155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spring water quality monitoring using multiple bioindicators from multiple collection sites

, , , , &

References

  • Abbas, M., M. Adil, S. Ehtisham-Ul-Haque, B. Munir, M. Yameen, A. Ghaffar, G. A. Shar, M. A. Tahir, and M. Iqbal. 2018. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review. Sci. Total Environ. 626:1295–309. doi:10.1016/j.scitotenv.2018.01.066.
  • Abbasi, T., and S. A. Abbasi. 2012. Water quality Indices. Amsterdam: Elsevier. doi:10.1016/B978-0-444-54304-2.00016-6.
  • ABNT. Associação Brasileira de Normas Técnicas, NBR 15411-3. 2021. Ecotoxicologia aquática - Efeito inibitório sobre a bioluminescência de Vibrio fischeri - Parte 3: Método utilizando bactérias liofilizadas, 3ª edição. 27p. Accessed February, 2023.
  • Abrha, B. H., and Y. Chen. 2017. Analysis of physico-chemical characteristics of effluents from beverage industry in Ethiopia. J. Geosci. Environ. Prot. 5 (6):172–82. doi:10.4236/gep.2017.56016.
  • Achary, V. M. M., S. Jena, K. K. Panda, and B. B. Panda. 2008. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotox. Environ. Safe. 70 (2):300–10. doi:10.1016/j.ecoenv.2007.10.022.
  • Al-Khashman, O. A. 2007. Study of water quality of springs in petra region, Jordan: athree-year follow-up. Int. Ser. Prog. Wat. Res. 21 (7):1145–63. doi:10.1007/s11269-006-9073-8.
  • Allen, M. J., S. C. Edberg, and D. J. Reasoner. 2004. Heterotrophic plate count bacteria—what is their significance in drinking water? Int. J. Food Microbiol. 92 (3):265–74. doi:10.1016/j.ijfoodmicro.2003.08.017.
  • Almeida, L. M., A. D. L. Prado, K. R. Xavier-Silva, M. T. Firmino, M. I. M. Paula, P. N. Gomes, J. A. M. Paula, and E. F. L. C. Bailão. 2020. Cytotoxic effect of vernonanthura polyanthes leaves aqueous extracts. Braz. J. Biol. 81 (3):575–83. doi:10.1590/1519-6984.225281.
  • Amanial, H. R. 2015. Assessment of physicochemical quality of spring water in Arbaminch, Ethiopia. J. Environ. Anal. Chem. 2:157. doi:10.4172/2380-2391.1000157.
  • Ameen, H. A. 2019. Spring water quality assessment using water quality index in villages of Barwari Bala, Duhok, Kurdistan region, Iraq. Appl. Water Sci. 9 (8):176. doi:10.1007/s13201-019-1080-z.
  • Anju, A., S. P. Ravi, and S. Bechan. 2010. Water pollution with special reference to pesticide contamination in India. J. Water Resour. Prot. 2:1793. doi:10.4236/jwarp.2010.25050.
  • APHA, AWWA, WEF. 2012. Standard methods for examination of water and wastewater. 22nd ed. Washington DC: American Public Health Association.
  • Artico, L. L., G. Kommling, N. A. Migita, and A. P. S. Menezes. 2018. Toxicological effects of surface water exposed to coal contamination on the test system Allium cepa. Water Air. Soil Pollut 229 (8):248. doi:10.1007/s11270-018-3904-0.
  • Babula, P., V. Vaverkova, Z. Poborilova, L. Ballova, M. Masarik, and I. Provaznik. 2014. Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiol. Bioch. 84:78–86. doi:10.1016/j.plaphy.2014.08.027.
  • Bailão, E. F. L. C., L. A. C. Santos, S. S. Almeida, P. L. D’Abadia, R. J. Morais, T. N. Matos, S. S. Caramori, C. S. T. Araújo, C. M. Silva Neto, and L. M. Almeida. 2020. Effect of land-use pattern on the physicochemical and genotoxic properties of water in a low-order stream in Central Brazil. Rev. ambiente água 15 (3):e2486. doi:10.4136/ambi-agua.2486.
  • Batool, A., N. Samad, S. S. Kazmi, M. A. Ghufran, S. Imad, M. Shafqat, and T. Mahmood. 2018. Spring water quality and human health: an assessment of natural springs of Margalla hills Islamabad zone—III. J. Hydrol. Sci. Technol. 2 (1):41–46. doi:10.15406/ijh.2018.01.00049.
  • Baumer, J. D., A. Valério, S. M. A. G. U. Souza, G. S. Erzinger, A. Furigo Jr, and A. A. U. Souza. 2018. Toxicity of enzymatically decolored textile dyes solution by horseradish peroxidase. J. Hazard. Mater. 360:82–88. doi:10.1016/j.jhazmat.2018.07.102.
  • Blaise, C., and J.-F. Ferard. 2005. Small-scale freshwater toxicity investigations. Toxicity test methods. Springer. Berlin, vol. 1 pp. 69–105.10.1007/1-4020-3553-5_1
  • Bocato, M. Z., J. P. B. Ximenez, C. Hoffmann, and F. Barbosa. 2019. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. J. Toxicol. Environ. Health - B. 22 (5–6):131–56. doi:10.1080/10937404.2019.1661588.
  • Branchet, P., N. A. Castro, H. Fenet, E. Gomez, F. Courant, D. Sebag, J. Gardon, C. Jourdan, B. N. Ngatcha, I. Kengne, et al. 2019. Anthropic impacts on sub-saharan urban water resources through their pharmaceutical contamination (yaoundé, center region, Cameroon). Sci. Total Environ. 660:886–98. doi:10.1016/j.scitotenv.2018.12.256.
  • Brazil. 2012. Panorama da qualidade das águas superficiais do Brasil: 2012. Agência Nacional de Águas. Brasília: ANA. 264p. Accessed January, 2023. https://arquivos.ana.gov.br/imprensa/publicacoes/Panorama_Qualidade_Aguas_Superficiais_BR_2012.pdf
  • Brazil, C. O. N. A. M. A. 2005. Resolução nº 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial [da] União: seção 1,Brasília, DF. 53:58–63. Accessed January, 2023. http://www.siam.mg.gov.br/sla/download.pdf?idNorma=2747#:~:text=Resolu%C3%A7%C3%A3o%20CONAMA%20n%C2%BA%20357%2C%20de,efluentes%2C%20e%20d%C3%A1%20outras%20provid%C3%AAncias.
  • Brazil, I. N. M. E. T. 2021. Instituto Nacional de Meteorologia. Ministério da Agricultura e Pecuária. Brasília, DF. Accessed January, 2023. https://portal.inmet.gov.br/
  • Burgos-Aceves, M. A., C. Faggio, M. Betancourt-Lozano, D. J. González-Mille, and C. A. Ilizaliturri-Hernández. 2022. Ecotoxicological perspectives of microplastic pollution in amphibians. J. Toxicol. Environ. Health - B. 25 (8):405–21. doi:10.1080/10937404.2022.2140372.
  • Caixeta, E. S., J. V. M. Bravo, and B. B. Pereira. 2022. Ecotoxicological assessment of water and sediment river samples to evaluate the environmental risks of anthropogenic contamination. Chemosphere 306:135595. doi:10.1016/j.chemosphere.2022.135595.
  • Cardoso, M. R. D., F. F. N. Marcuzzo, and J. R. Barros. 2014. Classificação Climática de Köppen-Geiger Para o Estado de Goiás e o Distrito Federal|Cardoso|ACTA GEOGRÁFICA. Acta. Geográfica. 8 (16):40–55. 2014. https://rigeo.cprm.gov.br/handle/doc/15047.
  • Carmalin, S. A., and E. C. Lima. 2018. Removal of emerging contaminants from the environment by adsorption. Ecotox. Environ. Safe. 150:1–17. doi:10.1016/j.ecoenv.2017.12.026.
  • Chan-Keb, C. A., C. M. Agraz-Hernández, R. A. Perez-Balan, M. I. Gómez-Solano, T. D. N. J. Maldonado-Montiel, B. Ake-Canche, and J. Gutiérrez-Alcántara. 2018. Acute toxicity of water and aqueous extract of soils from Champotón river in Lactuca sativa L. Toxicol. Rep. 5:593–97. doi:10.1016/j.toxrep.2018.05.009.
  • Charles, J., B. Sancey, N. Morin-Crini, P. M. Badot, F. Degiorgi, G. Trunfio, and G. Crini. 2011. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotox. Environ. Safe. 74 (7):2057–64. doi:10.1016/j.ecoenv.2011.07.025.
  • Chowdhury, S. 2012. Heterotrophic bacteria in drinking water distribution system: a review. Environ. Monit. Assess. 184 (10):6087–137. doi:10.1007/s10661-011-2407-x.
  • Ciappina, A. L., F. A. Ferreira, I. R. Pereira, T. R. Sousa, F. S. Matos, P. R. Melo-Reis, P. J. Gonçalves, E. F. L. C. Bailão, and L. M. Almeida. 2017. Toxicity of jatropha curcas L. Latex in Allium cepa test. Biosci. J. 33:1295–304. file:///C:/Users/User/Downloads/admin,+20-Bio_33835.pdf. doi:10.14393/BJ-v33n5a2017-33835.
  • Connolly, N. M., M. R. Crossland, and R. G. Pearson. 2004. Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. J Of The North Am Benthological Soc. 23 (2):251–70. doi:10.1899/0887-3593(2004)023<0251:EOLDOO>2.0.CO;2.
  • Daghara, A., I. A. Al-Khatib, and M. Al-Jabari. 2019. Quality of drinking water from springs in Palestine: west bank as a case study. J. Environ. Public Health 2019:1–7. 2019. doi:10.1155/2019/8631732.
  • Divya, A. H., and P. A. Solomon. 2016. Effects of some water quality parameters especially total coliform and fecal coliform in surface water of chalakudy river. Procedia Technol. 24:631–38. doi:10.1016/j.protcy.2016.05.151.
  • Dos Santos, I. R., I. N. M. Da Silva, J. R. De Oliveira Neto, N. R. L. De Oliveira, A. R. V. De Sousa, A. M. De Melo, J. A. M. De Paula, C. L. Amaral, E. P. Silveira-Lacerda, L. C. Da Cunha, et al. 2023. The presence of antibiotics and multidrug-resistant Staphylococcus aureus reservoir in a low-order stream spring in central Brazil. Braz. J. Microbiol 54 (2):997–1007. doi:10.1007/s42770-023-00973-9.
  • EPA. Ecological Effects Test Guidelines. 1996. OPPTS 850.4200. Seed germination/root elongation toxicity test. Accessed December, 2022. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100RF5I.PDF?Dockey=P100RF5I.PDF
  • Fan, L., J. Wang, Y. Huang, L. Su, C. Li, Y. H. Zhao, and C. J. Martyniuk. 2022. Comparative analysis on the photolysis kinetics of four neonicotinoid pesticides and their photo-induced toxicity to Vibrio fischeri: pathway and toxic mechanism. Chemosphere 287:132303. doi:10.1016/j.chemosphere.2021.132303.
  • Fernandes, C. E., E. Barbosa Neto, V. C. Oliveira, and L. I. F. A. Fernandes. 2020. Saneamento Ambiental: Os desafios da estação de tratamento de esgoto do DAIA em Anápolis (GO). Braz. J. Of Dev 6 (7):42426–36. doi:10.34117/bjdv6n7-018.
  • García, J. I., E. Pires, L. Aldea, L. Lomba, E. Perales, and B. Giner. 2015. Ecotoxicity studies of glycerol ethers in Vibrio fischeri: Checking the environmental impact of glycerol-derived solvents. Acs. Sym. Ser. 17 (8):4326–33. doi:10.1039/C5GC00857C.
  • Ghosh, S., O. Falyouna, A. Malloum, A. Othmani, C. Bornman, H. Bedair, H. Onyeaka, Z. T. Al-Sharify, A. O. Jacob, T. Miri, et al. 2022. A general review on the use of advance oxidation and adsorption processes for the removal of furfural from industrial effluents. Micropor. Mesopor. Mater. 331:111638. doi:10.1016/j.micromeso.2021.111638.
  • Gogoi, A., P. Mazumder, V. K. Tyagi, G. G. T. Chaminda, A. K. An, and M. Kumar. 2018. Occurrence and fate of emerging contaminants in water environment: areview. Groundw. Sustain. Dev. 6:169–80. doi:10.1016/j.gsd.2017.12.009.
  • Gonçalves, É. V., L. S. Frâncica, T. N. Tofolli, F. V. S. Medeiros, D. C. Souza, P. A. A. Bueno, E. A. Canesin, and A. P. Peron. 2021. Water quality of rivers in the eastern region of cianorte (paraná, Brazil) under relevant influence of industrial and agricultural waste. Res, Soc. And Dev 10 (8):e27610817336–e27610817336. doi:10.33448/rsd-v10i8.17336.
  • Haruna, R., F. Ejobi, and E. K. Kabagambe. 2005. The quality of water from protected springs in katwe and kisenyi parishes, Kampala city, Uganda. Afr. Health Sci 5:14–20.
  • Hermes, L. C., and A. S. Silva 2004. Avaliação da Qualidade das águas: manual prático. Brasília: EMBRAPA Informação Tecnológica, 55p. Accessed January, 2023. http://livimagens.sct.embrapa.br/amostras/00074560.pdf
  • Jacoboski, B. K., and J. Fachinetto. 2022. Avaliação da qualidade da água do Arroio Matadouro, Ijuí, Rio Grande do Sul, por parâmetros físico-químicos e pelo teste de Allium cepa. Engenharia .Sanitária e Ambiental 27 (3):489–97. doi:10.1590/S1413-415220200388.
  • Jain, A., B. N. Singh, S. P. Singh, H. B. Singh, and S. Singh 2010. Exploring biodiversity as bioindicators for water pollution. In: National Conference on Biodiversity, Development and Poverty Alleviation. p. 50–56. file:///C:/Users/User/Downloads/2010_ExploringBiodiversityasBioindicatorsforWaterPollution%20(2).pdf
  • Jian, J.-M., Y. Guo, L. Zeng, L.-Y. Liu, X. Lu, F. Wang, and E. Y. Zeng. 2017. Global distribution of perfluorochemicals (PFCs) in potential human exposure source–a review. Environ. Int 108:51–62. doi:10.1016/j.envint.2017.07.024.
  • Jurado, E., M. Fernández-Serrano, J. Núñez Olea, M. Lechuga, J. L. Jiménez, and F. Ríos. 2012. Acute toxicity of alkylpolyglucosides to Vibrio fischeri, daphnia magna and microalgae: a comparative study. Bull Environ Contam Toxicol 88 (2):290–95. doi:10.1007/s00128-011-0479-5.
  • Kastury, F., A. Juhasz, S. Beckmann, and M. Manefield. 2015. Ecotoxicity of neutral red (dye) and its environmental applications. Ecotox. Environ. Safe. 122:186–92. doi:10.1016/j.ecoenv.2015.07.028.
  • Kim, K.-B., S. J. Kwack, J. Y. Lee, S. Kacew, and B.-M. Lee. 2021. Current opinion on risk assessment of cosmetics. J. Toxicol. Environ. Health - B. 24 (4):137–61. doi:10.1080/10937404.2021.1907264.
  • Kishor, R., D. Purchase, G. D. Saratale, R. G. Saratale, L. F. R. Ferreira, M. Bilal, R. Chandra, and R. N. Bharagava. 2021. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 9 (2):105012. doi:10.1016/j.jece.2020.105012.
  • Leme, D. M., G. A. R. Oliveira, G. Meireles, L. B. Brito, L. B. Rodrigues, and D. P. Oliveira. 2015. Eco- and genotoxicological assessments of two reactive textile dyes. J. Toxicol. Environ. Health A 78 (5):287–300. doi:10.1080/15287394.2014.971208.
  • Li, F., L. Chen, W. Chen, Y. Bao, Y. Zheng, B. Huang, Q. Mu, D. Wen, and C. Feng. 2020. Antibiotics in coastal water and sediments of the East China Sea: Distribution, ecological risk assessment and indicators screening. Mar. Pollut. Bull. 151:110810. doi:10.1016/j.marpolbul.2019.110810.
  • Li, J., L. Tian, Y. Wang, S. Jin, T. Li, and X. Hou. 2021. Optimal sampling strategy of water quality monitoring at high dynamic lakes: a remote sensing and spatial simulated annealing integrated approach. Sci. Tot. Environ. 777:146113. doi:10.1016/j.scitotenv.2021.146113.
  • Liu, J., J. Liang, J. Ding, G. Zhang, X. Zeng, Q. Yang, B. Zhu, and W. Gao. 2021. Microfiber pollution: An ongoing major environmental issue related to the sustainable development of textile and clothing industry. Environ. Dev. Sustain. 23 (8):11240–56. doi:10.1007/s10668-020-01173-3.
  • Li, Y., Q. Zhou, B. Ren, J. Luo, J. Yuan, X. Ding, H. Bian, and X. Yao. 2020. Trends and health risks of dissolved heavy metal pollution in global river and lake water from 1970 to 2017. Rev Of Environ Contam And Toxicol 251:1–24. doi:10.1007/398_2019_27.
  • Lone, S. A., S. U. Baht, A. Hamid, F. A. Bhat, and A. Kumar. 2021. Quality assessment of springs for drinking water in the Himalaya of South Kashmir, India. Environ. Sci. Pollut. R. 28 (2):2279–300. doi:10.1007/s11356-020-10513-9.
  • Lyu, J., J. Park, L. K. Pandey, S. Choi, H. Lee, J. Saeger, S. Depuydt, and T. Han. 2018. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotox. Environ. Safe. 149:225–32. doi:10.1016/j.ecoenv.2017.11.006.
  • Malhotra, N., T.-R. Ger, B. Uapipatanakul, J.-C. Huang, K. H.-C. Chen, and C.-D. Hsiao. 2020. Review of copper and copper nanoparticle toxicity in fish. Nanomaterials 10 (6):1126. doi:10.3390/nano10061126.
  • Mansour, S. A., A. A. Abdel-Hamid, A. W. Ibrahim, N. H. Mahmoud, and W. A. Moselhy. 2015. Toxicity of some pesticides, heavy metals and their mixtures to Vibrio fischeri bacteria and daphnia magna: Comparative study. J Of Biol And Life Sci 6 (2):221–40. doi:10.5296/jbls.v6i2.8174.
  • Maselli, B. D. S., L. A. Luna, J. D. O. Palmeira, K. P. Tavares, S. Barbosa, L. A. Beijo, G. A. Umbuzeiro, and F. Kummrow. 2015. Ecotoxicity of raw and treated effluents generated by a veterinary pharmaceutical company: a comparison of the sensitivities of different standardized tests. Ecotoxicology 24 (4):795–804. doi:10.1007/s10646-015-1425-9.
  • Moldovan, A., M. A. Hoaghia, E. Kovacs, I. C. Mirea, M. Kenesz, R. A. Arghir, A. Petculescu, E. A. Levei, and O. T. Moldovan. 2020. Quality and health risk assessment associated with water consumption—A case study on karstic springs. Water (Switzerland) 12 (12):3510. doi:10.3390/w12123510.
  • Molla, A., Y. Ren, S. Zuo, Y. Qiu, L. Li, Q. Zhang, J. Ju, J. Zhu, and Y. Zhou. 2022. Evaluating sample sizes and design for monitoring and characterizing the spatial variations of potentially toxic elements in the soil. Sci. Tot. Environ. 847:157489. doi:10.1016/j.scitotenv.2022.157489.
  • Monitox, K. M. 2022. Ensaio de Toxicidade Aguda com Vibrio fischeri. Accessed January, 2023. file:///C:/Users/User/Downloads/Bula-Kit-Monitox.pdf.
  • Nnorom, I. C., U. Ewuzie, and S. O. Eze. 2019. Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Heliyon 5 (1):e01123. doi:10.1016/j.heliyon.2019.e01123.
  • Pavlov, D., C. M. E. Wet, W. O. K. Grabow, and M. M. Ehlers. 2004. Potentially pathogenic features of heterotrophic plate count bacteria isolated from treated and untreated drinking water. Int. J. Food Microbiol. 92 (3):275–87. doi:10.1016/j.ijfoodmicro.2003.08.018.
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. Updated world map of the köppen-Geiger climate classification. Hydrol. Earth Syst. Sci 11 (5):1633–44. doi:10.5194/hess-11-1633-2007.
  • Prajitha, V., and J. E. Thoppil. 2017. Cytotoxic and apoptotic activities of extract of amaranthus spinosus L. in Allium cepa and human erythrocytes. Cytotechnology 69 (1):123–33. doi:10.1007/s10616-016-0044-5.
  • Priac, A., P.-M. Badot, and G. Crini. 2017. Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters. C. R. Biol. 340 (3):188–94. doi:10.1016/j.crvi.2017.01.002.
  • Prieto-Taboada, N., M. Maguregui, I. Martinez-Arkarazo, M. A. Olazabal, G. Arana, and J. M. Madariaga. 2011. Spectroscopic evaluation of the environmental impact on black crusted modern mortars in urban–industrial areas. Anal. Bioanal. Chem. 399 (9):2949–59. doi:10.1007/s00216-010-4324-1.
  • Prism version 9.4.1. 2022. GraphPad By Dotmatics. Accessed January, 2023. https://www.graphpad.com/search/?searchquery=Prism+9.4.1
  • Pronk, M., N. Goldscheider, and J. Zopfi. 2007. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environmental Science & Technology 41 (24):8400–05. doi:10.1021/es071976f.
  • Proshad, R., S. Islam, T. R. Tusher, D. Zhang, S. Khadka, J. Gao, and S. Kundu. 2020. Appraisal of heavy metal toxicity in surface water with human health risk by a novel approach: A study on an urban river in vicinity to industrial areas Bangladesh. Toxin Rev 40 (4):803–19. doi:10.1080/15569543.2020.1780615.
  • Ramos, M. D. N., A. S. Rangel, K. S. Azevedo, M. G. B. Melo, M. C. Oliveira, C. M. U. Watanabe, F. F. Pereira, C. M. Silva, and A. Aguiar. 2022. Characteristics and treatment of Brazilian pulp and paper mill effluents: A review. Environ. Monit. Assess. 194 (9):651. doi:10.1007/s10661-022-10331-1.
  • Rathi, B. S., P. S. Kumar, and P.-L. Show. 2021. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 409:124413. doi:10.1016/j.jhazmat.2020.124413.
  • Rauen, T. G., G. Scaratti, R. Geremias, and R. F. P. M. Moreira. 2021. Ecotoxicidade de nanocatalisadores de óxidos de ferro, produzidos a partir da drenagem ácida de mina, quando submetidos à ação de ozônio em meio aquoso. Engenharia Sanitaria e Ambiental 26 (6):1033–41. doi:10.1590/S1413-415220200162.
  • Reasoner, D. J. 1990. Monitoring heterotrophic bacteria in potable water. In Drinking Water Microbiology. Brock/Springer Series in Contemporary Bioscience, ed. G. A. McFeters, pp. 452–77. New York, NY: Springer New York. doi:10.1007/978-1-4612-4464-6_22.
  • Reddy, S., K. Kaur, P. Barathe, V. Shriram, M. Govarthanan, and V. Kumar. 2022. Antimicrobial resistance in urban river ecosystems. Microbiol. Res. 263:127135. doi:10.1016/j.micres.2022.127135.
  • Resende, A. P. O., V. S. V. Santos, C. F. Campos, C. R. Morais, E. O. Campos Júnior, A. M. M. Oliveira, and B. B. Pereira. 2018. Ecotoxicological risk assessment of contaminated soil from a complex of ceramic industries using earthworm Eisenia fetida. J. Toxicol. Environ. Health A 81 (20):1058–65. doi:10.1080/15287394.2018.1528572.
  • Riva, M. C., J. M. Ribo, C. Gibert, and P. Alañon. 2007. Acute toxicity of leather processing effluents on Vibrio fischeri and Brachydanio rerio. AFINIDAD 64 (528):182–88. https://www.researchgate.net/profile/Mar-Reguero-2/publication/224944376_The_Difference-Dedicated_Configuration_Interaction_Method_An_Accurate_Procedure_to_Calculate_Energy_Transitions/links/5412b7190cf2bb7347dafde3/The-Difference-Dedicated-Configuration-Interaction-Method-An-Accurate-Procedure-to-Calculate-Energy-Transitions.pdf#page=88.
  • Rodrigues, P., J. D. Silvestre, I. Flores-Colen, C. A. Viegas, H. H. Ahmed, R. Kurda, and J. Brito. 2020. Evaluation of the ecotoxicological potential of fly ash and recycled concrete aggregates use in concrete. Appl. Sci. 10 (1):351. doi:10.3390/app10010351.
  • Roy, S., L. Nagarchi, I. Das, J. M. Achuthananthan, and S. Krishnamurthy. 2015. Cytotoxicity, genotoxicity, and phytotoxicity of tannery effluent discharged into Palar River basin, Tamil Nadu, India. J Toxicol 2015:1–9. 2015. doi:10.1155/2015/504360.
  • Sharma, P., D. Purchase, and R. Chandra. 2021. Residual pollutants in treated pulp paper mill wastewater and their phytotoxicity and cytotoxicity in Allium cepa. Environ Geochem Health 43 (5):2143–64. doi:10.1007/s10653-020-00730-z.
  • Shaymurat, T., J. Gu, C. Xu, Z. Yang, Q. Zhao, Y. Liu, and Y. Liu. 2012. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): amorphological study. Nanotoxicology 6 (3):241–48. doi:10.3109/17435390.2011.570462.
  • Silva, S. V. S., A. H. C. Dias, E. S. Dutra, A. L. Pavanin, S. Morelli, and B. B. Pereira. 2016. The impact of water pollution on fish species in southeast region of Goiás, Brazil. J. Toxicol. Environ. Health A 79 (1):8–16. doi:10.1080/15287394.2015.1099484.
  • Silveira, G. L., M. G. F. Lima, G. B. Reis, M. J. Palmieri, and L. F. Andrade-Vieria. 2017. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178:359–67. doi:10.1016/j.chemosphere.2017.03.048.
  • Singh, A. K., and R. Chandra. 2019. Pollutants released from the pulp paper industry: aquatic toxicity and their health hazards. Aquatic Toxicology 211:202–16. doi:10.1016/j.aquatox.2019.04.007.
  • Siyal, A. A., M. R. Shamsuddin, A. Low, and N. E. Rabat. 2020. A review on recent developments in the adsorption of surfactants from wastewater. J. Environ. Manage. 254:109797. doi:10.1016/j.jenvman.2019.109797.
  • Soares, W. Â. A., G. N. Ferraresi, G. A. Quináglia, and G. A. Umbuzeiro. 2010. Toxidade do resíduo areia de fundição utilizando o teste com a bacteria luminescente Vibrio fischeri. Rev Bras de Toxicologia 32:17–21.
  • Sreedharan, S., G. Zouganelis, S. J. Drake, G. Tripathi, and A. Kermanizadeh. 2023. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. J. Toxicol. Environ. Health - B. 26 (1):1–27. doi:10.1080/10937404.2022.2153456.
  • StatSoft Inc. 2004. STATISTICA (data analysis software System), version 7. Accessed March, 2023. https://www.statistica.com/en/
  • Sun, X., H. Liu, Z. Tian, Y. Ma, Z. Wang, and H. Fan. 2021. Feasibility and economic evaluation of grouting materials containing binary and ternary industrial waste. Constr. Build. Mater. 274:122021. doi:10.1016/j.conbuildmat.2020.122021.
  • Syafrudin, M., R. A. Kristanti, A. Yuniarto, T. Hadibarata, J. Rhee, W. A. Al-Onazi, T. S. Algarni, A. H. Almarri, and A. M. Al-Mohaimeed. 2021. Pesticides in drinking water—A review. Int. J. Env. Res. Pub. He. 18 (2):468. doi:10.3390/ijerph18020468.
  • Taheran, M., M. Naghid, S. K. Brar, M. Verma, and R. Y. Surampalli. 2018. Emerging contaminants: Here today, there tomorrow! Environ. Nanotechnol. Monit. Manag. 10:122–26. doi:10.1016/j.enmm.2018.05.010.
  • Uddin, M. G., S. Nash, and A. I. Olbert. 2021. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 122:107218. doi:10.1016/j.ecolind.2020.107218.
  • Van Vliet, M. T. H., E. R. Jones, M. Flörke, W. H. P. Franseen, N. Hanasaki, Y. Wada, and J. R. Yearsley. 2021. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 16 (2):024020. doi:10.1088/1748-9326/abbfc3.
  • Viana, T. S., T. C. R. Rialto, J. F. D. Brito, A. F. D. Micas, F. R. Abe, E. A. Savazzi, M. V. B. Boldrin Zanoni, and D. P. De Oliveira. 2021. Effects of water produced by oil segment on aquatic organisms after treatment using advanced oxidative processes. J. Toxicol. Environ. Health A 84 (22):901–13. doi:10.1080/15287394.2021.1951910.
  • Vieira, C. S. S., P. A. Nicola, and K. C. A. Bortoleti. 2022. Determination of phytotoxicity and cytogenotoxicity due to exposure to particles originating from sugarcane burning using test systems Lactuca sativa L. and Allium cepa L. J. Toxicol. Environ. Health A 85 (14):561–72. doi:10.1080/15287394.2022.2054483.
  • Viman, O. V., I. Oroian, and A. Fleşeriu. 2010. Types of water pollution: Point source and nonpoint source. Aquacul, Aquarium, Conserv & Legislation Bioflux 3:393–97. http://www.bioflux.com.ro/docs/2010.3.393-397.pdf?AdobeSystemsPDFv17=825c81c01f3ffb9f75e85136314faa83ba3de3c8%7C1317630873&origin=publication_detail.
  • Wang, C., A. Yediler, D. Lienert, Z. Wang, and A. Kettrup. 2002. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere 46 (2):339–44. doi:10.1016/S0045-6535(01)00086-8.
  • Wilson, M. F. 2013. Agriculture and industry as potential origins for chemical contamination in the environment. A review of the potential sources of organic contamination. Curr Org Chem 17 (24):2972–75. doi:http://dx.doi.org/10.2174/13852728113179990133.
  • Yang, X., J. Yan, F. Wang, J. Xu, X. Liu, K. Ma, and J. Ye. 2016. Comparison of organics and heavy metals acute toxicities to Vibrio fischeri. J. Serb. Chem. Soc. 81:697–705. doi:10.2298/JSC151124011Y.
  • Yu, X., J. Zuo, X. Tang, R. Li, Z. Li, and F. Zhang. 2014. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. J. Hazard. Mater. 266:68–74. doi:10.1016/j.jhazmat.2013.12.012.
  • Zang, C., S. Huang, M. Wu, S. Du, M. Scholz, F. Gao, C. Lin, Y. Guo, and Y. Dong. 2011. Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water Air Soil Pollut 219 (1–4):157–74. doi:10.1007/s11270-010-0695-3.
  • Zhang, F., F. Zhang, Y. Yuan, D. Liu, C. Zhu, D. Zheng, G. Li, Y. Wei, and D. Sun. 2020. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Front Environ. Sci. Eng. 14 (2):28. doi:10.1007/s11783-019-1207-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.