5,160
Views
275
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

The human auditory system: A timeline of development

&
Pages 460-478 | Received 12 Mar 2007, Published online: 07 Jul 2009

References

  • Abdala C., Ma E., Sininger Y.S. Maturation of medial efferent system function in humans. JASA 1999; 105: 2392–402
  • Aitkin L.M., Kudo M., Irvine D.R.F. Connections of the primary auditory cortex in the common marmoset, Callithrix jaccus jaccus. J Comp Neurol 1988; 269: 235–48
  • Aslin R.N., Pisoni D.B., Hennessy B.L., Perey A.V. Discrimination of voice onset time by human infants: New findings and implications for the effect of early experience. Child Devel 1981; 52: 1135–45
  • Barres B.A., Raff M.C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 1993; 361: 258–60
  • Bernhardt R., Matus A. Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: A difference between dendritic and axonal cytoskeletons. J Comp Neurol 1984; 226: 203–21
  • Bertonici J., Bijelac-Babic R., Jusczyk P.W., Kennedy L.J., Mehler J. An investigation of young infants’ perceptual representations of speech sounds. J Exp Psychol Gen 1988; 117: 21–33
  • Birnholz J.C., Benecerraf B.R. The development of human fetal hearing. Science 1983; 222: 516–8
  • Bredberg G. Cellular pattern and nerve supply in the human organ of Corti. Acta Otolaryngol Suppl 1968; 236: 1–135
  • Cáceres A., Binder L.I., Payne M.R., Bender P., Rebhun L., et al. Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue, as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J Neurosci 1984; 4: 394–410
  • Cant N.B. Structural development of the mammalian central auditory pathways. Development of the Auditory System, E.W. Rubel, A.N. Popper, R.R. Fay. Springer, New York 1998; 315–414
  • Cauller L.J., Connors B.W. Synaptic physiology of horizontal afferents to layer I in slices of rat S1 neocortex. J Neurosci 1994; 14: 751–62
  • Cheour-Luhtanen M., Alho K., Kujala T., Sainiio K., Reinikainen K., et al. Mismatch negativity indicates vowel discrimination in newborns. Hear Res 1995; 82: 53–8
  • Cheour-Luhtanen M., Alho K., Sainio K., Rinne R., Reinikainen K., et al. The ontogenetically earliest discriminative response of the human brain. Psychophysiol 1996; 33: 478–81
  • Cheour-Luhtanen M., Alho K., Sainio K., Reinikainen K., Renlund M., et al. The mismatch negativity to speech sounds at the age of three months. Dev Neuropsychol 1997; 13: 167–74
  • Cheour M., Alho K., Ceponiene R., Reinikainen K., Sainio K., et al. Maturation of the mismatch negativity in infants. Int J Pychophysiol 1998a; 29: 217–26
  • Cheour M., Ceponiene R., Lehtokoski A., Luuk A., Alho K., et al. Development of language-specific phoneme representations in the infant brain. Nature Neurosci 1998b; 1: 351–3
  • Cheour M., Lepänen P.H.T., Kraus N. Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clin Neurophysiol 2000; 11: 4–16
  • Clevel D.W., Monteio M.J., Wong P.C., Gill S.R., Gearhart J.D., et al. Involvement of neurofilaments in the radial growth of axons. J Cell Sci Suppl 1991; 15: 85–95
  • Conel J.L.R. 1939. The post-natal development of the human cerebral cortex: Vol. 1. The cortex of the newborn. Cambridge, MA: Harvard University Press.
  • Conel J.L.R. 1941. The post-natal development of the human cerebral cortex: Vol. 2. The cortex of the one-month infant. Cambridge, MA: Harvard University Press.
  • Conel J.L.R. 1947. The post-natal development of the human cerebral cortex: Vol. 3. The cortex of the three-month infant. Cambridge, MA: Harvard University Press.
  • Conel J.L.R. 1951. The post-natal development of the human cerebral cortex: Vol. 4. The cortex of the six-month infant. Cambridge, MA: Harvard University Press.
  • Conel J.L.R. 1955. The post-natal development of the human cerebral cortex: Vol. 5. The cortex of the fifteen-month infant. Cambridge, MA: Harvard University Press.
  • Conel J.L.R. 1959. The post-natal development of the human cerebral cortex: Vol. 6. The cortex of the twenty-four month infant. Cambridge, MA: Harvard University Press.
  • Conel J.L.R. 1963. The post-natal development of the human cerebral cortex: Vol. 7. The cortex of the four-year child. Cambridge, MA: Harvard University Press.
  • Conel J.L.R. 1967. The post-natal development of the human cerebral cortex: Vol. 8. The cortex of the six-year child. Cambridge, MA: Harvard University Press.
  • Conlee J.W., Parks T.N. Late appearance and deprivation-sensitive growth of permanent dendrites in the avian cochlear nucleus (nuc. magnocellularis). J Comp Neurol 1983; 217: 216–26
  • Cooper E.R.A. The development of the human auditory pathway from the cochlear ganglion to the medial geniculate body. Acta Anat 1948; 5: 99–122
  • Cooper E.R.A. The development of the thalamus. Acta Anat 1950; 9: 201–26
  • Dehaene-Lambertz G., Dehaene S., Hertz-Pannier L. Functional neuroimaging of speech perception in infants Science 2002; 298: 201–5
  • Deitch J.S., Rubel E.W. Afferent influences on brainstem auditory nuclei of the chicken: Time course and specificity of dendritic atrophy following deafferentation. J Comp Neurol 1984; 229: 66–79
  • Dekaban A. Human thalamus: An anatomical, developmental, and pathological study. II. Development of the human thalamic nuclei. J Comp Neurol 1954; 100: 63–97
  • Demerens C., Stankoff B., Logak M., Anglade P., Allinquant B., et al. Induction of myelination in the central nervous system by electrical activity. Proc Nat Acad Sci USA 1996; 93: 9887–92
  • Despland P-A., Galambos R. The auditory brainstem response (ABR) is a useful diagnostic tool in the intensive care nursery. Pediatric Res 1980; 14: 1154–8
  • Eggermont J.J., Salamy A. Development of ABR parameters in a preterm and a term born population. Ear Hear 1988; 9: 283–9
  • Eggermont J.J., Brown D.K., Ponton C.W., Kimberley B.P. Comparison of distortion product otoacoustic emission (DPOAE) and auditory brain stem response (ABR) traveling wave delay measurements suggests frequency-specific synapse maturation. Ear Hear 1996; 17: 386–94
  • Eilers R.E., Minifie F.D. Fricative discrimination in early infancy. J Speech Hear Res 1975; 18: 158–67
  • Eilers R.E., Wilson W.R., Moore J.M. Developmental changes in speech discrimination in infants. J Speech Hear Res 1977; 20: 766–80
  • Eilers R.E., Gavin W., Wilson W.R. Linguistic experience and phonemic perception in infancy: A crosslinguistic study. Child Devel 1979; 50: 14–8
  • Eimas P.D. Auditory and phonetic coding of the cues for speech: Discrimination of the [r-l] distinction by young infants. Percept Psychophys 1975; 18: 341–7
  • Eisenberg L.S., Shannon R.V., Martinez A.S., Wygonski J., Boothroyd A. Speech recognition with reduced spectral cues as a function of age. JASA 2000; 107: 2704–10
  • Eisenberg L.S., Martinez A.S., Boothroyd A. Perception of phonetic contrasts in infants: Development of the VRASPAC. Internat Cong Series 2004; 1273: 364–7
  • Elliott L.L. Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. JASA 1979; 66: 12–21
  • Forbes B.F., Moskowitz N. Cortico-cortical connections of the superior temporal gyrus in the squirrel monkey. Brain Res 1977; 136: 547–52
  • Fria T.J., Doyle W.J. Maturation of the auditory brainstem response (ABR): Additional perspectives. Ear Hear 1984; 5: 361–365
  • Gandolfi A., Horoupian D.S., De Teresa R.M. Quantitative and cytometric analysis of the ventral cochlear nucleus in man. J Neurological Sci 1981; 50: 443–55
  • Hackett T.A., Stepniewska I., Kaas J.H. Callosal connectins of the parabelt auditory cortex in macaque monkeys. Eur J Neurosci 1999; 11: 856–66
  • Hafner H., Pratt H., Joachims Z., Feinsod M., Blazer S. Development of auditory brainstem evoked potentials in newborn infants: A three-channel Lissajous’ trajectory study. Hear Res 1991; 51: 33–47
  • Hafner H., Pratt H., Blazer S., Sujov P. Critical ages in brainstem development revealed by neonatal 3-channel Lissajous’ trajectory of auditory brainstem evoked potentials. Hear Res 1993; 66: 157–68
  • Hartley D.E.H., Wright B.A., Hogan S.C., Moore D.R. Development of auditory masking: Age related improvements in auditory backward and simultaneous masking in 6 to 10 year old children. J Speech Lang Hear Res 2000; 43: 1402–15
  • Hashikawa T., Molinari M., Rausell E., Jones E.G. Patchy and laminar termination of medial geniculate axons in monkey auditory cortex. J Comp Neurol 1995; 362: 195–208
  • Hashimoto I., Ishiyama Y., Tozuka G. Brainstem auditory evoked potentials recorded directly from human brainstem and thalamus. Brain 1981; 104: 841–859
  • Hofman P.N., Griffin J.W., Price D.L. Control of axonal caliber by neurofilament transport. J Cell Biol 1984; 99: 705–14
  • Houston D.M., Ying E.A., Pisoni D.B., Kirk K.I. Development of pre-word learning skills in infants with cochlear implants. Volta Review 2003; 103: 303–326
  • Igarashi Y., Ishii T. Embryonic development of the human organ of Corti: Electron microscopic study. Int J Ped Otorhinolaryngol 1980; 2: 51–62
  • Jackson H., Parks T.N. Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching. J Neurosci 1982; 2: 1736–43
  • Javeri S., Morest D.K. Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: A Golgi study. Neuroscience 1982; 7: 837–53
  • Jiang Z.D., Zheng M.S., Sun D.K., Xiang L.Y. Brainstem auditory evoked responses from birth to adulthood: Normative data of latency and interval. Hear Res 1991; 54: 67–74
  • Jusczyk P.W., Thompson E. Perception of a phonetic contrast in multi-syllabic utterances by 2-month-old infants. Percept Psychophys 1978; 23: 105–9
  • Jusczyk P.W., Copan H., Thompson E. Perception by 2-month-old infants of glide contrasts in multi-syllable utterances. Percept Psychophys 1978; 24: 515–20
  • Jusczyk P.W., Cutler A., Redanz N.J. Infants’ preference for the predominant stress patterns of English words. Child Devel 1993a; 64: 675–87
  • Jusczyk P.W., Friederici A.D., Wessels J.M., Svenkerud V.Y., Jusczyk A.M. Infants’ sensitivity to the sound patterns of native language words. J Mem Lang 1993b; 32: 402–20
  • Jusczyk P.W., Luce P.A., Charles-Luce J. Infants’ sensitivity to phonotactic patterns in the native language. J Mem Lang 1994; 33: 630–45
  • Kinney H.C., Brody B.A., Kloman A.S., Gilles F.H. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropath Exp Neurol 1988; 47: 217–34
  • Kirk K.I., Miyamoto R.T., Ying E.A., Perdew A.E., Zuganelis H. Cochlear implantation in young children: Effects of age at implantation and communication mode. Volta Rev 2002; 102: 127–44
  • Kral A., Hartmann R., Tillein J., Heid S., Klinke R. Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cerebral Cortex 2000; 10: 714–25
  • Kraus N., Smith D.I., Reed N.L., Stein L.K., Cartee C. Auditory middle latency responses in children: Effects of age and diagnostic category. EEE Clin Neurophysiol 1985; 62: 343–51
  • Kraus N., McGee T., Micco A., Sharma A., Carrell T., et al. Mismatch negativity in school-age children to speech stimuli that are just perceptibly different. EEG Clin Neurophysiol 1993a; 88: 123–30
  • Kraus N., McGee T., Carrell T., Sharma A., Micco A., et al. Speech-evoked cortical potentials in children. J Am Acad Audiol 1993b; 4: 238–48
  • Kraus N., McGee T., Littman T., Nicol T., King C. Non-primary auditory thalamic representation of acoustic change. J Neurophysiol 1994; 72: 1270–7
  • Krmpotic-Nemancic J., Kostovic I., Kelovic Z., Nemancic D., Mrzliak L. Development of the human auditory cortex: Growth of afferent fibres. Acta Anat 1983; 116: 69–73
  • Krmpotic-Nemanic J., Kostovic I., Nemanic D. Prenatal and perinatal development of radial cell columns in the human auditory cortex. Acta Otolaryngol 1984; 97: 489–495
  • Krmpotic-Nemanic J., Kostovic I., Vidic Z., Nemanic D., Kostovic-Knezevic L. Development of Cajal-Retzius cells in the human auditory cortex. Acta Otolaryngol 1987; 103: 477–80
  • Krumholz A., Felix J.K., Goldstein P.H., McKenzie E. Maturation of the brainstem auditory evoked potentials in premature infants. EEE Clin Neurophysiol 1985; 62: 124–34
  • Kuhl P.K., Williams K.A., Lacerda F., Stevens K.N., Lindblom B. Linguistic experience alters phonetic perception in infants by 6 months of age. Science 1992; 255: 606–8
  • Kuhlman K.A., Burns K.A., Depp R., Sabbagha R.E. Ultrasonic imaging of normal fetal response to external vibratory acoustic stimulation. Am J Obstet Gynecol 1988; 158: 47–51
  • Kushnerenko E., Ceponiene R., Balan P., Fellman V., Huotilainen M., et al. Maturation of the auditory event-related potentials during the first year of life. Cog Neurosci Neuropsychol 2002; 13: 47–51
  • Langworthy O.R. Development of behavior patterns and myelination of the nervous system in the human fetus and infant. Contrib Embryol 1933; 24: 1–143
  • Lavigne-Rebillard M., Pujol R. Development of the auditory hair cell surface in human fetuses. A scanning electron microscopy study. Anat Embryol 1986; 174: 369–77
  • Lavigne-Rebillard M., Pujol R. Surface aspects of the developing human organ of Corti. Acta Otolaryngol Suppl 1987; 436: 43–50
  • Lavigne-Rebillard M., Pujol R. Hair cell innervation in the fetal human cochlea. Acta Otolaryngol 1988; 105: 398–402
  • Liu Y., Dyck R., Cynader M. The correlation between cortical neuron maturation and neurofilament phosphorylation: A developmental study of phosphorylated 200 kDa neurofilament protein in cat visual cortex. Devel Brain Res 1994; 84: 151–61
  • Marin-Padilla M., Marin-Padilla T.M. Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex: A Golgi study. Anat Embryol 1982; 164: 161–206
  • Marshall L., Brandt J.F., Marston L.E., Ruder K. Changes in the number and types of errors on repetition of acoustically distorted sentences as a function of age in normal children. JAMA 1979; 4: 218–25
  • McGee T., Kraus N. Auditory development reflected by middle latency response. Ear Hear 1996; 17: 419–29
  • McMullen M.T., Glaser E.M. Auditory cortical responses to neonatal deafening: Pyramidal neuron spine loss without changes in growth or orientation. Exp Brain Res 1988; 72: 195–200
  • McMullen M.T., Goldberger B., Suter C.M., Glaser E.M. Neonatal deafening alters nonpryamidal dendrite orientation in auditory cortex: A computer microscope study in the rabbit. J Comp Neurol 1988; 267: 92–106
  • Meyer G., González-Hernández T. Developmental changes in layer I of the human neocortex during prenatal life: A DiI-tracing, AChE and NADPH-d histochemistry study. J Comp Neurol 1993; 338: 317–36
  • Meyer G., Goffinet A.M. Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 1998; 397: 29–41
  • Meyer G., Schaaps J.P., Moreau I., Goffinet A.M. Embryonic and early fetal development of the human neocortex. J Neurosci 2000; 20: 1858–68
  • Mitani A., Shimokouchi M., Itoh K., Nomura S., Kito M., et al. Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. J Comp Neurol 1985; 235: 430–47
  • Moore J.K. Organization of the human superior olivary complex. Microsc Res Tech 2000; 51: 403–12
  • Moore J.K., Perazzo L.M., Braun A. Time course of axonal myelination in the human brainstem auditory pathway. Hear Res 1995; 87: 21–31
  • Moore J.K., Guan Y.-L., Shi S.-R. Axogenesis in the human fetal auditory system, demonstrated by neurofilament immunohistochemistry. Anat Embryol 1997; 195: 15–30
  • Moore J.K., Guan Y.-L., Shi S.-R. MAP2 expression in developing dendrites of human brainstem auditory neurons. J Chem Neuroanat 1998; 16: 1–15
  • Moore J.K., Simmons D.D., Guan Y.-L. The human olivocochlear system: Organization and development. Audiol Neuro Otol 1999; 4: 311–25
  • Moore J.K., Linthicum F.L., Jr. Myelination of the human auditory nerve: Different time courses for Schwann cell and glial myelin. Ann Otol Rhinol Laryngol 2001; 110: 655–61
  • Moore J.K., Guan Y.-L. Cytoarchitectural and axonal maturation in human auditory cortex. JARO 2001; 2: 297–311
  • Nakai Y. An electron microscopic study of the human fetus cochlea. Practica Oto-Rhino-Laryngol 1970; 32: 257–67
  • Nara T., Goto N., Nakae Y., Okada A. Morphometric development of the human auditory system: Ventral cochlear nucleus. Early Human Development 1993; 32: 93–102
  • Nara T., Goto N., Hamano S., Okada A. Development of the human medial superior olivary nucleus: A morphometric study. Early Human Devel 1994; 40: 13–21
  • Nara T., Goto N., Hamano S., Okada A. Morphometric development of the human fetal auditory system: Inferior collicular nucleus. Brain Devel 1996; 18: 35–9
  • Neuman A.C., Hochberg I. Children's perception of speech in reverberation. JASA 1983; 73: 2145–9
  • Olrich E.S., Barnet A.B., Weiss I.P., Shanks B.L. Auditory evoked potential development in early childhood: a longitudinal study. EEG Clin Neurophysiol 1978; 44: 411–23
  • O'Rahilly R. The early development of the otic vesicle in staged human embryos. J Embryol Exp Morph 1963; 11: 741–55
  • O'Rahilly R., Gardner E. The timing and sequence of events in the development of the human nervous system during the embryonic period proper. Z Anat Entwickl-Gesch 1971; 134: 1–12
  • Palva A., Jokinen K. Undistorted and filtered speech audiometry in children with normal hearing. Acta Otolaryngol 1975; 80: 383–8
  • Pandya D.N., Rosene D.L. Laminar termination patterns of thalamic, callosal and association afferents in the primary auditory area of the rhesus monkey. Exp Neurol 1993; 119: 220–34
  • Parks T.N. Changes in length and organization of the nucleus laminaris dendrites after unilateral otocyst ablation in chick embryos. J Comp Neurol 1981; 202: 47–57
  • Pasman J.W., Rotteveel J.J., de Graaf R., Maassen B., Notermans S.L.H. Detectability of auditory evoked response components in preterm infants. Early Hum Devel 1991; 26: 129–41
  • Polka L., Werker J.F. Developmental changes in perception of non-native vowel contrasts. J Exp Psychol Hum Percept Perform 1994; 20: 421–35
  • Ponton C.W., Eggermont J.J., Coupland S.G., Winkelaar R. The relation between head size and auditory brain stem response (ABR) interpeak latency maturation. JASA 1993; 94: 2149–58
  • Ponton C.W., Don M., Eggermont J.J., Waring M.D., Masuda A. Maturation of human cortical auditory function: Differences between normal-hearing children and children with cochlear implants. Ear Hear 1996; 17: 430–7
  • Ponton C.W., Eggermont J.J., Don M., Waring M.D., Kwong B., et al. Maturation of the mismatch negativity: Effects of profound deafness and cochlear implant use. Audiol Neurootol 2000a; 5: 167–85
  • Ponton C.W., Eggermont J.J., Kwong B., Don M. Maturation of human central auditory system activity: Evidence from multichannel evoked potentials. Clin Neurophysiol 2000b; 111: 220–36
  • Ponton C.W., Eggermont J.J. Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurootol 2001; 6: 363–80
  • Pujol R., Lavigne-Rebillard M. Early stages of innervation and sensory cell differentiation in the human organ of Corti. Acta Otolaryngol Suppl 1985; 423: 43–50
  • Pujol J., Soriano-Mas C., Ortiz H., Sebastian-Galles N., Losilla J.M., et al. Myelination of language-related areas in the developing brain. Neurology 2006; 66: 304–5
  • Ramon y Cajal S. Estudios sobra la corteza cerebral humana III: Corteza acústica. Rev Trim Micrograf 1900; 5: 129–83
  • Rotteveel J.J., Colon E.J., Notermans S.L.H., Stoalinga G.B.A., Visco Y.M. The central auditory conduction at term date and three months after birth. I. Composite group averages of brainstem (ABR), middle latency (MLR) and auditory cortical responses (ACR). Scand Audiol 1985; 14: 179–86
  • Rotteveel J.J., de Graaf R., Colon E.J., Stegeman D.F., Visco Y.M. The maturation of the central auditory conduction in preterm infants until three months post term. II. The auditory brainstem responses (ABRs). Hear Res 1987a; 26: 21–35
  • Rotteveel J.J., Stegeman D.F., de Graaf R., Colon E.J., Visco Y.M. The maturation of the central auditory conduction in preterm infants until three months post term. III. The middle latency auditory evoked response (MLR). Hear Res 1987b; 27: 245–56
  • Rotteveel J.J., de Graaf R., Stegeman D.F., Colon E.J., Visco Y.M. The maturation of the central auditory conduction in preterm infants until three months post term. V. The auditory cortical response (ACR). Hear Res 1987c; 27: 95–110
  • Saffeiddine S., Prior A.M.S., Eybalin M. Choline acetyltransferase, glutamate decarboxylase, calcintonin gene-related peptide and opioid peptides coexist in lateral efferent neurons of rats and guinea pigs. Eur J Neurosci 1997; 9: 356–67
  • Sakabe N., Arayama T., Suzuki T. Human fetal evoked responses to acoustic stimulation. Acta Otolaryngol Suppl 1969; 252: 29–36
  • Salamy A., McKean C.M. Post-natal development of human brainstem potentials during the first year of life. EEG Clin Neurophysiol 1976; 40: 418–26
  • Sanes D.H., Siveris V. Development and specificity of inhibitory terminal arborization in the central nervous system. J Neurobiol 1991; 22: 837–54
  • Scherg M., Von Cramon D. Evoked dipole source potentials of the human auditory cortex. EEG Clin Neurophysiol 1986; 65: 344–60
  • Schlaepfer W.W., Bruce J. Simultaneous up-regulation of neurofilament proteins during the post-natal development of the rat nervous system. J Neurosci Res 1991; 25: 39–49
  • Schneider B.A., Trehub S.E., Morrongiello B.A., Thorpe L.A. Developmental changes in masked thresholds. JASA 1989; 86: 1733–42
  • Schweitzer L., Cant N.B. Development of oriented dendritic fields in the dorsal cochlear nucleus of the hamster. Neuroscience 1985; 16: 969–78
  • Sharma A., Kraus N., McGee T.J., Nicol T.G. Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. EEG Clin Neurophysiol 1997; 104: 540–5
  • Sharma A., Dorman M.F., Spahr A.J. A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear Hear 2002; 23: 532–9
  • Sharma A., Dorman M.F., Kral A. The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 2005; 203: 134–43
  • Shi S.-R., Cote C., Kalra K.L., Taylor C.R., Tandon A.K. A technique for retrieving antigens in formalin-fixed, routinely acid-decalcified celloidin-embedded human temporal bone sections for immunohistochemistry. J Histochem Cytochem 1992; 40: 787–92
  • Siegenthaler B.M. Maturation of auditory abilities in children. Int Audiol 1969; 8: 59–71
  • Smith Z.D., Gray L., Rubel E.W. Afferent influences on brainstem auditory nuclei of the chicken: N. laminaris dendritic length following monaural conductive hearing loss. J Comp Neurol 1983; 220: 199–305
  • Spreafico R., Arcelli P., Frassoni C., Canetti P., Giaccone G., et al. Development of layer I of the human cerebral cortex after midgestation: Architectonic findings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells. J Comp Neurol 1999; 410: 126–42
  • Starr A., Amlie R.N., Martin W.H., Sanders S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics 1977; 60: 831–9
  • Streeter G.L. On the development of the membranous labyrinth and the acoustic and facial nerves in the human embryo. Am J Anat 1906; 6: 139–65
  • Tanaka K., Sakai N., Terayama Y. Organ of Corti in the human fetus: Scanning and transmission electron microscope studies. Ann Otol 1979; 88: 749–58
  • Trehub S.E. Infants’ sensitivity to vowel and tonal contrasts. Devel Psych 1973; 9: 91–6
  • Trehub S.E. The discrimination of foreign speech contrasts by infants and adults. Child Devel 1976; 47: 466–72
  • Trehub S.E., Rabinovitch M.S. Auditory-linguistic sensitivity in early infancy. Devel Psych 1972; 6: 74–7
  • Trune D.R. Influence of cochlear removal on the development of mouse cochlear nucleus. II: Dendritic morphometry of its neurons. J Comp Neurol 1982; 209: 425–34
  • Vetter D.E., Adams J.C., Mugnaini E. Chemically distinct rat olivocochlear neurons. Synapse 1991; 7: 21–43
  • Vouloumanos A., Werker J.F. Tuned to the signal: The privileged status of speech for young infants. Dev Sci 2004; 7: 270–6
  • Weitzman E.D., Graziani L.J. Maturation and topography of the auditory evoked response of the prematurely born infant. Devel Psychobiol 1968; 1: 79–89
  • Werker J.F., Gilbert J.H., Humphrey K., Tees R.C. Developmental aspects of cross-language speech perception. Child Dev 1981; 52: 349–55
  • Werker J.F., Tees R.S. Cross language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behav Devel 1984; 7: 49–63
  • Yakovlev P.L., Lecours A.-R. The myelogenetic cycles of regional maturation of the brain. Regional Development of the Brain in Early Life, A. Minkowski. Blackwell Scientific Publications, Oxford 1967; 3–70
  • Young S.R., Rubel E.W. Embryogenesis of arborization patterns and topography of individual axons in N. laminaris of the chicken brain stem. J Comp Neurol 1986; 254: 425–59
  • Zecevic N., Milosevic A., Rakic P., Marin-Padilla M. Early development and composition of the human primordial plexiform layer: An immunohistochemical study. J Comp Neurol 1999; 412: 241–54
  • Zimmerman M.C., Morgan D.E., Dubno J.R. Auditory brain stem evoked response characteristics in developing infants. Ann Otol Rhinol Laryngol 1987; 96: 291–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.