372
Views
10
CrossRef citations to date
0
Altmetric
Articles

The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis

ORCID Icon, , , , &

References

  • Abraham, A. 2016. Understanding the effect of phytochemical coated silver nanoparticles on mammalian cells and the protein interactions with the surface corona of these nanoparticles, Science. Melbourne: RMIT University.
  • Ahmad, N., S. Sharma, M. K. Alam, V. N. Singh, S. F. Shamsi, B. R. Mehta, and A. Fatma. 2010. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B 81:81–86. doi:10.1016/j.colsurfb.2010.06.029.
  • Albanese, A., P. S. Tang, and W. C. W. Chan. 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14:1–16. doi:10.1146/annurev-bioeng-071811-150124.
  • Amde, M., J.-F. Liu, Z.-Q. Tan, and D. Bekana. 2017. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environ. Pollut. 230:250–67. doi:10.1016/j.envpol.2017.06.064.
  • Angel, B. M., P. Vallotton, and S. C. Apte. 2015. On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae. Aquat. Toxicol. 168:90–97. doi:10.1016/j.aquatox.2015.09.015.
  • Angelucci, F., P. Baiocco, M. Brunori, L. Gourlay, V. Morea, and A. Bellelli. 2005. Insights into the catalytic mechanism of glutathione s-transferase: The lesson from Schistosoma haematobium. Structure 13:1241–46. doi:10.1016/j.str.2005.06.007.
  • Arulvasu, C., S. M. Jennifer, D. Prabhu, and D. Chandhirasekar. 2014. Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci. World J. 2014:1–10. doi:10.1155/2014/256919.
  • Arunachalam, G. 2010. The effect of organophosphorous pesticides on acetylcholinesterase activity in Daphnia carinata and Paratya australiensis.
  • Bacchetta, C., G. López, G. Pagano, D. T. Muratt, L. M. de Carvalho, and J. M. Monserrat. 2016a. Toxicological effects induced by silver nanoparticles in zebra fish (Danio rerio) and in the bacteria communities living at their surface. Bull Environ Contam Toxicol 97:456–62. doi:10.1007/s00128-016-1883-7.
  • Bacchetta, R., B. Maran, M. Marelli, N. Santo, and P. Tremolada. 2016b. Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach. Environ. Res. 148:376–85. doi:10.1016/j.envres.2016.04.028.
  • Bacchetta, R., N. Santo, I. Valenti, D. Maggioni, M. Longhi, and P. Tremolada. 2018. Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: Does a shape effect exist? Nanotoxicology 12:201–23. doi:10.1080/17435390.2018.1430258.
  • Badawy, A. M. E., T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44:1260–66. doi:10.1021/es902240k.
  • Bagchi, D., M. Bagchi, and S. J. Stohs. 2001. Chromium (VI)‐induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol. Cell. Biochem. 222:149–58. doi:10.1023/A:1017958028256.
  • Barata, C., I. Varo, J. C. Navarro, S. Arun, and C. Porte. 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 140:175–86.
  • Baumann, J., J. Köser, D. Arndt, and J. Filser. 2014. The coating makes the difference: Acute effects of iron oxide nanoparticles on Daphnia magna. Sci. Total Environ. 484:176–84. doi:10.1016/j.scitotenv.2014.03.023.
  • Becaro, A. A., C. M. Jonsson, F. C. Puti, M. C. Siqueira, L. H. C. Mattoso, D. S. Correa, and M. D. Ferreira. 2015. Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ. Nanotechnol. Monit. Manage. 3:22–29. doi:10.1016/j.enmm.2014.11.002.
  • Behra, R., L. Sigg, M. J. D. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri-Fink, and B. Rothen-Rutishauser. 2013. Bioavailability of silver nanoparticles and ions: From a chemical and biochemical perspective. J. R. Soc. Interface 10:20130396. doi:10.1098/rsif.2013.0396.
  • Bhuvaneshwari, M., V. Iswarya, S. Archanaa, G. M. Madhu, G. K. Suraish Kumar, R. Nagarajan, N. Chandrasekaran, and A. Mukherjee. 2015. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat. Toxicol. 162:29–38. doi:10.1016/j.aquatox.2015.03.004.
  • Blinova, I., J. Niskanen, P. Kajankari, L. Kanarbik, A. Käkinen, H. Tenhu, O.-P. Penttinen, and A. Kahru. 2013. Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. Pollut. Res. 20:3456–63. doi:10.1007/s11356-012-1290-5.
  • Bone, A. J., B. P. Colman, A. P. Gondikas, K. M. Newton, K. H. Harrold, R. M. Cory, J. M. Unrine, S. J. Klaine, C. W. Matson, and R. T. Di Giulio. 2012. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: Part 2–Toxicity and Ag speciation. Environ. Sci. Technol. 46:6925–33. doi:10.1021/es204683m.
  • Bozich, J. S., S. E. Lohse, M. D. Torelli, C. J. Murphy, R. J. Hamers, and R. D. Klaper. 2014. Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ. Sci. Nano 1:260–70.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–54. doi:10.1016/0003-2697(76)90527-3.
  • Buffet, P.-E., J.-F. Pan, L. Poirier, C. Amiard-Triquet, J.-C. Amiard, P. Gaudin, C. Risso-de Faverney, M. Guibbolini, D. Gilliland, and E. Valsami-Jones. 2013. Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. Ecotoxicol. Environ. Saf. 89:117–24. doi:10.1016/j.ecoenv.2012.11.019.
  • Buffet, P.-E., O. F. Tankoua, J.-F. Pan, D. Berhanu, C. Herrenknecht, L. Poirier, C. Amiard-Triquet, J.-C. Amiard, J.-B. Bérard, and C. Risso. 2011. Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84:166–74. doi:10.1016/j.chemosphere.2011.02.003.
  • Bystrzejewska-Piotrowska, G., J. Golimowski, and P. L. Urban. 2009. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage. 29:2587–95. doi:10.1016/j.wasman.2009.04.001.
  • Choi, J. E., S. Kim, J. H. Ahn, P. Youn, J. S. Kang, K. Park, J. Yi, and D.-Y. Ryu. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat. Toxicol. 100:151–59. doi:10.1016/j.aquatox.2009.12.012.
  • Conine, A. L., and P. C. Frost. 2017. Variable toxicity of silver nanoparticles to Daphnia magna: Effects of algal particles and animal nutrition. Ecotoxicology 26:118–26. doi:10.1007/s10646-016-1747-2.
  • Contino, A., G. Maccarrone, M. Zimbone, R. Reitano, P. Musumeci, L. Calcagno, and I. P. Oliveri. 2016. Tyrosine capped silver nanoparticles: A new fluorescent sensor for the quantitative determination of copper(II) and cobalt(II) ions. J. Colloid Interface Sci. 462:216–22. doi:10.1016/j.jcis.2015.10.008.
  • Cruz, D., P. L. Falé, A. Mourato, P. D. Vaz, M. L. Serralheiro, and A. R. L. Lino. 2010. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf. B 81:67–73. doi:10.1016/j.colsurfb.2010.06.025.
  • Cupi, D., N. B. Hartmann, and A. Baun. 2015. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Environ. Toxicol. Chem. 34:497–506. doi:10.1002/etc.2855.
  • Daima, H. K., P. R. Selvakannan, A. E. Kandjani, R. Shukla, S. K. Bhargava, and V. Bansal. 2014. Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6:758–65. doi:10.1039/C3NR03806H.
  • Dauda, S., M. A. Chia, and S. P. Bako. 2017. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquat. Toxicol. 187:108–14. doi:10.1016/j.aquatox.2017.03.020.
  • Dominguez, G. A., S. E. Lohse, M. D. Torelli, C. J. Murphy, R. J. Hamers, G. Orr, and R. D. Klaper. 2015. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquat. Toxicol. 162:1–9. doi:10.1016/j.aquatox.2015.02.015.
  • Dong, F., N. Fitriah, M. Zaidi, E. Valsami-Jones, and J.-U. Kreft. 2017. Time-resolved toxicity study reveals the dynamic interactions between uncoated silver nanoparticles and bacteria. Nanotoxicology 11:637–46. doi:10.1080/17435390.2017.1342010.
  • Dubey, K., B. G. Anand, R. Badhwar, G. Bagler, P. N. Navya, H. K. Daima, and K. Kar. 2015. Tyrosine-and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids 47:2551–60. doi:10.1007/s00726-015-2046-6.
  • Duse, L., E. Baghdan, S. R. Pinnapireddy, K. H. Engelhardt, J. Jedelská, J. Schaefer, P. Quendt, and U. Bakowsky. 2017. Preparation and characterization of curcumin loaded chitosan nanoparticles for photodynamic therapy. Phys. Status Solidi. 215:1700709. doi:10.1002/pssa.201700709.
  • El Badawy, A. M., R. G. Silva, B. Morris, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat. 2010. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 45:283–87. doi:10.1021/es1034188.
  • El Khoury, E., M. Abiad, Z. G. Kassaify, and D. Patra. 2015. Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity. Colloids Surf. B 127:274–80. doi:10.1016/j.colsurfb.2015.01.050.
  • Elimelech, M., J. Gregory, X. Jia, and R. A. Williams. 1995. Particle dDeposition and aggregation: Measurement, modeling and simulation. Oxford: Butterworth-Heinemann.
  • Ellis, L. J. A., M. Baalousha, E. Valsami-Jones, and J. R. Lead. 2018. Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. Chemosphere 191:616–25. doi:10.1016/j.chemosphere.2017.10.006.
  • Ellis, L. J. A., E. Valsami-Jones, J. R. Lead, and M. Baalousha. 2016. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. Sci. Total Env. 568 (Supplement C):95–106. doi:10.1016/j.scitotenv.2016.05.199.
  • Facchinetti, F., V. L. Dawson, and T. M. Dawson. 1998. Free radicals as mediators of neuronal injury. Cell. Mol. Neurobiol. 18:667–82. doi:10.1023/a:1020685903186.
  • Fang, J., A. Shijirbaatar, D.-H. Lin, D.-J. Wang, B. Shen, and Z.-Q. Zhou. 2017. Stability of co-existing ZnO and TiO2 nanomaterials in natural water: Aggregation and sedimentation mechanisms. Chemosphere 184:1125–33. doi:10.1016/j.chemosphere.2017.06.097.
  • Federici, G., B. J. Shaw, and R. D. Handy. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol. 84:415–30. doi:10.1016/j.aquatox.2007.07.009.
  • Frasco, M. F., and L. Guilhermino. 2002. Effects of dimethoate and beta-naphthoflavone on selected biomarkers of Poecilia reticulata. Fish Physiol. Biochem. 26:149–56. doi:10.1023/A:1025457831923.
  • Gagne, F., J. Auclair, M. Fortier, A. Bruneau, M. Fournier, P. Turcotte, M. Pilote, and C. Gagnon. 2013a. Bioavailability and immunotoxicity of silver nanoparticles to the freshwater mussel Elliptio complanata. J. Toxicol. Environ. Health 76:767–77. doi:10.1080/15287394.2013.818602.
  • Gagne, F., J. Auclair, P. Turcotte, and C. Gagnon. 2013b. Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. J. Toxicol. Environ. Health 76:479–90. doi:10.1080/15287394.2013.779561.
  • Garg, S., H. Rong, C. J. Miller, and T. D. Waite. 2016. Oxidative dissolution of silver nanoparticles by chlorine: Implications to silver nanoparticle fate and toxicity. Environ. Sci. Technol. 50:3890–96. doi:10.1021/acs.est.6b00037.
  • Giese, B., F. Klaessig, B. Park, R. Kaegi, M. Steinfeldt, H. Wigger, A. Gleich, and F. Gottschalk. 2018. Risks, release and concentrations of engineered nanomaterial in the environment. Sci. Rep. 8:1565. doi:10.1038/s41598-018-19275-4.
  • Gomes, T., C. G. Pereira, C. Cardoso, V. Serrão Sousa, M. R. Teixeira, J. P. Pinheiro, and M. J. Bebianno. 2014. Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis. Mar. Environ. Res. 101:208–14. doi:10.1016/j.marenvres.2014.07.004.
  • Govindasamy, R., and A. A. Rahuman. 2012. Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J. Environ. Sci. 24:1091–98. doi:10.1016/S1001-0742(11)60845-0.
  • Habig, W. H., M. J. Pabst, and W. B. Jakoby. 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130–39.
  • Hadwan, M. H. 2016. New method for assessment of serum catalase activity. Indian J Sci Technol 9. doi: 10.17485/ijst/2016/v9i4/80499.
  • Halliwell, B., and J. M. C. Gutteridge. 2015. Free radicals in biology and medicine. USA: Oxford University Press.
  • Hoheisel, S. M., S. Diamond, and D. Mount. 2012. Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environ. Toxicol. Chem. 31:2557–63. doi:10.1002/etc.1978.
  • Hu, Y., X. Chen, K. Yang, and D. Lin. 2018. Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water. Sci. Total Env. 618:838–46. doi:10.1016/j.scitotenv.2017.08.222.
  • Hunter, R. J. 1981. Zeta Potential in Colloid Science: Principles and Applications. London: Academic Press.
  • Huynh, K. A., and K. L. Chen. 2011. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ. Sci. Technol. 45:564–5571. doi:10.1021/es200157h.
  • Iswarya, V., J. Manivannan, A. De, S. Paul, R. Roy, J. B. Johnson, R. Kundu, N. Chandrasekaran, A. Mukherjee, and A. Mukherjee. 2016. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ. Sci. Pollut. Res. 23:4844–58. doi:10.1007/s11356-015-5683-0.
  • Ivask, A., I. Kurvet, K. Kasemets, I. Blinova, V. Aruoja, S. Suppi, H. Vija, A. Käkinen, T. Titma, and M. Heinlaan. 2014. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS ONE 9:e102108. doi:10.1371/journal.pone.0102108.
  • Jiménez-Lamana, J., and V. I. Slaveykova. 2016. Silver nanoparticle behaviour in lake water depends on their surface coating. Sci. Total Env. 573 (Supplement C):946–53. doi:10.1016/j.scitotenv.2016.08.181.
  • Kaweeteerawat, C., P. N. Ubol, S. Sangmuang, S. Aueviryavit, and R. Maniratanachote. 2017. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. 80:1276–89. doi:10.1080/15287394.2017.1376727.
  • Kermanizadeh, A., I. L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobson, A.-G. Lenz, T. Fernandes, R. P. F. Roels, F. R. Cassee, H. Wallin, et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health-ENPRA Project-The highlights,limitations and current and furure challenges. J. Toxicol. Environ. Health 19:1–28. doi:10.1080/10937404.2015.1126210.
  • Khaskel, A., P. Barman, and U. Jana. 2015. L-Tyrosine loaded nanoparticles: An efficient catalyst for the synthesis of dicoumarols and Hantzsch 1, 4-dihydropyridines. R. Soc. Chem. Adv. 5:13366–73.
  • Kierdaszuk, B., I. Gryczynski, A. Modrak‐Wojcik, A. Bzowska, D. Shugar, and J. R. Lakowicz. 1995. Fluorescence of tyrosine and tryptophan in proteins using one‐and two‐photon excitation. Photochem. Photobiol. 61:319–24. doi:10.1111/j.1751-1097.1995.tb08615.x.
  • Kim, I., B.-T. Lee, H.-A. Kim, K.-W. Kim, S. D. Kim, and Y.-S. Hwang. 2016. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143:99–105. doi:10.1016/j.chemosphere.2015.06.046.
  • Kohen, R., and A. Nyska. 2002. Invited review: Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 30:620–50. doi:10.1080/01926230290166724.
  • Köser, J., M. Engelke, M. Hoppe, A. Nogowski, J. Filser, and J. Thöming. 2017. Predictability of silver nanoparticle speciation and toxicity in ecotoxicological media. Environ. Sci. Nano 4:1470–83.
  • Kumar, A., R. Correll, S. Grocke, and C. Bajet. 2010a. Toxicity of selected pesticides to freshwater shrimp, Paratya australiensis (Decapoda: Atyidae): Use of time series acute toxicity data to predict chronic lethality. Ecotoxicol. Environ. Saf. 73 (3):360–69. doi:10.1016/j.ecoenv.2009.09.001.
  • Kumar, A., H. Doan, M. Barnes, J. C. Chapman, and R. S. Kookana. 2010b. Response and recovery of acetylcholinesterase activity in freshwater shrimp, Paratya australiensis (Decapoda: Atyidae) exposed to selected anti-cholinesterase insecticides. Ecotoxicol. Environ. Saf. 73:1503–10. doi:10.1016/j.ecoenv.2010.07.016.
  • Kwok, K. W. H., W. Dong, S. M. Marinakos, J. Liu, A. Chilkoti, M. R. Wiesner, M. Chernick, and D. E. Hinton. 2016. Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation. Nanotoxicology 10:1306–17. doi:10.1080/17435390.2016.1206150.
  • Lee, D.-Y., C. Fortin, and P. G. C. Campbell. 2005. Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Aquat. Toxicol. 75:127–35. doi:10.1016/j.aquatox.2005.06.011.
  • Lekamge, S., A. S. Ball, R. Shukla, and D. Nugegoda. 2018a. The toxicity of nanoparticles to organisms in freshwater. In Reviews of environmental contamination and toxicology, ed. P. D. Voogt, 248:1–80. New York, NY: Springer. doi:10.1007/398_2018_18.
  • Lekamge, S., A. F. Miranda, A. Abraham, V. Li, R. Shukla, V. Bansal, and D. Nugegoda. 2018b. The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata and Paratya australiensis. Front. Environ. Sci. 6:152. doi:10.3389/fenvs.2018.00152.
  • Li, Y., W. Zhang, J. Niu, and Y. Chen. 2013. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environ. Sci. Technol. 47:10293–301.
  • Liu, C., W. Leng, and P. J. Vikesland. 2018. Controlled evaluation of the impacts of surface coatings on silver nanoparticle dissolution rates. Environ. Sci. Technol. 52:2726–34. doi:10.1021/acs.est.7b05622.
  • Liu, J., and R. H. Hurt. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44:2169–75. doi:10.1021/es9035557.
  • Liu, J., D. A. Sonshine, S. Shervani, and R. H. Hurt. 2010. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 4:6903–13. doi:10.1021/nn102272n.
  • Manier, N., A. Bado-Nilles, P. Delalain, O. Aguerre-Chariol, and P. Pandard. 2013. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ. Pollut. 180:63–70. doi:10.1016/j.envpol.2013.04.040.
  • Mao, B.-H., Z. Y. Chen, Y.-J. Wang, and S. J. Yan. 2018. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci. Rep. 8:2445. doi:10.1038/s41598-018-20728-z.
  • Martin, J. D., T. L. L. Colson, V. S. Langlois, and C. D. Metcalfe. 2017. Biomarkers of exposure to nanosilver and silver accumulation in yellow perch (Perca flavescens). Environ. Toxicol. Chem. 36:1211–20. doi:10.1002/etc.3644.
  • Matés, J. M., and F. Sánchez-Jiménez. 1999. Antioxidant enzymes and their implications in pathophysiologic processes. Frontiers Bioscience 4:0339–45. doi:10.2741/A432.
  • Maurer-Jones, M. A., S. A. Love, S. Meierhofer, B. J. Marquis, Z. Liu, and C. L. Haynes. 2013. Toxicity of nanoparticles to brine shrimp: An introduction to nanotoxicity and interdisciplinary science. J. Chem. Educ. 90:475–78. doi:10.1021/ed3005424.
  • McCarthy, M. P., D. L. Carroll, and A. H. Ringwood. 2013. Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. Aquat. Toxicol. 138:123–28. doi:10.1016/j.aquatox.2013.04.015.
  • McGillicuddy, E., I. Murray, S. Kavanagh, L. Morrison, A. Fogarty, M. Cormican, P. Dockery, M. Prendergast, N. Rowan, and D. Morris. 2017. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Env. 575:231–46. doi:10.1016/j.scitotenv.2016.10.041.
  • Melegari, S. P., F. Perreault, R. H. Ribeiro Costa, R. Popovic, and W. G. Matias. 2013. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat. Toxicol. 142:431–40. doi:10.1016/j.aquatox.2013.09.015.
  • Misra, S. K., A. Dybowska, D. Berhanu, S. N. Luoma, and E. Valsami-Jones. 2012. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 438:225–32. doi:10.1016/j.scitotenv.2012.08.066.
  • Nasser, F., A. Davis, E. Valsami-Jones, and I. Lynch. 2016. Shape and charge of gold nanomaterials influence survivorship, oxidative stress and moulting of Daphnia magna. Nanomaterials 6:222. doi:10.3390/nano6120222.
  • Navarro, E., F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, and R. Behra. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 42:8959–64. doi:10.1021/es801785m.
  • Nune, S. K., N. Chanda, R. Shukla, K. Katti, R. R. Kulkarni, S. Thilakavathi, S. Mekapothula, R. Kannan, and K. V. Katti. 2009. Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J. Mater. Chem. 19:2912–20. doi:10.1039/b822015h.
  • Oomen, A. G., K. G. Steinhäuser, E. A. J. Bleeker, F. van Broekhuizen, A. Sips, S. Dekkers, S. W. P. Wijnhoven, and P. G. Sayre. 2018. Risk assessment frameworks for nanomaterials: Scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact 9:1–13. doi:10.1016/j.impact.2017.09.001.
  • Oukarroum, A., S. Bras, F. Perreault, and R. Popovic. 2012. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 78:80–85. doi:10.1016/j.ecoenv.2011.11.012.
  • Ozkaleli, M., and A. Erdem. 2018. Biotoxicity of TiO2 nanoparticles on Raphidocelis subcapitata microalgae exemplified by membrane deformation. Int. J. Environ. Res. Public Health 15:416. doi:10.3390/ijerph15061188.
  • Pacurari, M., Y. Qian, W. Fu, D. Schwegler-Berry, M. Ding, V. Castranova, and N. L. Guo. 2012. Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J. Toxicol. Environ. Health 75:112–28.
  • Park, S., J. Woodhall, G. Ma, J. G. C. Veinot, and A. Boxall. 2015. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates? Environ. Toxicol. Chem. 34:850–59.
  • Parrilla-Taylor, D. P., T. Zenteno-Savín, and F. J. Magallón-Barajas. 2013. Antioxidant enzyme activity in pacific whiteleg shrimp (Litopenaeus vannamei) in response to infection with white spot syndrome virus. Aquaculture 380:41–46. doi:10.1016/j.aquaculture.2012.11.031.
  • Phenrat, T., T. C. Long, G. V. Lowry, and B. Veronesi. 2009. Partial oxidation (“Aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ. Sci. Technol. 43:195–200. doi:10.1021/es801955n.
  • Phyu, Y. L., M. S. J. Warne, and R. P. Lim. 2005. Toxicity and bioavailability of atrazine and molinate to the freshwater shrimp (Paratya australiensis) under laboratory and simulated field conditions. Ecotoxicol. Environ. Saf. 60:113–22. doi:10.1016/j.ecoenv.2004.07.006.
  • Qian, H., K. Zhu, H. Lu, M. Lavoie, S. Chen, Z. Zhou, Z. Deng, J. Chen, and Z. Fu. 2016. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses. Sci. Total Environ. 572:1213–21. doi:10.1016/j.scitotenv.2016.08.039.
  • Quik, J. T. K., M. C. Stuart, M. Wouterse, W. Peijnenburg, A. J. Hendriks, and D. van de Meent. 2012. Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ. Toxicol. Chem. 31:1019–22. doi:10.1002/etc.1783.
  • Ribeiro, F., A. M. Cornelis, M. D. P. Van Gestel, S. Azevedo, A. M. V. M. Soares, and S. Loureiro. 2017. Bioaccumulation of silver in Daphnia magna: Waterborne and dietary exposure to nanoparticles and dissolved silver. Sci. Total Env. 574:1633–39. doi:10.1016/j.scitotenv.2016.08.204.
  • Ribeiro, F., J. A. Gallego-Urrea, K. Jurkschat, A. Crossley, M. Hassellöv, C. Taylor, A. M. V. M. Soares, and S. Loureiro. 2014. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 466:232–41. doi:10.1016/j.scitotenv.2013.06.101.
  • Rikans, L. E., and K. R. Hornbrook. 1997. Lipid peroxidation, antioxidant protection and aging. Biochim. Biophys. Acta-Mol. Basis Dis. 1362:116–27. doi:10.1016/S0925-4439(97)00067-7.
  • Rodrigues, M. Aparecida, J. Nunes Fernandes, R. Ruggiero, and W. Guerra. 2012. Palladium complex containing curcumin as ligand: Thermal and spectral characterization. Am. J. Chem. 2:157–59. doi:10.5923/j.chemistry.20120203.10.
  • Rodríguez-León, E., R. Iñiguez-Palomares, R. E. Navarro, R. Herrera-Urbina, J. Tánori, C. Iñiguez-Palomares, and A. Maldonado. 2013. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale. Res. Lett. 8:318. doi:10.1186/1556-276X-8-318.
  • Rogers, N. J., N. M. Franklin, S. C. Apte, G. E. Batley, B. M. Angel, J. R. Lead, and M. Baalousha. 2010. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ. Chem. 7:50–60. doi:10.1071/EN09123.
  • Römer, I., T. A. White, M. Baalousha, K. Chipman, M. R. Viant, and J. R. Lead. 2011. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr. A 1218:4226–33. doi:10.1016/j.chroma.2011.03.034.
  • Sekine, R., K. Khurana, K. Vasilev, E. Lombi, and E. Donner. 2015. Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: Test container effects and recommendations. Nanotoxicology 9:1005–12. doi:10.3109/17435390.2014.994570.
  • Selvakannan, P. R., A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale, and M. Sastry. 2004. Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20:7825–36. doi:10.1021/la049258j.
  • Sheng, Z., and Y. Liu. 2017. Potential impacts of silver nanoparticles on bacteria in the aquatic environment. J. Environ. Manage. 191:290–96. doi:10.1016/j.jenvman.2017.01.028.
  • Sherin, S., S. Sheeja, R. S. Devi, S. Balachandran, R. S. Soumya, and A. Abraham. 2017. In vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications. Chem. Biol. Interact. 275:35–46. doi:10.1016/j.cbi.2017.07.022.
  • Snitsarev, V., M. N. Young, R. M. S. Miller, and D. P. Rotella. 2013. The spectral properties of (-)-epigallocatechin 3-O-gallate (EGCG) fluorescence in different solvents: Dependence on solvent polarity. PlosOne 8:e79834. doi:10.1371/journal.pone.0079834.
  • Sørensen, S. N., and A. Baun. 2015. Controlling silver nanoparticle exposure in algal toxicity testing – A matter of timing. Nanotoxicology 9:201–09. doi:10.3109/17435390.2014.913728.
  • Stebounova, L. V., E. Guio, and V. H. Grassian. 2011. Silver nanoparticles in simulated biological media: A study of aggregation, sedimentation, and dissolution. J. Nanopart. Res. 13:233–44. doi:10.1007/s11051-010-0022-3.
  • Tejamaya, M., I. Römer, R. C. Merrifield, and J. R. Lead. 2012. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 46:7011–17. doi:10.1021/es2038596.
  • Thomas, C. R., G. C. Hose, M. StJ Warne, and R. P. Lim. 2008. Effects of river water and salinity on the toxicity of deltamethrin to freshwater shrimp, cladoceran, and fish. Arch. Environ. Contam. Toxicol. 55:610–18. doi:10.1007/s00244-008-9147-0.
  • Ulm, L., A. Krivohlavek, D. Jurašin, M. Ljubojević, G. Šinko, T. Crnković, I. Žuntar, S. Šikić, and I. V. Vrček. 2015. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Environ. Sci. Pollut. Res. 22:19990–99. doi:10.1007/s11356-015-5201-4.
  • Vale, G., K. Mehennaoui, S. Cambier, G. Libralato, S. Jomini, and R. F. Domingos. 2016. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview. Aquat. Toxicol. 170:162–74. doi:10.1016/j.aquatox.2015.11.019.
  • Varaprasad, K., Y. M. Mohan, K. Vimala, and K. M. Raju. 2011. Synthesis and characterization of hydrogel‐silver nanoparticle‐curcumin composites for wound dressing and antibacterial application. J. Appl. Polym. Sci. 121:784–96.
  • Von Moos, N., P. Bowen, and V. I. Slaveykova. 2014. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ. Sci. Nano 1:214–32.
  • von Moos, N., and V. I. Slaveykova. 2014. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–State of the art and knowledge gaps. Nanotoxicology 8:605–30. doi:10.3109/17435390.2013.809810.
  • Walters, C., P. Cheng, E. Pool, and V. Somerset. 2016. Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape Rriver crab(Potamanutes periatus) following exposure t silver nanoparticles (AgNP). J. Toxicol. Environ. 79:61–70. doi:10.1080/15287394.2015.1106357.
  • Xia, B., B. Chen, X. Sun, K. Qu, F. Ma, and M. Du. 2015. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Sci. Total Env. 508:525–33. doi:10.1016/j.scitotenv.2014.11.066.
  • Xia, T., M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink, and A. E. Nel. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2:2121. doi:10.1021/nn800511k.
  • Yuan, L., C. J. Richardson, M. Ho, C. W. Willis, B. P. Colman, and M. R. Wiesner. 2018. Stress responses of aquatic plants to silver nanoparticles. Environ. Sci. Technol. 52:2558–65. doi:10.1021/acs.est.7b05837.
  • Yung, M. M. N., P.-A. Fougères, Y. H. Leung, F. Liu, A. B. Djurišić, J. P. Giesy, and K. M. Y. Leung. 2017. Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae. Sci. Rep. 7:15909.
  • Zhao, J., and V. Castranova. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health 14:593–632. doi:10.1080/10937404.2011.615113.
  • Zheng, Q., M. Zhou, W. Deng, and X. C. Le. 2015. Is there a silver lining? Aggregation and photo-transformation of silver nanoparticles in environmental waters. J. Environ. Sci. 34 (Supplement C)):259–62. doi:10.1016/j.jes.2015.07.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.