121
Views
1
CrossRef citations to date
0
Altmetric
Articles

Remediation of endosulfan-contaminated water by hairy roots: removal and phytometabolization assessment

, , , , & ORCID Icon

References

  • Abaga NOZ, Dousset S, Munier-Lamy C, Billet D. 2014. Effectiveness of vetiver grass (Vetiveria zizanioides L. Nash) for phytoremediation of endosulfan in two cotton soils from Burkina Faso. Int J Phytoremediation. 16(1):95–108. doi:10.1080/15226514.2012.759531.
  • Abhilash PC, Jamil S, Singh N. 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv. 27(4):474–488. doi:10.1016/j.biotechadv.2009.04.002.
  • Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM. 2003. Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem. 37(Pt 2):139–144. doi:10.1042/ba20020079.
  • Agostini E, Milrad de Forchetti S, Tigier HA. 1997. Production of peroxidases by hairy roots cultures of Brassica napus. Plant Cell Tiss Organ Cult. 47(2):177–182. doi:10.1007/BF02318955.
  • Ahmad KS. 2020. Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide Endosulfan. Folia Microbiol. 65(5):801–810. doi:10.1007/s12223-020-00792-7.
  • Arrebola FJ, Egea-González FJ, Moreno M, Fernández-Gutiérrez A, Hernández-Torres ME, Martínez-Vidal JL. 2001. Evaluation of endosulfan residues in vegetables grown in greenhouses. Pest Manag Sci. 57(7):645–652. doi:10.1002/ps.332.
  • Baíza AM, Quiroz-Moreno A, Ruíz JA, Loyola-Vargas VM. 1999. Genetic stability of hairy root cultures of Datura stramonium. Plant Cell. Tissue Organ Cult. 59(1):9–17. doi:10.1023/A:1006398727508.
  • Bakker MI, Casado B, Koerselman JW, Tolls J, Kollöffel C. 2000. Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Sci Total Environ. 263(1–3):91–100. doi:10.1016/S0048-9697(00)00669-0.
  • Barber JL, Thomas GO, Kerstiens G, Jones KC. 2004. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environ Pollut. 128(1–2):99–138. doi:10.1016/j.envpol.2003.08.024.
  • Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Balaguer MD, Colprim J. 2016. Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture. J Chem Technol Biotechnol. 91(4):921–927. doi:10.1002/jctb.4657.
  • Chen F, Huber C, May R, Schröder P. 2016. Metabolism of oxybenzone in a hairy root culture: perspectives for phytoremediation of a widely used sunscreen agent. J Hazard Mater. 306:230–236. doi:10.1016/j.jhazmat.2015.12.022.
  • Coniglio MS, Busto VD, González PS, Medina MI, Milrad S, Agostini E. 2008. Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions. Chemosphere. 72(7):1035–1042. doi:10.1016/j.chemosphere.2008.04.003.
  • DeLorenzo ME, Scott GI, Ross PE. 2001. Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem. 20(1):84–98. doi:10.1002/etc.5620200108.
  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. 2020. InfoStat versión 2020. Argentina: Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba. http://www.infostat.com.ar.
  • Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL. 2000. Uptake and phytotransformation of o,p'-DDT and p,p'-DDT by axenically cultivated aquatic plants. J Agric Food Chem. 48(12):6121–6127. doi:10.1021/jf990956x.
  • Gautam M, Elhiti M, Fomsgaard IS. 2018. Maize root culture as a model system for studying azoxystrobin biotransformation in plants. Chemosphere. 195:624–631. doi:10.1016/j.chemosphere.2017.12.121.
  • Gonçalves S, Romano A. 2018. Production of plant secondary metabolites by using biotechnological tools. In: Vijayakumar R, editor. Secondary metabolites - sources and applications. London: IntechOpen; p. 81–99. doi:10.5772/intechopen.76414.
  • González PS, Capozucca CE, Tigier HA, Milrad SR, Agostini E. 2006. Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzyme Microb Technol. 39(4):647–653. doi:10.1016/j.enzmictec.2005.11.014.
  • Govarthanan M, Ameen F, Kamala-Kannan S, Selvankumar T, Almansob A, Alwakeel SS, Kim W. 2020. Rapid biodegradation of chlorpyrifos by plant growth-promoting psychrophilic Shewanella sp. BT05: an eco-friendly approach to clean up pesticide-contaminated environment. Chemosphere. 247:125948. doi:10.1016/j.chemosphere.2020.125948.
  • Guerin TF. 2001. Abiological loss of endosulfan and related chlorinated organic compounds from aqueous systems in the presence and absence of oxygen. Environ Pollut. 115(2):219–230. doi:10.1016/S0269-7491(01)00112-9.
  • Gujarathi NP, Haney BJ, Park HJ, Wickramasinghe SR, Linden JC. 2005. Hairy roots of Helianthus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline. Biotechnol Prog. 21(3):775–780. doi:10.1021/bp0496225.
  • Gujarathi NP, Linden JC. 2005. Oxytetracycline inactivation by putative reactive oxygen species released to nutrient medium of Helianthus annuus hairy root cultures. Biotechnol Bioeng. 92(4):393–402. doi:10.1002/bit.20698.
  • Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F. 2020. Hairy root cultures-a versatile tool with multiple applications. Front Plant Sci. 11:33–11. doi:10.3389/fpls.2020.00033.
  • Häkkinen ST, Moyano E, Cusidó RM, Oksman-Caldentey KM. 2016. Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Front Plant Sci. 7:1486. doi:10.3389/fpls.2016.01486.
  • Harikumar PSP, Jesitha K, Sreechithra M. 2013. Remediation of endosulfan by biotic and abiotic methods. JEP. 04(05):418–425. doi:10.4236/jep.2013.45050.
  • Huber C, Bartha B, Schröder P. 2012. Metabolism of diclofenac in plants-hydroxylation is followed by glucose conjugation. J Hazard Mater. 243:250–256. doi:10.1016/j.jhazmat.2012.10.023.
  • Jayampathi T, Atugoda T, Jayasinghe C. 2019. Uptake and accumulation of pharmaceuticals and personal care products in leafy vegetables. In: Prasat MNV, Vithanage M, Kapley A, editors. Pharmaceuticals and personal care products: waste management and treatment technology. St. Louis: -Heinemann; p. 87–113. doi:10.1016/B978-0-12-816189-0.00004-4.
  • Jha P, Jobby R, Desai NS. 2016. Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. and assessment of degraded dye toxicity with human keratinocyte cell line. J Hazard Mater. 311:158–167. doi:10.1016/j.jhazmat.2016.02.058.
  • Jha P, Modi N, Jobby R, Desai N. 2015. Differential expression of antioxidant enzymes during degradation of azo dye reactive black 8 in hairy roots of Physalis minima L. Int J Phytoremediation. 17(1-6):305–312. doi:10.1080/15226514.2013.876963.
  • Jha P, Sen R, Jobby R, Sachar S, Bhatkalkar S, Desai N. 2020. Biotransformation of xenobiotics by hairy roots. Phytochemistry. 176:112421. doi:10.1016/j.phytochem.2020.112421.
  • Johnson WW, Finley MT. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates: summaries of toxicity tests conducted at Columbia. Columbia (MO): National Fisheries Research Laboratory; p. 1965–1978.
  • Kataoka R, Takagi K, Sakakibara F. 2011. Biodegradation of endosulfan by Mortieralla sp. strain W8 in soil: influence of different substrates on biodegradation. Chemosphere. 85(3):548–552. doi:10.1016/j.chemosphere.2011.08.021.
  • Kumar M, Lakshmi CV, Khanna S. 2008. Biodegradation and bioremediation of endosulfan contaminated soil. Bioresour Technol. 99(8):3116–3122. doi:10.1016/j.biortech.2007.05.057.
  • Li H, Qiu Y, Yao T, Ma Y, Zhang H, Yang X, Li C. 2020. Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1): degradation ability, microbial community, and Medicago sativa phytotoxicity. J Hazard Mater. 389:121834. doi:10.1016/j.jhazmat.2019.121834.
  • Lokhande VH, Kudale S, Nikalje G, Desai N, Suprasanna P. 2015. Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L.) L. Biotechnol Rep. 8:56–63. doi:10.1016/j.btre.2015.08.002.
  • Lucero PA, Ferrari MM, Orden AA, Cañas I, Nassetta M, Kurina-Sanz M. 2016. Treatment of endosulfan contaminated water with in vitro plant cell cultures. J Hazard Mater. 305:149–155. doi:10.1016/j.jhazmat.2015.11.027.
  • Magallanes-Noguera C, Cecati FM, Mascotti ML, Reta GF, Agostini E, Orden AA, Kurina-Sanz M. 2017. Plant tissue cultures as sources of new ene- and ketoreductase activities. J Biotechnol. 251:14–20. doi:10.1016/j.jbiotec.2017.03.023.
  • Majumder A, Jha S. 2012. Hairy roots: a promising tool for phytoremediation. In: Satyanarayaba T, Johri BN, Prakash A, editor. Microorganisms in environmental management: microbes and environment. Dordrecht: Springer; p. 607–629. doi:10.1007/978-94-007-2229-3_27.
  • Majumder A, Ray S, Jha S. 2018. Hairy roots and phytoremediation. In: Pavlov A, Bley T, editors. Bioprocessing of plant in vitro systems. Reference series in phyochemistry. Cham: Springer; p. 1–24. doi:10.1007/978-3-319-32004-5_22-1.
  • Malik S, Andrade SAL, Mirjalili MH, Arroo RRJ, Bonfill M, Mazzafera P. 2016. Biotechnological approaches for bioremediation; in vitro hairy root culture. In: Jha S, editor. Transgenesis and secondary metabolism. Reference series in phytochemistry. Cham: Springer; p. 1–23. doi:10.1007/978-3-319-27490-4_28-1.
  • Mishiba KI, Nishihara M, Abe Y, Nakatsuka T, Kawamura H, Kodama K, Takesawa T, Abe J, Yamamura S. 2006. Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol. 23(1):33–38. doi:10.5511/plantbiotechnology.23.33.
  • Mitton FM, Gonzalez M, Monserrat JM, Miglioranza KSB. 2016. Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere. 148:300–306. doi:10.1016/j.chemosphere.2016.01.028.
  • Mukherjee I, Kumar A. 2012. Phytoextraction of endosulfan a remediation technique. Bull Environ Contam Toxicol. 88(2):250–254. doi:10.1007/s00128-011-0454-1.
  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.
  • Nanasato Y, Tabei Y. 2018. Phytoremediation of persistent organic pollutants (POPs) utilizing transgenic hairy root cultures: past and future perspectives. In: Srivastava V, Mehrotra S, Mishra S, editors. Hairy roots: an effective tool of plant biotechnology. Singapore: Springer; p. 227–241. doi:10.1007/978-981-13-2562-5_10.
  • Orden AA, Magallanes-Noguera C, Agostini E, Kurina-Sanz M. 2009. Anti-prelog reduction of ketones by hairy root cultures. J Mol Catal B Enzym. 61(3–4):216–220. doi:10.1016/j.molcatb.2009.07.007.
  • Patil P, Desai N, Govindwar S, Jadhav JP, Bapat V. 2009. Degradation analysis of reactive red 198 by hairy roots of Tagetes patula L. (Marigold). Planta. 230(4):725–735. doi:10.1007/s00425-009-0980-9.
  • Ramirez-Sandoval M, Melchor-Partida GN, Muñiz-Hernández S, G.-P MI, Rojas-García A, Medina-Diaz IM, Robledo-Marenco ML, Velázquez-Fernández JB. 2011. Phytoremediatory effect and growth of two species of Ocimum in endosulfan polluted soil. J Hazard Mater. 192(1):388–392. doi:10.1016/j.jhazmat.2011.05.041.
  • Rice CP, Chernyak SM, Hapeman CJ, Bilboulian S. 1997. Air‐water distribution of the endosulfan isomers. J Environ Qual. 26(4):1101–1106. doi:10.2134/jeq1997.00472425002600040022x.
  • Romero-Aguilar M, Tovar-Sánchez E, Sánchez-Salinas E, Mussali-Galante P, Sánchez-Meza JC, Castrejón-Godínez ML, Dantán-González E, Trujillo-Vera MÁ, Ortiz-Hernández ML. 2014. Penicillium sp. as an organism that degrades endosulfan and reduces its genotoxic effects. Springerplus. 3:536–511. doi:10.1186/2193-1801-3-536.
  • Saitúa H, Giannini F, Padilla AP. 2012. Drinking water obtaining by nanofiltration from waters contaminated with glyphosate formulations: process evaluation by means of toxicity tests and studies on operating parameters. J Hazard Mater. 227–228:204–210. doi:10.1016/j.jhazmat.2012.05.035.
  • SBC. 2019. Secretariat of the Basel Convention. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal [WWW Document]. [accessed 2021 Jul 2]. www.basel.int.
  • Schröder P. 2007. Exploiting plant metabolism for the phytoremediation of organic xenobiotics. In: Willey N, editor. Phytoremediation. Methods in biotechnology. Totowa (NJ): Humana Press; p. 251–263. doi:10.1007/978-1-59745-098-0_20.
  • Silva-Barni MF, Smedes F, Fillmann G, Miglioranza KSB. 2019. Passive sampling of pesticides and polychlorinated biphenyls along the Quequén Grande River watershed, Argentina. Environ Toxicol Chem. 38(2):340–349. doi:10.1002/etc.4325.
  • Singh NC, Dasgupta TP, Roberts EV, Mansingh A. 1991. Dynamics of pesticides in tropical conditions. 1. Kinetic studies of volatilization, hydrolysis, and photolysis of dieldrin and α- and β-endosulfan. J Agric Food Chem. 39(3):575–579. doi:10.1021/jf00003a028.
  • Singh V, Singh N. 2014. Uptake and accumulation of endosulfan isomers and its metabolite endosulfan sulfate in naturally growing plants of contaminated area. Ecotoxicol Environ Saf. 104:189–193. doi:10.1016/j.ecoenv.2014.02.025.
  • Srikantan C, Suraishkumar GK, Srivastava S. 2018. Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots. Bioresour Technol. 257:84–91. doi:10.1016/j.biortech.2018.02.075.
  • Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, et al. 2017. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype. Plant J. 92(3):452–468. doi:10.1111/tpj.13669.
  • Suresh B, Sherkhane PD, Kale S, Eapen S, Ravishankar GA. 2005. Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere. 61(9):1288–1292. doi:10.1016/j.chemosphere.2005.03.086.
  • Suresh S, Thangadurai P. 2019. Coupling of zero-valent magnesium or magnesium–palladium-mediated reductive transformation to bacterial oxidation for elimination of endosulfan. Int J Environ Sci Technol. 16(3):1421–1432. doi:10.1007/s13762-018-1748-1.
  • Talano MA, Frontera S, González P, Medina MI, Agostini E. 2010. Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mater. 176(1–3):784–791. doi:10.1016/j.jhazmat.2009.11.103.
  • UNEP. 2011. UNEP/POPS/COP.5/36. Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the work of its fifth meeting.
  • Waring MJ. 2010. Lipophilicity in drug discovery. Expert Opin Drug Discov. 5(3):235–248. doi:10.1517/17460441003605098.
  • Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, Hermanson M, Hung H, Bidleman T. 2010. Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ. 408(15):2966–2984. doi:10.1016/j.scitotenv.2009.10.077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.