeneous: disease gene prioritization using heterogeneous networks and full topology scores. PLoS One. 2012;7(11):e49634. doi:10.1371/journal.pone.0049634
  • Guney E, Oliva B, Fernandez-Fuentes N. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization. PLoS One. 2012;7(9):e43557. doi:10.1371/journal.pone.0043557
  • Lysenko A, Boroevich KA, Tsunoda T. Arete – candidate gene prioritization using biological network topology with additional evidence types. BioData Min. 2017;10(1):22. doi: 10.1186/s13040-017-0141-9
  • Shulman ED, Elkon R. Genetic mapping of developmental trajectories for complex traits and diseases. Computat Struct Biotechnol J. 2021;19:3458–3469. doi:10.1016/j.csbj.2021.05.055
  • Chen J, Althagafi A, Hoehndorf R, et al. Predicting candidate genes from phenotypes, functions and anatomical site of expression. Bioinformatics. 2021;37(6):853–860. doi: 10.1093/bioinformatics/btaa879
  • Shadrina AS, Shashkova TI, Torgasheva AA, et al. Prioritization of causal genes for coronary artery disease based on cumulative evidence from experimental and in silico studies. Sci Rep. 2020;10(1):10486. doi: 10.1038/s41598-020-67001-w
  • Magger O, Waldman YY, Ruppin E, et al. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput Biol. 2012;8(9):e1002690. doi:10.1371/journal.pcbi.1002690
  • Somepalli G, Sahoo S, Singh A. Prioritizing and characterizing functionally relevant genes across human tissues. PLoS comput Biol. 2021;17(7):e1009194. doi: 10.1371/journal.pcbi.1009194
  • Tsuo K, Zhou W, Wang Y, et al. Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity. Cell Genom. 2022;2(12):100212. doi: 10.1016/j.xgen.2022.100212
  • Partanen JJ, Häppölä P, Zhou W, et al. Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics. Cell Genom. 2022;2(10):100181. doi: 10.1016/j.xgen.2022.100181
  • Paplomatas P, Krokidis MG, Vlamos P, et al. An ensemble feature selection approach for analysis and modeling of transcriptome data in Alzheimer’s disease. Appl Sci. 2023;13(4):2353. doi:10.3390/app13042353
  • Erten S, Bebek G, Koyuturk M. Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks. J Comput Biol. 2011;18(11):1561–1574. doi: 10.1089/cmb.2011.0154
  • Gumaei A, Sammouda R, Al-Rakhami M, et al. Feature selection with ensemble learning for prostate cancer diagnosis from microarray gene expression. Health Informatics J. 2021;27(1):1460458221989402. doi: 10.1177/1460458221989402
  • Huang S, Cai N, Pacheco PP, et al. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics. 2018;15(1):41–51.
  • Khadirnaikar S, Shukla S, Prasanna SRM. Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer. Sci Rep. 2023;13(1):4636. doi: 10.1038/s41598-023-31426-w
  • Trabelsi A, Chaabane M, Ben-Hur A. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics. 2019;35(14):i269–i277. doi: 10.1093/bioinformatics/btz339
  • Li Y, Huang C, Ding L, et al. Deep learning in bioinformatics: introduction, application, and perspective in big data era. Methods. 2019 Aug 15;166:4–21. doi: 10.1016/j.ymeth.2019.04.008. Epub 2019 Apr 22. PMID: 31022451.
  • Wang Y, Yao H, Zhao S. Auto-encoder based dimensionality reduction. Neurocomputing. 2016;184:232–242. doi: 10.1016/j.neucom.2015.08.104
  • Joly JH, Lowry WE, Graham NA, et al. Differential gene set enrichment analysis: a statistical approach to quantify the relative enrichment of two gene sets. Bioinformatics. 2021;36(21):5247–5254. doi: 10.1093/bioinformatics/btaa658
  • Karp PD, Midford PE, Billington R, et al. Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform. 2021;22(1):109–126. doi: 10.1093/bib/bbz104
  • Hernández-de-Diego R, Tarazona S, Martínez-Mira C, et al. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 2018;46(W1):W503–W509. doi: 10.1093/nar/gky466
  • Green ED, Gunter C, Biesecker LG. Strategic vision for improving human health at the forefront of genomics. Nature. 2020;586(7831):683–692. doi: 10.1038/s41586-020-2817-4
  • Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer. 2017;17(11):692–704. doi: 10.1038/nrc.2017.82
  • Davis MB. Genomics and cancer disparities: the justice and power of inclusion. Cancer Discov. 2021;11(4):805–809. doi: 10.1158/2159-8290.CD-21-0225
  • Zavala VA, Bracci PM, Carethers JM, et al. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer. 2021;124(2):315–332. doi: 10.1038/s41416-020-01038-6
  • Wojcik GL, Graff M, Nishimura KK, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570(7762):514–518. doi: 10.1038/s41586-019-1310-4
  • Silverman EK, Schmidt H, Anastasiadou E. Molecular networks in Network Medicine: Development and applications. WIREs Syst Biol Med. 2020;12(6):e1489. doi: 10.1002/wsbm.1489
  • Sonawane AR, Weiss ST, Glass K, et al. Network medicine in the age of biomedical big data. Front Genet. 2019;10:294. doi: 10.3389/fgene.2019.00294
  • Biswas S, Pal S, Majumder PP, et al. A framework for pathway knowledge driven prioritization in genome-wide association studies. Genet Epidemiol. 2020;44(8):841–853. doi: 10.1002/gepi.22345
  • Carbonetto P, Stephens M. Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central role for IL-2 signaling genes in type 1 diabetes, and cytokine signaling genes in Crohn’s disease. PLoS Genet. 2013;9(10):e1003770. doi: 10.1371/journal.pgen.1003770
  • Canzler S, Hackermüller J. multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data. BMC Bioinf. 2020;21(1):561. doi: 10.1186/s12859-020-03910-x
  • Yu KH, Lee TM, Wang CS, et al. Systematic protein prioritization for targeted proteomics studies through literature mining. J Proteome Res. 2018;17(4):1383–1396. doi: 10.1021/acs.jproteome.7b00772
  • Strianese O, Rizzo F, Ciccarelli M. Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes (Basel). 2020;11(7):747. doi: 10.3390/genes11070747
  • Lam MP, Venkatraman V, Xing Y, et al. Data-driven approach to determine popular proteins for targeted proteomics translation of six organ systems. J Proteome Res. 2016;15(11):4126–4134. doi: 10.1021/acs.jproteome.6b00095
  • Lu Q, Powles RL, Wang Q, et al. Integrative tissue-specific functional annotations in the human genome provide novel insights on many complex traits and improve signal prioritization in genome wide association studies. PLoS Genet. 2016;12(4):e1005947. doi: 10.1371/journal.pgen.1005947
  • Hao K, Ermel R, Sukhavasi K. Integrative prioritization of causal genes for coronary artery disease. Circ Genomic Precis Med. 2022;15(1):e003365. doi: 10.1161/CIRCGEN.121.003365
  • du Plessis L, Skunca N, Dessimoz C. The what, where, how and why of gene ontology–a primer for bioinformaticians. Brief Bioinform. 2011;12(6):723–735. doi: 10.1093/bib/bbr002
  • El-Galaly TC, Cheah CY, Villa D. Real world data as a key element in precision medicine for lymphoid malignancies: potentials and pitfalls. Br J Haematol. 2019;186(3):409–419. doi: 10.1111/bjh.15965
  • Pastorino R, De Vito C, Migliara G, et al. Benefits and challenges of big data in healthcare: an overview of the European initiatives. Eur J Public Health. 2019;29(Supplement_3):23–27. doi: 10.1093/eurpub/ckz168
  • Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-world evidence - what is it and what can it tell us? N Engl J Med. 2016;375(23):2293–2297. doi: 10.1056/NEJMsb1609216
  • Qian T, Zhu S, Hoshida Y. Use of big data in drug development for precision medicine: an update. Expert Rev Precis Med Drug Dev. 2019;4(3):189–200. doi: 10.1080/23808993.2019.1617632
  • Koller M, Hartmans E, de Groot DJA, et al. Data-driven prioritization and review of targets for molecular-based theranostic approaches in pancreatic cancer. J Nucl Med. 2017;58(12):1899–1903. doi: 10.2967/jnumed.117.198440
  • Jiang P, Sinha S, Aldape K, et al. Big data in basic and translational cancer research. Nat Rev Cancer. 2022;22(11):625–639. doi: 10.1038/s41568-022-00502-0
  • Park KH, Choi JY. Genomic landscape and clinical utility in Korean advanced pan-cancer patients from prospective clinical sequencing: K-MASTER program. Cancer Discov. 2022;12(4):938–948. doi: 10.1158/2159-8290.CD-21-1064
  • Zolotareva O, Kleine M. A survey of gene prioritization tools for Mendelian and complex human diseases. J Integr Bioinform. 2019;16(4). doi: 10.1515/jib-2018-0069
  • Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-omics integration in complex disease primary tissues. Trends Genet. 2023;39(1):46–58. doi: 10.1016/j.tig.2022.08.005
  • Yim WW, Yetisgen M, Harris WP, et al. Natural language processing in oncology: a review. JAMA Oncol. 2016;2(6):797–804. doi: 10.1001/jamaoncol.2016.0213
  • Allen KS, Hood DR, Cummins J, et al. Natural language processing-driven state machines to extract social factors from unstructured clinical documentation. JAMIA Open. 2023;6(2):ooad024. doi: 10.1093/jamiaopen/ooad024
  • Kreimeyer K, Foster M, Pandey A, et al. Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. J Biomed Informat. 2017;73:14–29. doi: 10.1016/j.jbi.2017.07.012
  • Bitterman DS, Miller TA, Mak RH, et al. Clinical natural language processing for radiation oncology: a review and practical primer. Int J Radiat Oncol Biol Phys. 2021;110(3):641–655. doi: 10.1016/j.ijrobp.2021.01.044
  • Savova GK, Danciu I, Alamudun F, et al. Use of natural language processing to extract clinical cancer phenotypes from electronic medical records. Cancer Res. 2019;79(21):5463–5470. doi: 10.1158/0008-5472.CAN-19-0579
  • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169
  • Fathi Kazerooni A, Bagley SJ, Akbari H. Applications of radiomics and radiogenomics in high-grade gliomas in the era of precision medicine. Cancers (Basel). 2021;13(23):5921. doi: 10.3390/cancers13235921
  • Gallivanone F, Bertoli G. Radiogenomics, breast cancer diagnosis and characterization. Curr Status Future Directions. 2022;5(5):78. doi: 10.3390/mps5050078
  • Ko CC, Yeh LR, Kuo YT, et al. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark Res. 2021;9(1):52. doi: 10.1186/s40364-021-00306-8
  • Bakas S, Shukla G, Akbari H, et al. Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities. J Med Imaging. 2020;7(3):031505. doi: 10.1117/1.JMI.7.3.031505
  • George E, Flagg E, Chang K. Radiomics-based machine learning for outcome prediction in a multicenter phase II study of programmed death-ligand 1 inhibition immunotherapy for glioblastoma. Am J Neuroradiol. 2022;43(5):675–681. doi: 10.3174/ajnr.A7488
  • Chaunzwa TL, Hosny A, Xu Y, et al. Deep learning classification of lung cancer histology using CT images. Sci Rep. 2021;11(1):5471. doi: 10.1038/s41598-021-84630-x
  • Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5(1):4006. doi: 10.1038/ncomms5006
  • Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. Radiology. 2021;298(3):505–516. doi: 10.1148/radiol.2021202553
  • Srivastava N, Mishra BN, Srivastava P. Protein network analysis to prioritize key genes and pathway for stress-mediated neurodegeneration. Open Bioinf J. 2018;11(1):240–251. doi: 10.2174/1875036201811010240
  • Kia DA, Zhang D, Guelfi S, et al. Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets. JAMA Neurol. 2021;78(4):464–472. doi: 10.1001/jamaneurol.2020.5257
  • Shay JW, Homma N, Zhou R, et al. Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015): Jeddah, Kingdom of Saudi Arabia. 30 November - 3 December 2015. BMC Genomics. 2016;17(Suppl S6):487. doi: 10.1186/s12864-016-2858-0
  • Himmelstein DS, Baranzini SE, Tang H. Heterogeneous network edge prediction: a data integration approach to prioritize disease-associated genes. PLoS Comput Biol. 2015;11(7):e1004259. doi: 10.1371/journal.pcbi.1004259
  • Ottensmann L. Comparing the performance of the gene prioritization methods DEPICT and MAGMA on genome-wide association studies of schizophrenia using the Benchmarker framework. University of Helsinki; 2020.
  • Louhimo R, Laakso M, Belitskin D, et al. Data integration to prioritize drugs using genomics and curated data. BioData Min. 2016;9(1):21. doi: 10.1186/s13040-016-0097-1
  • Kalari KR, Sinnwell JP, Thompson KJ, et al. PANOPLY: omics-guided drug prioritization method tailored to an individual patient. JCO Clin Cancer Inform. 2018;2(2):1–11. doi: 10.1200/CCI.18.00012
  • Wei PJ, Wu FX, Xia J, et al. Prioritizing cancer genes based on an improved random walk method. Front Genet. 2020;11:377. doi: 10.3389/fgene.2020.00377
  • Ding K, Wu S, Ying W, et al. Leveraging a multi-omics strategy for prioritizing personalized Candidate mutation-driver genes: a proof-of-concept study. Sci Rep. 2015;5(1):17564. doi: 10.1038/srep17564
  • Mateo L, Duran-Frigola M, Gris-Oliver A, et al. Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns. Genome Med. 2020;12(1):78. doi: 10.1186/s13073-020-00774-x
  • Luo Y, Riedlinger G, Szolovits P. Text mining in cancer gene and pathway prioritization. Cancer Inform. 2014;13s1(Suppl 1):69–79. doi: 10.4137/CIN.S13874
  • Trindade F, Perpétuo L, Ferreira R, et al. Automatic text-mining as an unbiased approach to uncover molecular associations between periodontitis and coronary artery disease. Biomarkers. 2021;26(5):385–394. doi: 10.1080/1354750X.2021.1904002
  • Panigrahi GK, Praharaj PP, Kittaka H, et al. Exosome proteomic analyses identify inflammatory phenotype and novel biomarkers in African American prostate cancer patients. Cancer Med. 2019;8(3):1110–1123. doi: 10.1002/cam4.1885
  • Ferrarini A, Di Poto C, He S, et al. Metabolomic analysis of liver tissues for characterization of hepatocellular carcinoma. J Proteome Res. 2019;18(8):3067–3076. doi: 10.1021/acs.jproteome.9b00185
  • Wei LQ, Cheong IH, Yang GH, et al. The application of high-throughput technologies for the study of microbiome and cancer. Front Genet. 2021;12:699793. doi: 10.3389/fgene.2021.699793
  • Farhana L, Antaki F, Murshed F, et al. Gut microbiome profiling and colorectal cancer in African Americans and Caucasian Americans. World J Gastrointest Pathophysiol. 2018;9(2):47–58. doi: 10.4291/wjgp.v9.i2.47
  • Mardinoglu A, Boren J, Smith U. Systems biology in hepatology: approaches and applications. Nat Rev Gastroenterol Hepatol. 2018;15(6):365–377. doi: 10.1038/s41575-018-0007-8
  • Altay O, Nielsen J, Uhlen M, et al. Systems biology perspective for studying the gut microbiota in human physiology and liver diseases. EBioMedicine. 2019;49:364–373. doi: 10.1016/j.ebiom.2019.09.057
  • Agren R, Bordel S, Mardinoglu A, et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012;8(5):e1002518. doi: 10.1371/journal.pcbi.1002518
  • Arif M, Zhang C, Li X. iNetmodels 2.0: an interactive visualization and database of multi-omics data. Nucleic Acids Res. 2021;49(W1):W271–w276. doi: 10.1093/nar/gkab254
  • Bidkhori G, Benfeitas R, Elmas E, et al. Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma. Front Physiol. 2018;9:916. doi: 10.3389/fphys.2018.00916
  • Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer. 2015;1(1):53–65. doi: 10.1016/j.trecan.2015.07.001
  • Mardinoglu A, Agren R, Kampf C, et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5(1):3083. doi: 10.1038/ncomms4083
  • Altay O, Zhang C, Turkez H, et al. Revealing the metabolic alterations during biofilm development of Burkholderia cenocepacia based on genome-scale metabolic modeling. Metabolites. 2021;11(4):221. doi: 10.3390/metabo11040221
  • Shin JH. Dementia Epidemiology Fact Sheet 2022. Ann Rehabil Med. 2022;46(2):53–59. doi:10.5535/arm.22027
  • Mardinoglu A, Uhlen M, Boren J. Broad views of non-alcoholic fatty liver disease. Cell Systems. 2018;6(1):7–9. doi: 10.1016/j.cels.2018.01.004
  • Bayraktar A, Lam S, Altay O, et al. Revealing the molecular mechanisms of Alzheimer’s disease Based on Network Analysis. Int J Mol Sci. 2021 Oct 26;22(21):11556. doi: 10.3390/ijms222111556. PMID: 34768988; PMCID: PMC8584243.
  • Stefanovski L, Meier JM, Pai RK, et al. Bridging scales in Alzheimer’s disease: biological framework for brain simulation with the virtual brain. Front Neuroinf. 2021;15. doi: 10.3389/fninf.2021.630172
  • Wang M, Roussos P, McKenzie A, et al. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease. Genome Med. 2016;8(1):104. doi: 10.1186/s13073-016-0355-3
  • Hu RT, Yu Q, Zhou SD, et al. Co-expression network analysis reveals novel genes underlying Alzheimer’s disease pathogenesis. Front Aging Neurosci. 2020;12:605961. doi: 10.3389/fnagi.2020.605961
  • Llado A, Froelich L, Khandker RK, et al. Assessing the progression of Alzheimer’s disease in real-world settings in three European countries. J Alzheimer’s Dis. 2021;80(2):749–759. doi: 10.3233/JAD-201172
  • Cheung CY, Ran AR, Wang S, et al. A deep learning model for detection of Alzheimer’s disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digital Health. 2022;4(11):e806–e815. doi: 10.1016/S2589-7500(22)00169-8
  • Pena D, Suescun J, Schiess M, et al. Toward a multimodal computer-aided diagnostic tool for Alzheimer’s disease conversion. Front Neurosci. 2021;15:744190. doi: 10.3389/fnins.2021.744190
  • Jones D, Lowe V, Graff-Radford J, et al. A computational model of neurodegeneration in Alzheimer’s disease. Nat Commun. 2022;13(1):1643. doi: 10.1038/s41467-022-29047-4
  • Qiu S, Miller MI, Joshi PS, et al. Multimodal deep learning for Alzheimer’s disease dementia assessment. Nat Commun. 2022;13(1):3404. doi: 10.1038/s41467-022-31037-5
  • Glaab E. Computational systems biology approaches for Parkinson’s disease. Cell Tissue Res. 2018;373(1):91–109. doi: 10.1007/s00441-017-2734-5
  • Wu Z, Hu Z, Gao Y, et al. A computational approach based on weighted gene co-expression network analysis for biomarkers analysis of Parkinson’s disease and construction of diagnostic model. Front Comput Neurosci. 2023;16:1095676. doi: 10.3389/fncom.2022.1095676
  • Makarious MB, Leonard HL, Vitale D, et al. Multi-modality machine learning predicting Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):35. doi: 10.1038/s41531-022-00288-w
  • Li J, Zhang Z, Guo K, et al. Identification of a key glioblastoma candidate gene, FUBP3, based on weighted gene co-expression network analysis. BMC neurol. 2022;22(1):139. doi: 10.1186/s12883-022-02661-x
  • Xu P, Yang J, Liu J, et al. Identification of glioblastoma gene prognosis modules based on weighted gene co-expression network analysis. BMC Med Genomics. 2018;11(1):96. doi: 10.1186/s12920-018-0407-1
  • Cerami E, Demir E, Schultz N, et al. Automated network analysis identifies core pathways in glioblastoma. PLoS One. 2010;5(2):e8918. doi: 10.1371/journal.pone.0008918
  • Mao XG, Xue XY, Wang L, et al. Deep learning identified glioblastoma subtypes based on internal genomic expression ranks. BMC Cancer. 2022;22(1):86. doi: 10.1186/s12885-022-09191-2
  • Jeong J, Wang L, Ji B, et al. Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images: Introduction. Quant Imaging Med Surg. 2019;9(7):1201–1213. doi: 10.21037/qims.2019.07.01
  • Celiku O, Gilbert MR, Lavi O. Computational modeling demonstrates that glioblastoma cells can survive spatial environmental challenges through exploratory adaptation. Nat Commun. 2019;10(1):5704. doi: 10.1038/s41467-019-13726-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.