78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hormesis management of Moringa oleifera with exogenous application of plant growth regulators under saline conditions

, , &

References

  • Abuelsoud W, Momtaz MH, Hamada AE, Gaurav Z, Han A. 2013. Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol Biochem. 71:173–183.
  • Agathokleous E, Edward JC. 2019. Hormesis can enhance agricultural sustainability in a changing world. Glob Food Sec. 20:150–155. doi: 10.1016/j.gfs.2019.02.005.
  • Aguirre-Becerra H, Vazquez-Hernandez MC, Alvarado-Mariana A, Guevara-Gonzalez RG, Garcia-Trejo JF, Feregrino-Perez AA. 2021. Role of stress and defense in plant secondary metabolites production. In: Bioactive natural products for pharmaceutical applications. Switzerland: Springer Nature; p. 151–195.
  • Alabdallah NM, Hasan MM. 2021. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J Biol Sci. 28(10):5631–5639. doi: 10.1016/j.sjbs.2021.05.081.
  • Alharbi BM, Elhakem AH, Alnusairi GSH, Soliman MH, Hakeem KR, Hasan MM, Abdelhamid MT. 2021. Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant Soil Environ. 67(4):208–220. doi: 10.17221/659/2020-PSE.
  • Ali EMA, Ghada SMI. 2014. Tomato fruit quality as influenced by salinity and nitric oxide. Turk J Bot. 38:122–129. doi: 10.3906/bot-1210-44.
  • Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. 2020. Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot. 175:104040. doi: 10.1016/j.envexpbot.2020.104040.
  • Athar H, Khan A, Ashraf M. 2008. Exogenously applied ascorbic acid alleviates salt induced oxidative stress in wheat. Environ Exp Bot. 63(1-3):224–231. doi: 10.1016/j.envexpbot.2007.10.018.
  • Azam S, Nouman W, Rehman U, Ahmed U, Gull T, Shaheen M. 2020. Adaptability of Moringa oleifera Lam. under different water holding capacities. South Afr J Bot. 129:299–303. doi: 10.1016/j.sajb.2019.08.020.
  • Bettaieb I, Knioua S, Hamrouni I, Limam F, Marzouk B. 2011. Water-deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts. J Agric Food Chem. 59(1):328–334. doi: 10.1021/jf1037618.
  • Bian X-H, Li W, Niu C-F, Wei W, Hu Y, Han J-Q, Lu X, Tao J-J, Jin M, Qin H, et al. 2020. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. New Phytol. 225(1):268–283. doi: 10.1111/nph.16104.
  • Boz H. 2015. Ferulic acid in cereals: a review. Czech J Food Sci. 33(1):1–7. doi: 10.17221/401/2014-CJFS.
  • Brugnoli E, Lauteri M. 1991. Effects of salinity on stomatal conductance, photosynthetic capacity and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and saltsensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol. 95(2):628–635. doi: 10.1104/pp.95.2.628.
  • Brunetti C, Fini A, Sebastiani F, Gori A, Tattini M. 2018. Modulation of phytohormone signaling: a primary function of flavonoids in plant–environment interactions. Front Plant Sci. 9:1042. doi: 10.3389/fpls.2018.01042.
  • Calabrese EJ. 2013. Hormetic mechanisms. Crit Rev Toxicol. 43(7):580–606. doi: 10.3109/10408444.2013.808172.
  • Calabrese EJ. 2014. Hormesis: a fundamental concept in biology. Microb Cell. 1(5):145–149. doi: 10.15698/mic2014.05.145.
  • Campbell CR, Plank CO. 1998. Preparation of plant tissue for laboratory analysis. In: Kalra YP, editor. Handbook of reference methods for plant analysis. Boca Raton (FL): CRC Press; p. 37–49.
  • Chance M, Maehly AC. 1955. Assay of catalases and peroxidases. Meth Enzymol. 2:764–817.
  • Chandran AKN, Kim JW, Yoo YH, Park HL, Kim YJ, Cho MH, Jung KH. 2019. Transcriptome analysis of rice-seedling roots under soil–salt stress using RNA-seq method. Plant Biotechnol Rep. 13(6):567–578. doi: 10.1007/s11816-019-00550-3.
  • Dawood MFA, Sofy MR, Mohamed HI, Sofy AR, Abdel-Kader HAA. 2022. Hydrogen sulfide modulates salinity stress in common bean plants by maintaining osmolytes and regulating nitric oxide levels and antioxidant enzyme expression. J Soil Sci Plant Nutr. 22(3):3708–3726. doi: 10.1007/s42729-022-00921-w.
  • Dinneny JR. 2019. Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol. 35(1):239–257. doi: 10.1146/annurev-cellbio-100617-062949.
  • Dunn GM, Neales TF. 1993. Are the effects of salinity on growth and leaf gas-exchange related? Photosynth. 29:33–42.
  • Es-Sbihi FZ, Hazzoumi Z, Aasfar A, Joutei KA. 2021. Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chem Biol Technol Agric. 8(1):25. doi: 10.1186/s40538-021-00221-y.
  • Etesami H, Fatemi H, Rizwan M. 2021. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: a review. Ecotoxicol Environ Saf. 225:112769. doi: 10.1016/j.ecoenv.2021.112769.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: i. Occurrence in higher plants. Plant Physiol. 59(2):309–314. doi: 10.1104/pp.59.2.309.
  • Golan Y, Shirron N, Avni A, Shmoish M, Gepstein S. 2016. Cytokinins induce transcriptional reprograming and improve arabidopsis plant performance under drought and salt stress conditions. Front Environ Sci. 4:63. doi: 10.3389/fenvs.2016.00063.
  • Gomez KA, Gomez AA. 1984. Statistical procedures for agricultural research. New York, USA: John Wiley & Sons.
  • Gull T, Sultana B, Anwar F, Nouman W, Mehmood T, Sher M. 2018. Characterization of phenolics in different parts of selected Capparis species harvested in low and high rainfall season. Food Measure. 12(3):1539–1547. doi: 10.1007/s11694-018-9769-5.
  • Gupta P, Seth CS. 2020. Interactive role of exogenous 24 epibrassinolide and endogenous NO in Brassica juncea L. under salinity stress: evidence for NR-dependent NO biosynthesis. Nitric Oxide. 97:33–47. doi: 10.1016/j.niox.2020.01.014.
  • Gupta P, Seth CS. 2023. 24-epibrassinolide regulates functional components of nitric oxide signalling and antioxidant defense pathways to alleviate salinity stress in Brassica juncea L. cv. Varuna. J Plant Growth Regul. 42(7):4207–4222. doi: 10.1007/s00344-022-10884-y.
  • Hassan, Amara, Fasiha Amjad, Syeda, Hamzah Saleem, Muhammad, Yasmin, Humaira, Imran, Muhammad, Riaz, Muhammad, Ali, Qurban, Ahmad Joyia, Faiz, Ahmed, Shakeel, Ali, Shafaqat, Abdullah Alsahli, Abdulaziz,. 2021. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression.Saudi J Biol Sci, 8. 28: 4276–4290. doi: 10.1016/j.sjbs.2021.03.045.
  • Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil. California Agric Exp Stat Circu. 347:1–32.
  • Hoque TS, Sohag AAM, Burritt DJ, Hossain MA. 2020. Salicylic acid-mediated salt stress tolerance in plants. In: Lone R, Shuab R, Kamili A, editors. Plant phenolics in sustainable agriculture. Springer: Singapore. doi: 10.1007/978-981-15-4890-1_1.
  • Horváth E, Szalai G, Janda T. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul. 26(3):290–300. doi: 10.1007/s00344-007-9017-4.
  • Houle G, Morel L, Reynolds CE, Siegel J. 2001. The effect of salinity on different developmental stages of n endemic annual plant, Aster laurentianus (Asteraceae). American J of Botany. 88(1):62–67. doi: 10.2307/2657127.
  • Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y. 2018. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol Plant. 11(7):970–982. doi: 10.1016/j.molp.2018.05.001.
  • Husen A, Iqbal M, Sohrab SS, Ansari MKA. 2018. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata a. Br.). Agric Food Secur. 7(1):44. doi: 10.1186/s40066-018-0194-0.
  • Hussain AI, Chatha SAS, Noor S, Khan ZA, Arshad MU, Rathore HA, Sattar MZ. 2012. Effect of extraction techniques and solvent systems on the extraction of antioxidant components from peanut (Arachis hypogaea L.) hulls. Food Anal Method. 5(4):890–896. doi: 10.1007/s12161-011-9325-y.
  • Incesu M, Berken C, Turgut Y, Bilge Y. 2014. Growth and photosynthetic response of two persimmon rootstocks (Diospyros kaki and D. virginiana) under different salinity levels. Not Bot Horti Agrobo. 42(2):386–391. doi: 10.15835/nbha4229471.
  • Intrigliolo F, Roccuzzo G, Lacertosa G, Rapisarda P, Canali S. 1999. Effect of fertilizer on growth and yield of citrus. J Plant Nutr. 11:3–7.
  • James RA, Blake C, Byrt CS, Munns R. 2011. Major genes for Na + exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na + accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot. 62(8):2939–2947. doi: 10.1093/jxb/err003.
  • Jan R, Khan MA, Asaf S, Waqas M, Park JR, Asif S, Kim N, Lee IJ, Kim KM. 2022. Drought and UV radiation stress tolerance in rice is improved by overaccumulation of non-enzymatic antioxidant flavonoids. Antioxidants (Basel), 5, 11: 917. doi: 10.3390/antiox11050917.
  • Jan R, Kim N, Lee SH, Khan MA, Asaf S, Lubna, Park JR, Asif S, Lee IJ, Kim KM. 2021. Enhanced flavonoid accumulation reduces combined salt and heat stress through regulation of transcriptional and hormonal mechanisms. Front Plant Sci. 12: 796956. doi: 10.3389/fpls.2021.796956.
  • Jindal A, Seth CS. 2023. Nitric oxide mediated post-translational modifications and its significance in plants under abiotic stress. In: Nitric oxide in developing plant stress resilience. Cambridge: Academic Press; p. 233–250.
  • Julkowska MM, Hoefsloot HCJ, Mol S, Feron R, de Boer GJ, Haring MA, Testerink C. 2014. Capturing arabidopsis root architecture dynamics with root‐fit reveals diversity in responses to salinity. Plant Physiol. 166(3):1387–1402. doi: 10.1104/pp.114.248963.
  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T. 2012. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res. 11(12):6066–6079. doi: 10.1021/pr300728y.
  • Kaur H, Bhardwaj RD, Grewal SK. 2017. Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids. Acta Physiol Plant. 39(10):221–236. doi: 10.1007/s11738-017-2521-7.
  • Khaled T, Fadhila T, Leila AA, Amel E, Moulay B, Jose MM. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr J Bot. 105:306–312.
  • Khan WUD, Aziz T, Waraich EA, Khalid M. 2015. Silicon application improves germination and vegetative growth in maize grown under salt stress. Pakistan J Agric Sci. 52:937–944.
  • Khan T, Khan T, Hano C, Abbasi BH. 2019b. Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Ind Crops Prod. 129:525–535. doi: 10.1016/j.indcrop.2018.12.048.
  • Khan MA, Khan T, Riaz MS, Ullah N, Ali H, Nadhman A. 2019a. Plant cell nanomaterials interaction: growth, physiology and secondary metabolism. Compreh Anal Chem. 84:23–54.
  • Kiani R, Arzani A, Maibody SAMM. 2021. Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front Plant Sci. 12:646221. doi: 10.3389/fpls.2021.646221.
  • Kolbert Z, Pető A, Lehotai N, Feigl G, Erdei L. 2012. Long-term copper (Cu2?) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regul. 68(2):151–159. doi: 10.1007/s10725-012-9701.
  • Korver RA, van den Berg T, Meyer AJ, Galvan‐Ampudia CS, ten Tusscher KHWJ, Testerink C. 2020. Halotropism requires phospholipase Dζ1‐mediated modulation of cellular polarity of auxin transport carriers. Plant Cell Environ. 43(1):143–158. doi: 10.1111/pce.13646.
  • Kumar D, Dhankher OP, Tripathi RD, Seth CS. 2023. Titanium dioxide nanoparticles potentially regulate the mechanism (s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J Hazard Mater. 454:131418. doi: 10.1016/j.jhazmat.2023.131418.
  • Kumar V, Kumar P, Khan A. 2020. Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal Agric Biotechnol. 23:101463. doi: 10.1016/j.bcab.2019.101463.
  • Lamers J, van der Meer T, Testerink C. 2020. How plants sense and respond to stressful environments. Plant Physiol. 182(4):1624–1635. doi: 10.1104/pp.19.01464.
  • Li W, Herrera-Estrella L, Tran LSP. 2016. The Yin–Yang of cytokinin homeostasis and drought acclimation/adaptation. Trends Plant Sci. 21(7):548–550. doi: 10.1016/j.tplants.2016.05.006.
  • Mariyam S, Bhardwaj R, Khan NA, Sahi SV, Seth CS. 2023. Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: Crosstalk with calcium and hydrogen peroxide. Plant Sci. 336:111835. doi: 10.1016/j.plantsci.2023.111835.
  • Minh LT, Khang DT, Ha PTT, Tuyen PT, Minh TN, Quan NV, Xuan TD. 2016. Effects of salinity stress on growth and phenolics of rice (Oryza sativa L.). ILNS. 57:1–10. doi: 10.18052/www.scipress.com/ILNS.57.1.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9):405–410. doi: 10.1016/s1360-1385(02)02312-9.
  • Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R. 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. Plant under salinity stress. Sci Hortic. 272:109537. doi: 10.1016/j.scienta.2020.109537.
  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev. 82(4):371–406. doi: 10.1007/s12229-016-9173-y.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Muthert LWF, Izzo LG, van Zanten M, Aronne G. 2019. Root tropisms: investigations on earth and in space to unravel plant growth direction. Front Plant Sci. 10:1807. doi: 10.3389/fpls.2019.01807.
  • Nagata M, Yamashita I. 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J Jap Soc Food Sci Technol. 39:925–928.
  • Nazar R, Iqbal N, Syeed S, Khan NA. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol. 168(8):807–815. doi: 10.1016/j.jplph.2010.11.001.
  • Nouman W, Basra SMA, Yasmeen A, Gull T, Hussain SB, Zubair M, Gull R. 2014. Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Regul. 73(3):267–278. doi: 10.1007/s10725-014-9887-y.
  • Nouman W, Umbreen A. 2022. Seed priming improves salinity tolerance in Calotropis procera (Aiton) by increasing photosynthetic pigments, antioxidant activities, and phenolic acids. Biol. 77(3):609–626. doi: 10.1007/s11756-021-00935-2.
  • Nuutila AM, Kammiovirta K, Caldentey KMO. 2002. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 76(4):519–525. doi: 10.1016/S0308-8146(01)00305-3.
  • Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MHMB, Mohsin SM, Fujita M. 2020. Exogenous vanillic acid enhances salt tolerance of tomato: insight into plant antioxidant defense and glyoxalase systems. Plant Physiol Biochem. 150:109–120. doi: 10.1016/j.plaphy.2020.02.030.
  • Rahnama A, Munns R, Poustini K, Watt M. 2011. A screening method to identify genetic variation in root growth response to a salinity gradient. J Exp Bot. 62(1):69–77. doi: 10.1093/jxb/erq359.
  • Ramabulana AT, Steenkamp PA, Madala NE, Dubery IA. 2021. Application of plant growth regulators modulates the profile of chlorogenic acids in cultured Bidens pilosa cells. Plants (Basel). 10(3):437. doi: 10.3390/plants10030437.
  • Rivas R, Vanessa B, Falcao H, Frosi G, Arruda E, Santos M. 2020. Ecophysiological traits of invasive C3 species Calotropis procera to maintain high photosynthetic performance under high VPD and low soil water balance in semi-arid and seacoast zones. Front Plant Sci. 11:717. doi: 10.3389/fpls.2020.00717.
  • Salam A, Khan AR, Liu L, Yang S, Azhar W, Ulhassan Z, Zeeshan M, Wu J, Fan X, Gan Y. 2022. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J Hazard Mater. 423(Pt A):127021. doi: 10.1016/j.jhazmat.2021.127021.
  • Sarker U, Oba S. 2018. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci Rep. 8(1):12349. doi: 10.1038/s41598-018-30897-6.
  • Sawada H, Shim IS, Usui K. 2006. Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis—modulation by salt stress in rice seedlings. Plant Sci. 171(2):263–270. doi: 10.1016/j.plantsci.2006.03.020.
  • Seleiman MF, Semida WM, Rady MM, Mohamed GF, Hemida KA, Alhammad BA, Hassan MM, Shami A. 2020. Sequential application of antioxidants rectifies ion imbalance and strengthens antioxidant systems in salt-stressed cucumber. Plants (Basel). 9(12):1783. doi: 10.3390/plants9121783.
  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 24(13):2452. doi: 10.3390/molecules24132452.
  • Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 16(3):144–158. doi: 10.5344/ajev.1965.16.3.144.
  • Steduto P, Albrizio R, Giorio P, Sorrentino G. 2000. Gas exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environ Exp Bot. 44(3):243–255. doi: 10.1016/s0098-8472(00)00071-x.
  • Sudhir P, Murthy SDS. 2004. Effects of salt stress on basic processes of photosynthesis. Photosynt. 42(4):481–486. doi: 10.1007/S11099-005-0001-6.
  • Tahjib-Ui-Arif M, Sohag A, Afrin S, Bashar K, Afrin T, Mahamud AGM, Polash M, Hossain M, Sohel M, Brestic M, et al. 2019. Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture. 9(10):223. doi: 10.3390/agriculture9100223.
  • Tanveer M, Ahmed HAI. 2020. ROS signalling in modulating salinity stress tolerance in plants. In: Salt and drought stress tolerance in plants. Switzerland: Springer Nature; p. 299–314.
  • Tohidi B, Rahimmalek M, Arzani A. 2017. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 220:153–161. doi: 10.1016/j.foodchem.2016.09.203.
  • Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, de Romero-Gomez SJ, Rico-Garcia E, Ocampo-Velazquez RV, de Alvarez-Arquieta LL, Torres-Pacheco I. 2017. Plant hormesis management with biostimulants of biotic origin in agriculture. Front Plant Sci. 8:1762. doi: 10.3389/fpls.2017.01762.
  • Vermeulen SJ, Campbell BM, Ingram JSI. 2012. Climate change and food systems. Annu Rev Environ Resour. 37(1):195–222. doi: 10.1146/annurev-environ-020411-130608.
  • Waterhouse AL. 2002. Determination of total phenolics. Food Anal Chem. 6: I1.1.1–I1.1.8.
  • Xu Z, Zhou J, Ren T, Du H, Liu H, Li Y, Zhang C. 2020. Salt stress decreases seedling growth and development but increases quercetin and kaempferol content in Apocynum venetum. Plant Biol (Stuttg). 22(5):813–821. doi: 10.1111/plb.13128.
  • Yan K, Zhao S, Bian L, Chen X. 2017. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress. Plant Physiol Biochem. 112:326–334. doi: 10.1016/j.plaphy.2017.01.020.
  • Yang L, Wen K, Ruan X, Zhao Y, Wei F, Wang Q. 2018. Response of plant secondary metabolites to environmental factors. Mol. 23:276.
  • Youssef SM, El-Serafy RS, Ghanem KZ, Elhakem A, Abdel Aal AA. 2022. Foliar spray or soil drench: microalgae application impacts on soil microbiology, morpho-physiological and biochemical responses, oil and fatty acid profiles of chia plants under alkaline stress. Biology (Basel). 12(2):1844. doi: 10.3390/biology11121844.
  • Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A. 2021. Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res. 242:126626. doi: 10.1016/j.micres.2020.126626.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.