368
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil

, , , , , & show all

References

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN. 2002. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5(3):246–253.
  • Ahn YB, Beaudette LA, Lee H, Trevors JT. 2001. Survival of a GFP-labeled polychlorinated biphenyl degrading psychrotolerant Pseudomonas spp. in 4 and 22 degrees C soil microcosms. Microb Ecol 42(4):614–623.
  • Aken BV, Correa PA, Schnoor JL.2010. Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8): 2767–2776.
  • Armitage JM, Hanson M, Axelman J, Cousins IT. 2006. Levels and vertical distribution of PCBs in agricultural and natural soils from Sweden. Sci Total Environ 371(1–3):344–352.
  • Backe C, Cousins IT, Larsson P. 2004. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden. Environ Pollut 128(1–2):59–72.
  • Becker A, Bergès H, Krol E, Bruand C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Küster H, Liebe C, Pühler A, Weidner S, Batut J. 2004. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact 17(3):292–303.
  • Borja J, Taleon DM, Auresenia J, Gallardo S. 2005. Polychlorinated biphenyls and their biodegradation. Process Biochem 40(6):1999–2013.
  • Bouquard C, Ouazzani J, Prome JC, MichelBriand Y, Plesiat P. 1997. Dechlorination of atrazine by a Rhizobium sp. isolate. Appl Environ Microbe 63(3):862–866.
  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM. 2008. Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74(3):738–744.
  • Chekol T, Vough LR, Chaney RL. 2004. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30(6):799–804.
  • Chen HK, Shu MK. 1944. Note on the root-nodule bacteria of Astragalus sinicus L. Soil Sci 58(1):291–293.
  • Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL. 1991. Rhizobium Huakuii Sp-nov isolated from the root-nodules of Astragalus Sinicus. Int J Syst Bacteriol 41(2):275–280.
  • Cunningham SD, Berti WR. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol-Plant 29P(4):207–212.
  • Cunningham SD, Berti WR, Huang JWW. 1995. Phytoremediation of contaminated soils. Trends Biotechnol 13(9):393–397.
  • Damaj M, Ahmad D. 1996. Biodegradation of polychlorinated biphenyls by rhizobia: A novel finding. Biochem Bioph Res Co 218(3):908–915.
  • Dong X, Cai M, et al. 2001. Manual of common systematic determinative bacteriology (In Chinese) Science Press, Beijing.
  • Gao J, Luo YM, Li QB, Zhang HB, Wu LH, Song J, Qian W, Christie P, Chen SM. 2006. Distribution patterns of polychlorinated biphenyls in soils collected from Zhejiang Province, East China. Environmental Geochemistry Health 28(1–2):79–87.
  • Gil O, Vale C. 2001. Evidence for polychlorinated biphenyls dechlorination in the sediments of Sado Estuary, Portugal. Marine Pollution Bulletin 42(6):452–460.
  • Harner T, Mackay D, Jones KC. 1995. Model of the long-term exchange of PCBs between soil and the atmosphere in the southern UK. Environ Sci Technol 29(5):1200–1209.
  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M. 2008. Promotion of metal accumulation in nodule of Astragalus sinicus by the expression of the iron-regulated transporter gene in Mesorhizobium huakuii subsp. rengei B3. J Biosci Bioeng 105(6):642–648.
  • Johnson DL, Anderson DR, McGrath SP. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem 37(12):2334–2336.
  • Johnson DL, Maguire KL, Anderson DR, McGrath SP. 2004. Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol Biochem 36(1):33–38.
  • Joner EJ, Johansen A, Loibner AP, Dela Cruz MA, Szolar OHJ, Portal JM, Leyval C. 2001. Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ Sci Technol 35(13):2773–2777.
  • Kuiper I, Lagendijk E L, Bloemberg G V, Lugtenberg, B. J. 2004. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe In 17(1): 6–15.
  • Labidi M, Ahmad D, Halasz A, Hawari J.2001. Biotransformation and partial mineralization of the explosive 2,4,6-trinitrotoluene (TNT) by rhizobia. Can J Microbiol 47(6):559–566.
  • Li HS, Liu LY, Lin CX, Wang SR. 2011. Plant uptake and in-soil degradation of PCB-5 under varying cropping conditions. Chemosphere 84(7):943–949.
  • Liu JY, Hu DF, Jiang GB, Schnoor JL. 2009. In vivo biotransformation of 3,3′,4,4′-tetrachlorobiphenyl by whole plants−poplars and switchgrass. Environ Sci Technol 43(19):7503–7509.
  • Macek T, Macková M, Kásˇ J. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18(1):23–34.
  • Marx J. 2004. The roots of plant-microbe collaborations. Science 304(5668):234–236
  • Meggo RE, Schnoor JL, Hu D. 2013. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. Environ Pollut 178(0):312–321.
  • Mehmannavaz R, Prasher SO, Ahmad D. 2002. Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 37(9):955–963.
  • Murooka Y, Xu Y, Sanada K, Araki M, Morinaga T, Yokota A. 1993. Formation of root nodules by Rhizobium huakuii biovar. renge bv. nov. on Astragalus sinicus cv. Japan. J Biosci Bioeng 76(1):38–44.
  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP. 1997. Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31(4):1062–1067.
  • Nuswantara S, Fujie M, Yamada T, Malek W, Inaba M, Kaneko Y, Murooka Y. 1999. Phylogenetic position of Mesorhizobium huakuii subsp. rengei, a Symbiont of Astragalus sinicus cv. Japan. J Biosci Bioeng 87(1):49–55.
  • Passatore L, Rossetti S, Juwarkar AA, Massacci A. 2014. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. J Hazard Mater 278(15): 189–202.
  • Pieper DH. 2005. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biot 67(2):170–191.
  • Safe S. 1990. Polychlorinated biphenyls (Pcbs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 21(1):51–88.
  • Sambrook J, Fritsch E, Maniatis T, et al. [AU: PLS LIST ALL AUTHORS HERE]1989. Molecular cloning: A laboratory manual. Second edition. Cold Spring Harbor Laboratory Press, New York.
  • Sawhney BL, Hankin L. 1984. Plant contamination by PCBs from amended soils. J Food Protect 47(3):232–236.
  • Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Erickson LE, Schnoor JL. 1993. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Env Sci Tec 23(1):41–77.
  • Song BK, Palleroni NJ, Haggblom MM. 2000. Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microb 66(8):3446–3453.
  • Stohs SJ. 2014. Polychlorinated biphenyls (PCBs). In: Wexler P (ed) encyclopedia of toxicology (Third Edition). Academic Press, Oxford, p 1035–1037.
  • Sun XH, Teng Y, Luo YM. 2011. Accumulation, distribution and chemical speciation of PCBs in different parts of alfalfa. Soil 43(4): 595–599 ( in Chinese).
  • Suominen L, Jussila MM, Mäkeläinen K, Romantschuk M, Lindström K. 2000. Evaluation of the Galega–Rhizobium galegae system for the bioremediation of oil-contaminated soil. Environ Pollut 107(2):239–244.
  • Susarla S, Medina VF, McCutcheon SC. 2002. Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658.
  • Tan XJ, Cheng Y, Li YX, Li YG, Zhou JC. 2009. BacA is indispensable for successful Mesorhizobium–Astragalus symbiosis. Appl Microbiol Biotechnol 84(3):519–526.
  • Tara N, Afzal M, Ansari TM, Tahseen R, Iqbal S, Khan QM. 2014. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Int J Phytoremediat 16(12):1268–1277.
  • Teng Y, Luo YM, Sun XH, Tu C, Xu L, Liu WX, Li ZG, Christie P. 2010. Influence of arbuscular mycorrhiza and rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: A Field Study. Int J Phytoremediat 12(5):516–533.
  • Teng Y, Shen YY, Luo YM, Sun XH, Sun MM, Fu DQ, Li ZG, Christie P. 2011. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 186(2–3):1271–1276.
  • Teng Y, Wang XM, Li LN, Li ZG, Luo YM. 2015. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32 doi:10.3389/fpls.2015.00032
  • Tu C, Teng Y, Luo YM, Li XH, Sun XH, Li ZG, Liu WX, Christie P. 2011. Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. J Hazard Mater 186(2–3):1438–1444.
  • Van Aken B, Correa PA, Schnoor JL. 2010. Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776.
  • Venkatachalam K, Arzuaga X, Chopra N, Gavalas VG, Xu J, Bhattacharyya D, Hennig B, Bachas LG. 2008. Reductive dechlorination of 3,3′,4,4′-tetrachlorobiphenyl (PCB77) using palladium or palladium/iron nanoparticles and assessment of the reduction in toxic potency in vascular endothelial cells. J Hazard Mater 159(2–3): 483–491.
  • Vincent JM. 1970. A manual for the practical study of root-nodule bacteria. Oxford, Blackwell.
  • White J C. 2002. Differential bioavailability of field-weathered p,p′-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49(2): 143–152.
  • Wrenn BA, Venosa AD. 1996. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42(3):252–258.
  • Xia HL, Chi XY, Yan ZJ, Cheng WW. 2009. Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin. Bioresource Technol 100(20):4649–4653.
  • Xu L, Teng Y, Li ZG, Norton JM, Luo YM. 2010. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: The impact of a rhizobial inoculum. Sci Total Environ 408(5):1007–1013.
  • Xu L, Teng Y, Zhang XL, Wang JJ, Li ZG, Liu WX, Luo YM. 2008. Combined remediation of PCBs polluted soil by plant and microorganism in a field trial. China Environmental Science (In Chinese) 28(7):646–650.
  • Yang CF, Lee CM. 2008. Enrichment, isolation, and characterization of 4-chlorophenol-degrading bacterium Rhizobium sp 4-CP-20. Biodegradation 19(3):329–336.
  • Yang GX, Zhuang HS, Chen HY, Ping XY, Bu D. 2014. A sensitive immunosorbent bio-barcode assay based on real-time immuno-PCR for detecting 3,4,3′,4′-tetrachlorobiphenyl. Anal Bioanal Chem 406(6):1693–1700.
  • Yessica GP, Alejandro A, Ronalda FC, José AJ, Esperanza MR, Samuel CSJ, Remedios MLM, Ormeño-Orrillo E. 2013. Tolerance, growth and degradation of phenanthrene and benzo[a]pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Appl Soil Ecol 63(0):105–111.
  • Zeeb BA, Amphlett JS, Rutter A, Reimer KJ. 2006. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. Int J Phytoremediat 8(3):199–221.
  • Zhang XX, Guo XW, Terefework Z, Paulin L, Cao YZ, Hu FR, Lindstorm K, Li FD. 1999. Genetic diversity among rhizobial isolates from field-grown Astragalus sinicus of southern China. Syst Appl Microbiol 22(2):312–320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.