500
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Toxicity and differential oxidative stress effects on zebrafish larvae following exposure to toxins from the okadaic acid group

, , ORCID Icon, , & ORCID Icon

References

  • Abal, P., M. C. Louzao, T. Suzuki, R. Watanabe, N. Vilariño, C. Carrera, A. M. Botana, M. R. Vieytes, and L. M. Botana. 2018. Toxic action reevaluation of okadaic acid, dinophysistoxin-1 and dinophysistoxin-2: Toxicity equivalency factors based on the oral toxicity study. Cell. Physiol. Biochem. 49:743–57.
  • Abe, F. R., C. Gravato, A. M. V. M. Soares, and D. P. de Oliveira. 2017. Biochemical approaches to assess oxidative stress induced by exposure to natural and synthetic dyes in early life stages in zebrafish. J. Toxicol. Environ. Health, Part A 80:1259–68. doi:10.1080/15287394.2017.1371091.
  • Ahn, J. H., M. G. Cho, S. Sohn, and J. H. Lee. 2019. Inhibition of PP2A activity by H2O2 during mitosis disrupts nuclear envelope reassembly and alters nuclear shape. Exp. Mol. Med. 51:64. doi:10.1038/s12276-019-0260-0.
  • Alarcan, J., R. Biré, L. Le Hégarat, and V. Fessard. 2018. Mixtures of lipophilic phycotoxins: Exposure data and toxicological assessment. Mar Drugs 16:46. doi:10.3390/md16020046.
  • Alves-de-Souza, C., J. L. Iriarte, and J. I. Mardones. 2019. Interannual variability of Dinophysis acuminata and Protoceratium reticulatum in a Chilean Fjord: Insights from the realized niche analysis. Toxins 5:E19. doi:10.3390/toxins11010019.
  • Atencio, L., I. Moreno, A. Jos, S. Pichardo, R. Moyano, A. Blanco, and A. M. Camean. 2008. Dose-dependent antioxidant responses and pathological changes in tenca (Tinca tinca) after acute oral exposure to microcystis under laboratory conditions. Toxicon 52:1–12. doi:10.1016/j.toxicon.2008.05.009.
  • Avdesh, A., M. Chen, M. T. Martin-Iverson, A. Mondal, D. Ong., S. Rainey-Smith, K. Taddei, M. Lardelli, D. M. Groth, G. Verdile, et al. 2012. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction. J Vis Exp 69:e4196. doi:10.3791/4196.
  • Barros, S., A. M. Coimbra, N. Alves, M. Pinheiro, J. B. Quintana, and M. M. Santos. 2020. Chronic exposure to environmentally relevant levels of simvastatin disrupts zebrafish brain gene signaling involved in energy metabolism. J. Toxicol. Environ. Health, Part A 83:113–25. doi:10.1080/15287394.2020.173372.
  • Bechmann, R. K., M. Arnberg, A. Gomiero, S. Westerlund, E. Lyng, M. Berry, T. Agustsson, T. Jager, and L. E. Burridge. 2019. Gill damage and delayed mortality of Northern shrimp (Pandalus borealis) after short time exposure to anti-parasitic veterinary medicine containing hydrogen peroxide. Ecotoxicol. Environ. Saf. 180:473–82. doi:10.1016/j.ecoenv.2019.05.045.
  • Blanco, J. 2018. Accumulation of dinophysis toxins in bivalve molluscs. Toxins 10:453. doi:10.3390/toxins10110453.
  • Blanco, J., G. Álvarez, J. Rengel, R. Díaz, C. Mariño, H. Martín, and E. Uribe. 2018. Accumulation and biotransformation of Dinophysis toxins by the surf clam Mesodesma donacium. Toxins 10:E314. doi:10.3390/toxins10080314.
  • Blanco, J., H. Martín, C. Mariño, and A. E. Rossignoli. 2019. Simple diffusion as the mechanism of okadaic acid uptake by the mussel digestive gland. Toxins 11:395. doi:10.3390/toxins11070395.
  • Braunbeck, T., and E. Lammer. 2006. Background paper on fish embryo toxicity assays; German Federal Environment Agency: Dessau-Roßlau, Germany; p. 298.
  • Cazenave, J. M., D. L. Bistoni, E. Zwirnmann, D. A. Wunderlin, and C. Wiegand. 2006. Attenuating effects of natural organic matter on microcystin toxicity in zebra fish (Danio rerio) embryos - benefits and costs of microcystin detoxication. Environ. Toxicol. 21:22–32. doi:10.1002/tox.20151.
  • Chatla, K., P. S. Gaunt, L. Petrie-Hanson, L. Ford, and L. A. Hanson. 2016. Zebrafish sensitivity to botulinum neurotoxins. Toxins 8. doi:10.3390/toxins8050132.
  • Chen, Y., S. F. Zeng, and Y. F. Cao. 2012. Oxidative stress response in zebrafish (Danio rerio) gill experimentally exposed to subchronic microcystin-LR. Environ. Monit. Assess. 184:6775–87. doi:10.1007/s10661-011-2457-0.
  • Chi, C., S. S. Giri, J. W. Jun, H. J. Kim, S. Yun, S. G. Kim, and S. C. Park. 2016. Marine toxin okadaic acid affects the immune function of bay scallop (Argopecten irradians). Molecules 24:21.
  • Chun-Hung Lee, T., F. Long-Yan Fong, K. C. Ho, and F. Wang-Fat Lee. 2016. The mechanism of diarrhetic shellfish poisoning toxin production in Prorocentrum spp.: Physiological and molecular perspectives. Toxins 8. doi:10.3390/toxins8100272.
  • Contreras, H. R., and C. García. 2019. Inter-species variability of okadaic acid group toxicity in relation to the content of fatty acids detected in different marine vectors. Food Addit Contam: Part A 36:464–82. doi:10.1080/19440049.2019.1569265.
  • de Morais Calado, S. L. G. T. P. Souza Santos, J. Borges Leite, M. N. Wojciechowski, D. C. Junior, V. Bozza, F. de Magalhaes, M. M. Cestari, V. Prodocimo, and H. C. Silva de Assis. 2018. Depuration time and sublethal effects of microcystins in a freshwater fish from water supply reservoir. Chemosphere 210:805–15. doi:10.1016/j.chemosphere.2018.07.075.
  • Díaz, P., C. Molinet, M. A. Caceres, and A. Valle-Levinson. 2011. Seasonal and intratidal distribution of Dinophysis spp. in a Chilean Fjord. Harmful Algae 10:155–64. doi:10.1016/j.hal.2010.09.001.
  • Díaz, P. A., M. Ruiz-Villarreal, Y. Pazos, T. Moita, and B. Reguera. 2016. Climate variability and Dinophysis acuta blooms in an upwelling system. Harmful Algae 53:145–59. doi:10.1016/j.hal.2015.11.007.
  • Dickinson, B. C., and C. J. Chang. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7:504–11. doi:10.1038/nchembio.607.
  • Dizdaroglu, M., and P. Jaruga. 2012. Mechanisms of free radical-induced damage to DNA. Free Radic. Res. 46:382–419. doi:10.3109/10715762.2011.653969.
  • Dos Santos Carvalho, C., V. A. Bernusso, H. S. Selistre de Araújo, E. L. Gaeta Espíndola, and M. N. Fernandes. 2012. Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere 89:60–69. doi:10.1016/j.chemosphere.2012.04.013.
  • Escoffier, N., J. Gaudin, K. Mezhoud, H. Huet, S. Chateau-Joubert, J. Turquet, F. Crespeau, and M. Edery. 2007. Toxicity to medaka fish embryo development of okadaic acid and crude extracts of Prorocentrum dinoflagellates. Toxicon 49:1182–92. doi:10.1016/j.toxicon.2007.02.008.
  • [EURLMB] European Union Reference Laboratory for Marine Biotoxins. 2015. EU-harmonised standard operating procedure for determination of lipophilic marine biotoxins in molluscs by LC-MS/MS. Version. 5. Accessed Febraury 4 2016. http://www.aecosan.msssi.gob.es/AECOSAN/d o c s/d o c u m e n t o s/l a b o r a t o r i o s/L N R B M/ARCHIVO2EUHarmonised-SOP-LIPOLCMSMS_Version5.pdf
  • Fernández, B., J. A. Campillo, C. Martínez-Gómez, and J. Benedicto. 2010. Antioxidant responses in gills of mussel (Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish mediterranean coast. Aquat. Toxicol. 99:186–97. doi:10.1016/j.aquatox.2010.04.013.
  • Fernández, D. A., M. C. Louzao, M. Fraga, N. Vilariño, M. R. Vieytes, and L. M. Botana. 2014. Experimental basis for the high oral toxicity of dinophysistoxin 1: A comparative study of DSP. Toxins 6:211–28. doi:10.3390/toxins6010211.
  • Ferron, P. J., K. Hogeveen, V. Fessard, and L. Le Hégarat. 2014. Comparative analysis of the cytotoxic effects of okadaic acid-group toxins on human intestinal cell lines. Mar. Drugs 12:4616–34. doi:10.3390/md12084616.
  • Fu, L. L., X. Zhao, L. Ji, and J. Xu. 2019. Okadaic acid (OA): Toxicity, detection and detoxification. Toxicon 160:1–7. doi:10.1016/j.toxicon.2018.12.007.
  • Fujiki, H., E. Sueoka, and M. Suganuma. 2013. Tumor promoters: From chemicals to inflammatory proteins. J. Cancer Res. Clin. Oncol. 139:1603–14. doi:10.1007/s00432-013-1455-8.
  • Fujiki, H., E. Sueoka, T. Watanabe, and M. Suganuma. 2018. The concept of the okadaic acid class of tumor promoters is revived in endogenous protein inhibitors of protein phosphatase 2A, SET and CIP2A, in human cancers. J. Cancer Res. Clin. Oncol. 144:2339–49. doi:10.1007/s00432-018-2765-7.
  • Garcia, C., J. Oyaneder-Terrazas, D. Figueroa, C. Díaz, R. Mora, and H. R. Contreras. 2017. Oxidative effects in aquatic organisms exposed to lipophilic marine biotoxins. In Advances in Marine Biology, ed. A. Kovács and P. Nagy, vol. 1, 1 ed., 91–135. New York (NY): Nova Science Publishers. ISBN 978–1–53612–749–2
  • García, C., J. Oyaneder-Terrazas, C. Contreras, M. Del Campo, R. Torres, and H. R. Contreras. 2016. Determination of the toxic variability of lipophilic biotoxins in marine bivalve and gastropod tissues treated with an industrial canning process. Food Addit Contam Part A 33:1711–27. doi:10.1080/19440049.2016.1239032.
  • Griffith, A. W., and C. J. Gobler. 2019. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91:101590. doi:10.1016/j.hal.2019.03.008.
  • Gupta, B. L., and N. Z. Baquer. 1998. Hexokinase, glucose-6–phosphate dehydrogenase and antioxidant enzymes in diabetic reticulocytes. Effects of insulin and vanadote. Biochem. Mol. Biol. Int. 46:1145–52. doi:10.1080/15216549800204702.
  • Han, J. C., and G. Y. Han. 1994. A procedure for quantitative determination of tris (2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol. Anal. Biochem. 220:5–10. doi:10.1006/abio.1994.1290.
  • Hellou, J., N. W. Ross, and T. W. Moon. 2012. Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ. Sci. Pollut. Res 19:2007–23. doi:10.1007/s11356-012-0909-x.
  • Hou, J., L. Li, T. Xue, M. Long, Y. Su, and N. Wu. 2015. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR. Chemosphere 120:729–36. doi:10.1016/j.chemosphere.2014.09.079.
  • Hu, T., P. Leblanc, I. W. Burton, J. A. Walter, P. McCarron, J. E. Melanson, W. K. Strangman, and J. L. C. Wright. 2017. Sulfated diesters of okadaic acid and DTX-1: Self-protective precursors of diarrhetic shellfish poisoning (DSP) toxins. Harmful Algae 63:85–93. doi:10.1016/j.hal.2017.01.012.
  • Inoue, M., E. F. Sato, M. Nishikawa, A. M. Park, Y. Kira, I. Imada, and K. Utsumi. 2003. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem 10:2495–505. doi:10.2174/0929867033456477.
  • Jiménez-Cárcamo, D., C. García, and H. R. Contreras. 2020. Toxins of okadaic acid-group increase malignant properties in cells of colon cancer. Toxins 12:179. doi:10.3390/toxins12030179.
  • Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling. 1995. Stages of embryonic development of the zebrafish. Dev. Dynam 203:253–310. doi:10.1002/aja.1002030302.
  • Kowaltowski, A. J., A. E. Vercesi, S. GooRhee, and L. E. S. Netto. 2000. Catalases and thioredoxin peroxidase protect Saccharomyces cerevisiae against Ca2+-induced mitochondrial membrane permeabilization and cell death. FEBS Lett. 473:177–82. doi:10.1016/S0014-5793(00)01526-X.
  • Kristofco, L. A., S. P. Haddad, C. K. Chambliss, and B. W. Brooks. 2018. Differential uptake of and sensitivity to diphenhydramine in embryonic and larval zebrafish. Environ. Toxicol. Chem. 37:1175–81. doi:10.1002/etc.4068.
  • Lee, J. W., H. Choi, U. K. Hwang, J. C. Kang, Y. J. Kang, K. I. Kim, and J. H. Kim. 2019. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ. Toxicol. Pharmacol. 68:101–08. doi:10.1016/j.etap.2019.03.010.
  • Lekamge, S., A. F. Miranda, B. Pham, A. S. Ball, R. Shukla, and D. Nugegoda. 2019. The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis. J. Toxicol. Environ. Health, Part A. 82:1207–22. doi:10.1080/15287394.2019.1710887.
  • Mafra, L. L., D. Lopes, V. C. Bonilauri, H. Uchida, and T. Suzuki. 2015. Persistent contamination of octopuses and mussels with lipophilic shellfish toxins during spring dinophysis blooms in a subtropical estuary. Mar Drugs 13:3920–35. doi:10.3390/md13063920.
  • Martínez-Sales, M., F. García-Ximénez, and F. J. Espinós. 2015. Zebrafish as a possible bioindicator of organic pollutants with effects on reproduction in drinking waters. J. Environ. Sci 33:254–60. doi:10.1016/j.jes.2014.11.012.
  • MotulsKy, H. J., and A. Christopoulus. 2003. Fitting model to biological data using linear and nonlinear regression. A practical guide to curve fitting, 1–296. San Diego, USA: GraphPad Software Inc.
  • Munday, R. 2013. Is protein phosphatase inhibition responsible for the toxic effects of okadaic acid in animals? Toxins 5:267–85. doi:10.3390/toxins5020267.
  • OECD, 2013. Test N° 210: Fish early–life stage toxicity test, OECD guidelines for the testing of chemicals, section 2. Paris: OECD Publishing.
  • Olson, A. J., T. Cyphers, G. Gerrish, C. Belby, and T. C. King-Heiden. 2018. Using morphological, behavioral, and molecular biomarkers in zebrafish to assess the toxicity of lead-contaminated sediments from a retired trapshooting range within an urban wetland. J. Toxicol. Environ. Health, Part A 81:924–38. doi:10.1080/15287394.2018.1506958.
  • Oyaneder-Terrazas, J., H. R. Contreras, and C. García. 2017. Prevalence, variability and bioconcentration of saxitoxin-group in different marine species present in the food chain. Toxins 9:190. doi:10.3390/toxins9060190.
  • Parraguez, V. H., M. Atlagich, O. Araneda, C. García, A. Muñoz, M. De Los Reyes, and B. Urquieta. 2011. Effects of antioxidant vitamins on newborn and placental traits in gestations at high altitude: Comparative study in high and low altitude native sheep. Reprod. Fertil. Dev. 23:285–96. doi:10.1071/RD10016.
  • Prego-Faraldo, M. V., V. Valdiglesias, B. Laffon, J. Mendez, and J. M. Eirin-Lopez. 2016. Early genotoxic and cytotoxic effects of the toxic dinoflagellate Prorocentrum lima in the mussel Mytilus galloprovincialis. Toxins 8:159. doi:10.3390/toxins8060159.
  • Prego-Faraldo, M. V., V. Valdiglesias, B. Laffon, J. M. Eirín-López, and J. Méndez. 2015. In vitro analysis of early genotoxic and cytotoxic effects of okadaic acid in different cell types of the musselMytilus galloprovincialis. J. Toxicol. Environ. Health, Part A 78:814–24. doi:10.1080/15287394.2015.1051173.
  • Prieto, A. I., S. Pichardo, A. Jos, I. Moreno, and A. M. Cameán. 2007. Time-dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions. Aquat. Toxicol. 84:337–45. doi:10.1016/j.aquatox.2007.06.012.
  • Reguera, B., P. Riobo, F. Rodríguez, P. A. Díaz, G. Pizarro, B. Paz, J. M. Franco, and J. Blanco. 2014. Dinophysis toxins: Causative organisms, distribution and fate in shellfish. Mar Drugs 12:394–461. doi:10.3390/md12010394.
  • Ribas, L., and F. Piferrer. 2014. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev. Aquaculture 6:209–40.
  • Roubach, R., L. C. Gomes, and A. L. Val. 2001. Safest level of tricaine methane- sulfonate (MS-222) to induce anesthesia in juveniles of matrinxa. Brycon cephalus. Acta Amazonica 31:159–63. doi:10.1590/1809-43922001311163.
  • Rountos, K. J., J. J. Kim, T. K. Hattenrath-Lehmann, and C. J. Gobler. 2019. Effects of the harmful algae, Alexandrium catenella and Dinophysis acuminata, on the survival, growth, and swimming activity of early life stages of forage fish. Mar. Environ. Res. 148:46–56. doi:10.1016/j.marenvres.2019.04.013.
  • Signore, I. A., N. Guerrero, F. Loosli, A. Colombo, A. Villalón, J. Wittbrodt, and M. L. Concha. 2009. Zebrafish and medaka: Model organisms for a comparative developmental approach of brain asymmetry. Phil. Trans. R Soc. Lond B Biol. Sci 364:991–1003. doi:10.1098/rstb.2008.0260.
  • Simos, Y. V., I. I. Verginadis, I. K. Toliopoulos, A. P. Velalopoulou, I. V. Karagounis, S. C. Karkabounas, and A. M. Evangelou. 2012. Effects of catechin and epicatechin on superoxide dismutase and glutathione peroxidase activity. In vivo. Redox Rep 17:181–86. doi:10.1179/1351000212Y.0000000020.
  • Sims, K. C., K. L. Schwendinger, D. B. Szymkowicz, J. R. Swetenberg, and L. J. Bain. 2019. Embryonic arsenic exposure reduces intestinal cell proliferation and alters hepatic IGF mRNA expression in killifish (Fundulus heteroclitus). J. Toxicol. Environ. Health, Part A 82:142–56. doi:10.1080/15287394.2019.1571465.
  • Smith, J. L., M. Tong, E. Fux, and D. M. Anderson. 2012. Toxin production, retention, and extracellular release by Dinophysis acuminata during extended stationary phase and culture decline. Harmful Algae 19:125–32. doi:10.1016/j.hal.2012.06.008.
  • Souid, G., N. Souayed, Z. Haouas, and K. Maaroufi. 2018. Does the phycotoxin okadaic acid cause oxidative stress damages and histological alterations to seabream (Sparus aurata)? Toxicon 144:55–60. doi:10.1016/j.toxicon.2018.02.001.
  • Suzuki, H., and Y. Okada. 2018. Comparative toxicity of dinophysistoxin-1 and okadaic acid in mice. J. Vet. Med. Sci. 80:616–19. doi:10.1292/jvms.17-0377.
  • Tor Nielsen, L., B. Krock, and P. J. Hansen. 2013. Production and excretion of okadaic acid, pectenotoxin-2 and a novel dinophysistoxin from the DSP-causing marine dinoflagellate Dinophysis acuta – Effects of light, food availability and growth phase. Harmful Algae 23:34–45. doi:10.1016/j.hal.2012.12.004.
  • Tschirren, L., S. Siebenmann, and C. Pietsch. 2018. Toxicity of ochratoxin to early life stages of zebrafish (Danio rerio). Toxins 10:264. doi:10.3390/toxins10070264.
  • Valdiglesias, V., B. Laffon, E. Pásaro, and J. Méndez. 2010. Evaluation of okadaic acid-induced genotoxicity in human cells using the micronucleus test and γH2AX analysis. J. Toxicol. Environ. Health, Part A 74:980–92. doi:10.1080/15287394.2011.582026.
  • Vasconcelos, V., J. Azevedo, M. Silva, and V. Ramos. 2010. Effects of marine toxins on the reproduction and early stages development of aquatic organisms. Mar Drugs 8:59–79. doi:10.3390/md8010059.
  • Wang, G., J. Sha, M. Wu, Y. Meng, Y. Gul, H. Yang, and D. Xiong. 2019. Effect of acute exposure of triazophos on histological structure and apoptosis of the brain and liver of zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 180:646–55. doi:10.1016/j.ecoenv.2019.05.053.
  • Wang, Y. H., G. L. Yang, D. J. Dai, Z. L. Xu, L. M. Cai, Q. Wang, and Y. J. Yu. 2017. Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae. Environ. Sci. Pollut. Res 24:4528–36. doi:10.1007/s11356-016-8205-9.
  • Westerfield, M. 2000. Zebrafish Book. A guide for the laboratory use of zebrafish Danio (Brachydanio) rerio 2000. Disponible en https://zfin.org/zf_info/zfbook/zfbk.html.
  • Wolff, S., G. Brown, J. Chen, K. Meals, C. Thornton, S. Brewer, J. V. Cizdziel, and K. L. Willett. 2016. Mercury concentrations in fish from three major lakes in north Mississippi: Spatial and temporal differences and human health risk assessment. J. Toxicol. Environ. Health A 79:894–904. doi: 10.1080/15287394.2016.1194792.
  • Zeb, A., and F. Ullah. 2016. A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. J. Anal. Meth. Chem 9412767.
  • Zhang, D. L., C. X. Hu, D. H. Li, and Y. D. Liu. 2013. Zebrafish locomotor capacity and brain acetylcholinesterase activity is altered by Aphanizomenon flos-aquae DC-1 aphantoxins. Aquat. Toxicol. 138:139–49. doi:10.1016/j.aquatox.2013.04.016.
  • Zhang, N. S., H. Y. Li, J. S. Liu, and W. D. Yang. 2014. Gene expression profiles in zebrafish (Danio rerio) liver after acute exposure to okadaic acid. Environ. Toxicol. Pharmacol. 37:791–802. doi:10.1016/j.etap.2014.02.005.
  • Zhao, L., D. Guo, J. Lin, and R. Liu. 2019. Responses of catalase and superoxide dismutase to low-dose quantum dots on molecular and cellular levels. Ecotoxicol. Environ. Saf. 181:388–94. doi:10.1016/j.ecoenv.2019.06.028.
  • Zohdi, E., and M. Abbaspour. 2019. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 16:1789–806. doi:10.1007/s13762-018-2108-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.