235
Views
11
CrossRef citations to date
0
Altmetric
Articles

Molecular mechanisms underlying titanium dioxide nanoparticles (TiO2NP) induced autophagy in mesenchymal stem cells (MSC)

, , , , &

References

  • Alaraby, M., B. Annangi, R. Marcos, and A. Hernandez. 2016. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. J. Toxicol. Environ. Health B 19:65–104. doi:10.1080/10937404.2016.1166466.
  • Arthur, C. R., J. T. Gupton, G. E. Kellogg, W. A. Yeudall, M. C. Cabot, I. F. Newsham, and D. A. Gewirtz. 2007. Autophagic cell death, polyploidy and senescence induced in breast tumor cells by the substituted pyrrole jg-03-14, a novel microtubule poison. Biochem. Pharmacol. 74:981–91. doi:10.1016/j.bcp.2007.07.003.
  • Azad, M. B., Y. Chen, and S. B. Gibson. 2009. Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment. Antioxid. Redox. Signal 11:777–90. doi:10.1089/ARS.2008.2270.
  • Bakand, S., A. Hayes, and F. Dechsakulthorn. 2012. Nanoparticles: A review of particle toxicology following inhalation exposure. Inhal. Toxicol. 24:125–35. doi:10.3109/08958378.2010.642021.
  • Cheng, Y., F. Qiu, S. Tashiro, S. Onodera, and T. Ikejima. 2008. ERK and JNK mediate TNF alpha-induced p53 activation in apoptotic and autophagic l929 cell death . Biochem. Biophys. Res. Commun. 376:483–88. doi:10.1016/j.bbrc.2008.09.018.
  • Chuang, S. M., I. C. Wang, and J. L. Yang. 2000. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 21:1423–32. doi:10.1093/carcin/21.7.1423.
  • Crane, F. L., and H. Low. 2008. Reactive oxygen species generation at the plasma membrane for antibody control. Autoimmun Rev 7:518–522. doi: 10.1016/j.autrev.2008.04.004.
  • Crosera, M., M. Bovenzi, G. Maina, G. Adami, C. Zanette, C. Florio, and F. Filon Larese. 2009. Nanoparticle dermal absorption and toxicity: A review of the literature. Int. Arch. Occup. Environ. Health 82:1043–55. doi:10.1007/s00420-009-0458-x.
  • Dhupal, M., J. M. Oh, D. R. Tripathy, S. K. Kim, S. B. Koh, and K. S. Park. 2018. Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ros-dependent SAPK/JNK and p38 MAPK activation. Int. J. Nanomed. 13:6735–50. doi:10.2147/ijn.S176087.
  • Dobrzyńska, M. M., A. Gajowik, J. Radzikowska, A. Lankoff, M. Dušinská, and M. Kruszewski. 2014. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology. 315:86–91. doi:10.1016/j.tox.2013.11.012.
  • Freitas, G. P., H. B. Lopes, A. L. G. Almeida, R. P. F. Abuna, R. Gimenes, L. E. B. Souza, D. T. Covas, M. M. Beloti, and A. L. Rosa. 2017. Potential of osteoblastic cells derived from bone marrow and adipose tissue associated with a polymer/ceramic composite to repair bone tissue. Calcif. Tissue Int. 101:312–20. doi:10.1007/s00223-017-0282-3.
  • Ghavami, S., M. Eshragi, S. R. Ande, W. J. Chazin, T. Klonisch, A. J. Halayko, K. D. McNeill, M. Hashemi, C. Kerkhoff, and M. Los. 2010. S100a8/a9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 20:314–31. doi:10.1038/cr.2009.129.
  • Goncalves, D. M., S. Chiasson, and D. Girard. 2010. Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles. Toxicol In Vitro 24:1002–08. doi:10.1016/j.tiv.2009.12.007.
  • Gurr, J. R., A. S. Wang, C. H. Chen, and K. Y. Jan. 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73. doi:10.1016/j.tox.2005.05.007.
  • He, C., and D. J. Klionsky. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67–93. doi:10.1146/annurev-genet-102808-114910.
  • Hugo, H., M. L. Ackland, T. Blick, M. G. Lawrence, J. A. Clements, E. D. Williams, and E. W. Thompson. 2007. Epithelial–Mesenchymal and mesenchymal–Epithelial transitions in carcinoma progression. J. Cell. Physiol. 213:374–83. doi:10.1002/jcp.21223.
  • Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49. doi:10.1038/nature00870.
  • Jin, C. Y., B. S. Zhu, X. F. Wang, and Q. H. Lu. 2008. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem. Res. Toxicol. 21:1871–77. doi:10.1021/tx800179f.
  • Kang, S. J., B. M. Kim, Y. J. Lee, and H. W. Chung. 2008. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen. 49:399–405. doi:10.1002/em.20399.
  • Kang, S. J., B. M. Kim, Y. J. Lee, S. H. Hong, and H. W. Chung. 2009. Titanium dioxide nanoparticles induce apoptosis through the JNK/p38-caspase-8-Bid pathway in phytohemagglutinin-stimulated human lymphocytes. Biochem. Biophys. Res. Commun. 386:682–87. doi:10.1016/j.bbrc.2009.06.097.
  • Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A. G. Lenz, T. Fernandes, R. P. Schins, F. R. Cassee, et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health–ENPRA project–The highlights, limitations, and current and future challenges. J. Toxicol. Environ. Health B 19:1–28. doi:10.1080/10937404.2015.1126210.
  • Lamouille, S., J. Xu, and R. Derynck. 2014. Molecular mechanisms of epithelial–Mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15:178–96. doi:10.1038/nrm3758.
  • Li, M., F. Luan, Y. Zhao, H. Hao, Y. Zhou, W. Han, and X. Fu. 2016. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis. Exp. Biol. Med. 241:1–13. doi:10.1177/1535370215597194.
  • Liu, B., Y. Cheng, B. Zhang, H. J. Bian, and J. K. Bao. 2009. Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A 375 cells through a mitochondria-mediated ROS-p38-p53 pathway. Cancer Lett. 275:54–60. doi:10.1016/j.canlet.2008.09.042.
  • Mackey, A. M., N. Sanvicens, G. Groeger, F. Doonan, D. Wallace, and T. G. Cotter. 2008. Redox survival signalling in retina-derived 661W cells. Cell Death Differ. 15:1291–303. doi:10.1038/cdd.2008.43.
  • Martins, A. D. C., L. F. Azevedo, C. C. de Souza Rocha, M. F. H. Carneiro, V. P. Venancio, M. R. de Almeida, L. M. G. Antunes, R. de Carvalho Hott, J. L. Rodrigues, A. T. Ogunjimi, et al. 2017. Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. J. Toxicol. Environ. Health Part A 80:1156–65. doi:10.1080/15287394.2017.1357376.
  • Meena, R., M. Rani, R. Pal, and P. Rajamani. 2012. Nano-TiO2-induced apoptosis by oxidative stress-mediated DNA damage and activation of p53 in human embryonic kidney cells. Appl. Biochem. Biotechnol. 167:791–808. doi:10.1007/s12010-012-9699-3.
  • Meirelles, L. S., and N. B. Nardi. 2009. Methodology, biology, and clinical applications of mesenchymal stem cells. Front. Biosci. 14:4281–98. doi:10.2741/3528.
  • Mueller, L. P., J. Luetzkendorf, T. Mueller, K. Reichelt, H. Simon, and H. J. Schmoll. 2006. Presence of mesenchymal stem cells in human bone marrow after exposure to chemotherapy: Evidence of resistance to apoptosis induction. Stem Cells 24:2753–65. doi:10.1634/stemcells.2006-0108.
  • Ng, F., S. Boucher, S. Koh, K. S. Sastry, L. Chase, U. Lakshmipathy, C. Choong, Z. Yang, M. C. Vemuri, M. S. Rao, et al. 2008. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112:295–307. doi:10.1182/blood-2007-07-103697.
  • Oh, S. H., and S. C. Lim. 2009. Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by capsaicin (8-methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells. J. Pharmacol. Exp. Ther. 329:112–22. doi:10.1124/jpet.108.144113.
  • Ortiz, L. A., F. Gambelli, C. McBride, D. Gaupp, M. Baddoo, N. Kaminski, and D. G. Phinney. 2003. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. U S A 100:8407–11. doi:10.1073/pnas.1432929100.
  • Oswald, J., S. Boxberger, B. Jorgensen, S. Feldmann, G. Ehninger, M. Bornhauser, and C. Werner. 2004. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–84. doi:10.1634/stemcells.22-3-377.
  • Pujalté, I., D. Dieme, S. Haddad, A. M. Serventi, and M. Bouchard. 2017. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol. Lett. 265:77–85. doi:10.1016/j.toxlet.2016.11.014.
  • Rahman, Q., J. Norwood, and G. Hatch. 1997. Evidence that exposure of particulate air pollutants to human and rat alveolar macrophages leads to differential oxidative response. Biochem. Biophys. Res. Commun. 240:669–72. doi:10.1006/bbrc.1997.7373..
  • Raman, M., W. Chen, and M. H. Cobb. 2007. Differential regulation and properties of MAPKs. Oncogene 26:3100–12. doi:10.1038/sj.onc.1210392.
  • Sanchez, C. G., P. Penfornis, A. Z. Oskowitz, A. G. Boonjindasup, D. Z. Cai, S. S. Dhule, B. G. Rowan, A. Kelekar, D. S. Krause, and R. R. Pochampally. 2011. Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis 32:964–72. doi:10.1093/carcin/bgr029.
  • Shakeel, M., F. Jabeen, S. Shabbir, M. S. Asghar, M. S. Khan, and A. S. Chaudhry. 2016. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: A review. Biol. Trace Elem. Res. 172:1–36. doi:10.1007/s12011-015-0550-x.
  • Shi, H., R. Magaye, V. Castranova, and J. Zhao. 2013. Titanium dioxide nanoparticles: A review of current toxicological data. Part Fibre Toxicol. 10:15. doi:10.1186/1743-8977-10-15.
  • Shi, Y., F. Wang, J. He, S. Yadav, and H. Wang. 2010. Titanium dioxide nanoparticles cause apoptosis in BEAS-2b cells through the caspase 8/t-Bid-independent mitochondrial pathway. Toxicol. Lett. 196:21–27. doi:10.1016/j.toxlet.2010.03.014.
  • Shukla, R. K., A. Kumar, D. Gurbani, A. K. Pandey, S. Singh, and A. Dhawan. 2013. TiO(2) nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 7:48–60. doi:10.3109/17435390.2011.629747.
  • Streeter, A., F. M. Menzies, and D. C. Rubinsztein. 2016. LC3-II tagging and western blotting for monitoring autophagic activity in mammalian cells. Meth. Mol. Biol. 1303:161–70. doi:10.1007/978-1-4939-2627-5_8.
  • Tassinari, R., F. Cubadda, G. Moracci, F. Aureli, M. D’Amato, M. Valeri, B. De Berardis, A. Raggi, A. Mantovani, D. Passeri, et al. 2014. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: Focus on reproductive and endocrine systems and spleen. Nanotoxicology 8:654–62. doi:10.3109/17435390.2013.822114.
  • Toma, C., M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98. doi:10.1161/hc0102.101442.
  • Trouiller, B., R. Reliene, A. Westbrook, P. Solaimani, and R. H. Schiestl. 2009. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 69:8784–89. doi:10.1158/0008-5472.CAN-09-2496.
  • Wang, J. J., B. J. Sanderson, and H. Wang. 2007. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat. Res. 628:99–106. doi:10.1016/j.mrgentox.2006.12.003.
  • Wang, M. L., R. Tuli, P. A. Manner, P. F. Sharkey, D. J. Hall, and R. S. Tuan. 2003. Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. J. Orthop. Res. 21:697–707. doi:10.1016/S0736-0266(02)00241-3.
  • Wang, X., J. L. Martindale, Y. Liu, and N. J. Holbrook. 1998. The cellular response to oxidative stress: Influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem. J. 333:291–300. doi:10.1042/bj3330291.
  • Wei, H., Z. Li, S. Hu, X. Chen, and X. Cong. 2010. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns both endoplasmic reticulum stress and mitochondrial death pathway through regulation of caspases, p38 and JNK. J. Cell. Biochem. 111:967–78. doi:10.1002/jcb.22785.
  • Xiong, Y., A. L. Contento, P. Q. Nguyen, and D. C. Bassham. 2007. Degradation of oxidized proteins by autophagy during oxidative stress in arabidopsis. Plant Physiol. 143:291–99. doi:10.1104/pp.106.092106.
  • Yadav, S., Y. Shi, F. Wang, and H. Wang. 2010. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway. Toxicol. Appl. Pharmacol. 244:263–72. doi:10.1016/j.taap.2010.01.001.
  • Yang, C., V. Kaushal, S. V. Shah, and G. P. Kaushal. 2008. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am. J. Physiol. Renal. Physiol. 294:F777–F787. doi:10.1152/ajprenal.00590.2007.
  • Yin, Z. F., L. Wu, H. G. Yang, and Y. H. Su. 2013. Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys. 15:4844–58. doi:10.1039/c3cp43938k.
  • Yoo, K. C., C. H. Yoon, D. Kwon, K. H. Hyun, S. J. Woo, R. K. Kim, E. J. Lim, Y. Suh, M. J. Kim, T. H. Yoon, et al. 2012. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int. J. Nanomed. 7:1203–14. doi:10.2147/ijn.s28647.
  • Yu, J. X., and T. H. Li. 2011. Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings. Cell Biosci. 1:19. doi:10.1186/2045-3701-1-19.
  • Zhu, W., J. Chen, X. Cong, S. Hu, and X. Chen. 2006. Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 24:416–25. doi:10.1634/stemcells.2005-0121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.