820
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Human health and snails

&

References

  • Michael Mclntosh, J.; Ghomashchi, F.; Gelb, M. H.; Dooley, D. J.; Stoehr, S. J.; Giordani, A. B.; Naisbitt, S. R.; Olivera, B. M. A Minimized Human Insulin-receptor-binding Motif Revealed in A Conus Geographus Venom Insulin. J. Biol. Chem. 1994, 270(8), 3518–3526.
  • Robinson, S. D.; Safavi-hemami, H.; Mcintosh, L. D.; Purcell, A. W.; Norton, R. S.; Papenfuss, A. T.; Holford, M. Diversity of Conotoxin Gene Superfamilies in the Venomous Snail, Conus Victoriae. Plos One. 2014, 9(2), e87648. DOI: 10.1371/journal.pone.0087648.
  • Miller, K. D.; Siegel, R. L.; Lin, C. C.; Mariotto, A. B.; Kramer, J. L.; Rowland, J. H.; Stein, K. D.; Alteri, R.; Jemal, A. Cancer Treatment and Survivorship Statistics, 2016. CA Cancer J. Clin. 2016, 66(4), 271–289. DOI: 10.3322/caac.21349.
  • Wang, C.; Zhang, H.; Jiang, H.; Lu, W.; Zhao, Z.; Chi, C. A Novel Conotoxin from Conus Striatus, M -SIIIA, Selectively Blocking Rat Tetrodotoxin-resistant Sodium Channels. Toxicon. 2006, 47, 122–132. DOI: 10.1016/j.toxicon.2005.10.008.
  • Daly, N. L.; Ekberg, J. A.; Thomas, L.; Adams, D. J.; Lewis, R. J.; Craik, D. J. Structures of ␮ O-conotoxins from Conus Marmoreus. J. Biol. Chem. 2004, 279(24), 25774–25782. DOI: 10.1074/jbc.M313002200.
  • Michael Mclntosh, J.; Hasson, A.; Spira, M. E.; Gray, W. R.; Li, W.; Marsh, M.; Hillyard, D. R.; Olivera, B. A New Family of Conotoxins that Blocks Voltage-gated Sodium Channels. J. Biol. Chem. 1995, 270(26), 16796–16802. DOI: 10.1074/jbc.270.28.16796.
  • Brust, A.; Palant, E.; Croker, D. E.; Colless, B.; Drinkwater, R.; Patterson, B.; Schroeder, C. I.; Wilson, D.; Nielsen, C. K.; Smith, M. T.; et al. χ -conopeptide Pharmacophore Development : Toward a Novel Class of Norepinephrine Transporter Inhibitor (Xen2174) for Pain. J. Med. Chem. 2009, 52, 6991–7002. DOI: 10.1021/jm9003413.
  • Mcintosh, J. M.; Corpuz, G. O.; Layer, R. T.; Garrett, J. E.; Wagstaff, J. D.; Bulaj, G.; Vyazovkina, A.; Yoshikami, D.; Cruz, L. J.; Olivera, B. M. Isolation and Characterization of a Novel Conus Peptide with Apparent Antinociceptive Activity *. J. Biol. Chem. 2000, 275(42), 32391–32397. DOI: 10.1074/jbc.M003619200.
  • Nielsen, C. K.; Lewis, R. J.; Alewood, D.; Drinkwater, R.; Palant, E.; Patterson, M.; Yaksh, T. L.; Mccumber, D.; Smith, M. T. Anti-allodynic Efficacy of the C -conopeptide, Xen2174, in Rats with Neuropathic Pain. Pain. 2005, 118: 1–13.
  • Sharpe, I. A.; Gehrmann, J.; Loughnan, M. L.; Thomas, L.; Adams, D. A.; Atkins, A.; Palant, E.; Craik, D. J.; Adams, D. J.; Alewood, P. F.; et al. Two New Classes of Conopeptides Inhibit the α 1-adrenoceptor and Noradrenaline Transporter. Nat. Neurosci. 2001, 4, 9. DOI: 10.1038/nn0901-902.
  • Barbier, J.; Lamthanh, H.; Le Gall, F.; Favreau, P.; Benoit, E.; Chen, H.; Gilles, N.; Ilan, N.; Heinemann, S. H.; Gordon, D.; et al. A ␦ -conotoxin from Conus Ermineus Venom Inhibits Inactivation in Vertebrate Neuronal Na ؉ Channels but Not in Skeletal and Cardiac Muscles *. J. Biol. Chem. 2004, 279(6), 4680–4685. DOI: 10.1074/jbc.M309576200.
  • Volpon, L.; Lamthanh, H.; Barbier, J.; Gilles, N.; Molgo, J.; I, C. B.; Gall, L. NMR Solution Structures of ␦ -conotoxin EVIA from Conus Ermineus that Selectively Acts on Vertebrate Neuronal Na ؉ Channels * □. Journal of Biological Chemistry. 2004, 279(20), 21356–21366.
  • Jakubowski, J. A.; Keays, D. A.; Kelley, W. P.; Sandall, D. W.; Bingham, J.; Livett, B. G.; Gayler, K. R.; Sweedler, J. V. Determining Sequences and Post-translational Modifications of Novel Conotoxins in Conus Victoriae Using cDNA Sequencing and Mass Spectrometry. J. Mass Spectrosc. 2004, 39, 548–557. DOI: 10.1002/jms.624.
  • Sandall, D. W.; Satkunanathan, N.; Keays, D. A.; Polidano, M. A.; Liping, X.; Pham, V.; Down, J. G.; Khalil, Z.; Livett, B. G.; Gayler, K. R. A Novel R -conotoxin Identified by Gene Sequencing Is Active in Suppressing the Vascular Response to Selective Stimulation of Sensory Nerves in Vivo †. Biochemistry. 2003, 42, 6904–6911. DOI: 10.1021/bi034043e.
  • Satkunanathan, N.; Livett, B.; Gayler, K.; Sandall, D.; Down, J.; Khalil, Z. Alpha-conotoxin Vc1 . 1 Alleviates Neuropathic Pain and Accelerates Functional Recovery of Injured Neurones. Brain Res. 2005, 1059, 149–158. DOI: 10.1016/j.brainres.2005.08.009.
  • Craig, A. G.; Norberg, T.; Griffin, D.; Hoeger, C.; Akhtar, M.; Schmidt, K.; Low, W.; Dykert, J.; Richelson, E.; Mazella, J.; et al. Contulakin-G, an O -glycosylated Invertebrate Neurotensin *. J. Biol. Chem. 1999, 274(20), 13752–13759. DOI: 10.1074/jbc.274.20.13752.
  • Malmberg, A. B.; Gilbert, H.; Mccabe, R. T.; Basbaum, A. I. Powerful Antinociceptive Effects of the Cone Snail Venom-derived Subtype-selective NMDA Receptor Antagonists Conantokins G and T. Pain. 2003, 101, 109–116. DOI: 10.1016/S0304-3959(02)00303-2.
  • Bandyopadhyay, P. K.; Colledge, C. J.; Walker, C. S.; Zhou, L.; Hillyard, D. R.; Olivera, B. M. Conantokin-G Precursor and Its Role in ␥ -carboxylation by a Vitamin K-dependent Carboxylase from a Conus Snail *. J. Biol. Chem. 1998, 273(10), 5447–5450.
  • Mcintosh, J. M.; Olivera, B. M.; Cruz, L. J.; Gray, W. R. y-Carboxyglutamate in a Neuroactive Toxin*. J. Biol. Chem. 1984, 259(23), 14343–14346.
  • Christensen, S. B.; Bandyopadhyay, P. K.; Olivera, B. M.; Michael Mclntosh, J. αS-Conotoxin GVIIIB Potently and Selectively Blocks α9α10 Nicotinic Acetylcholine Receptors. Biochem. Pharmacol. 2016, 96(4), 349–356. DOI: 10.1016/j.bcp.2015.06.007.
  • England, L. J.; Imperial, J.; Jacobsen, R.; Grey Craig, A.; Olivera, B. M. Inactivation of a Serotonin-Gated Ion Channel by a Polypeptide Toxin from Marine Snails. Science. 1998, 281, 1996–1999. DOI: 10.1126/science.281.5376.575.
  • Chen, Z.; Rogge, G.; Hague, C.; Alewood, D.; Colless, B.; Lewis, R. J.; Minneman, K. P. Subtype-selective Noncompetitive or Competitive Inhibition of Human ␣ 1 -adrenergic Receptors by ␳ -TIA *. J. Biol. Chem. 2004, 279(34), 35326–35333. DOI: 10.1074/jbc.M403703200.
  • Cruz, L. J.; Ramilo, C. A.; Corpuzl, G. P.; Olivera, B. M. Conus Peptides: Phylogenetic Range of Biological Activity. Biol. Bull. 1992, 183, 159–164. DOI: 10.2307/1542418.
  • Aguilar, M. B.; Luna-Ramirez, K. S.; Echeverria, D.; Falcon, A.; Olivera, B. M.; Heimer de la Cotera, E. P.; Maillo, M. Conorfamide-Sr2, a Gamma-carboxyglutamate-containing FMRFamide-related Peptide from the Venom of Conus Spurius with Activity in Mice and Mollusks.Peptides. 2008, 29(2), 186–195.
  • Lebbe, E. K. M.; Tytgat, J. In the Picture : Disulfide-poor Conopeptides, a Class of Pharmacologically Interesting Compounds. J. Venomous Anim. Toxins Incl. Trop. Dis. 2016, 22. DOI: 10.1186/s40409-016-0083-6.
  • Jimene, E. C.; Olivera, B. M.; Gray, W. R.; Cruz, L. J. Contryphan Is a D -tryptophan- Containing Conus Peptide *. J. Biol. Chem. 1996, 271(45), 28002–28006. DOI: 10.1074/jbc.271.45.28002.
  • Jimenez, E. C.; Craig, A. G.; Watkins, M.; Hillyard, D. R.; Gray, W. R.; Gulyas, J.; Rivier, J. E.; Cruz, L. J.; Olivera, B. M. Bromocontryphan : Post-Translational Bromination of Tryptophan †. Biochemistry. 1997, 36, 989–994. DOI: 10.1021/bi962840p.
  • Pallaghy, P. K.; Melnikova, A. P.; Jimenez, E. C.; Olivera, B. M.; Norton, R. S. Solution Structure of Contryphan-R, a Naturally Occurring Disulfide-Bridged Octapeptide Containing D -tryptophan : Comparison with Protein Loops †,‡. Biochemistry. 1999, 38, 11553–11559. DOI: 10.1021/bi990685j.
  • Gabriel, U. I.; Mirela, S.; Ionel, J. Quantification of Mucoproteins (Glycoproteins) from Snails Mucus, Helix Aspersa and Helix Pomatia. J. Agroaliment. Processes Technol. 2011, 17(4), 410–413.
  • Cilia, G.; Fratini, F. Antimicrobial Properties of Terrestrial Snail and Slug Mucus. J. Complement. Integr. Med. 2018, 15: 1–10.
  • W.A, S.; C.M., M.; J.C., C.; R.N., P.-F.; A.S., R.; F.P., R. E. I. S.; R.L.C., A.-J. Assessment of Antimicrobial Activity and Healing Potential of Mucous Secretion of Achatina Fulica. Int. J. Morphol. May 2012, 30(2), 365–373. DOI: 10.4067/S0717-95022012000200001.
  • Bonnemain, B.;. Helix and Drugs : Snails for Western Health Care from Antiquity to the Present. Adv. Access Publ. January 2005, 2(1): 25–28.
  • Tiantian, Z.; Cunshe, C. Study on the Properties of Snails Secretions and Its Scavenging Radical Ability. J. Chin. Inst. Food Sci. Technol. 2013, 9, 7.
  • Cilia, G.; Fratini, F. Antimicrobial Properties of Terrestrial Snail and Slug Mucus. J. Complement. Integr. Med. 2018, 15. DOI: 10.1515/jcim-2017-0168.
  • Zhuang, J.; Coates, C. J.; Zhu, H.; Zhu, P.; Wu, Z.; Xie, L. Identification of Candidate Antimicrobial Peptides Derived from Abalone Hemocyanin. Dev. Comp. Immunol. 2015, 49(1), 96–102. DOI: 10.1016/j.dci.2014.11.008.
  • Harti, A. S.; Sulisetyawati, S. D.; Murharyati, A.; Oktariani, M. The Effectiveness of Snail Slime and Chitosan in Wound Healing. Int. J. Pharma Med. Biolog. Sci. 2016, 5(1), 76–80.
  • Adikwu, M. U.;. Application of Snail Mucin Dispersed in Detarium Gum Gel in Wound Healing. Sci. Res. Essays. June 2007, 2(6): 195–198.
  • Matusiewicz, M.; Kosieradzka, I.; Niemiec, T.; Grodzik, M.; Antushevich, H.; Strojny, B.; Gołębiewska, M. In Vitro Influence of Extracts from Snail Helix Aspersa Müller on the Colon Cancer Cell Line Caco-2. Int. J. Mol. Sci. 2018a, 19(4), 1064.
  • Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Drug Development from Marine Natural Products. Nat. Rev. Drug Discovery. 2009, 8(1), 69. DOI: 10.1038/nrd2487.
  • Dolashki, A.; Nissimova, A.; Daskalova, E.; Velkova, L.; Topalova, Y.; Hristova, P.; Traldi, P.; Voelter, W.; Dolashka, P. Structure and Antibacterial Activity of Isolated Peptides from the Mucus of Garden Snail Cornu Aspersum. Bulgarian Chemical Communications. 2018, 195-200.
  • Kostadinova, N.; Voynikov, Y.; Dolashki, A.; Krumova, E.; Abrashev, R.; Kowalewski, D.; Stevanovic, S.; Velkova, L.; Velikova, R.; Dolashka, P. Antioxidative Screening of Fractions from the Mucus of Garden Snail Cornu Aspersum. 2018; 176-183.
  • Rauscher, S.; Baud, S.; Miao, M.; Keeley, F. W.; Pomes, R. Proline and Glycine Control Protein Self-organization into Elastomeric or Amyloid Fibrils. Structure. 2006, 14(11), 1667–1676. DOI: 10.1016/j.str.2006.09.008.
  • Iglesias-de la Cruz, M. C.; Sanz-Rodriguez, F.; Zamarron, A.; Reyes, E.; Carrasco, E.; Gonzalez, S.; Juarranz, A. A Secretion of the Mollusc Cryptomphalus Aspersa Promotes Proliferation, Migration and Survival of Keratinocytes and Dermal Fibroblasts in Vitro. Int. J. Cosmet. Sci. 2012, 34, 183–189. DOI: 10.1111/j.1468-2494.2011.00699.x.
  • Tsoutsos, D.; Kakagia, D.; Tamparopoulos, K. The Efficacy of Helix Aspersa Müller Extract in the Healing of Partial Thickness Burns: A Novel Treatment for Open Burn Management Protocols. J. Dermatolog. Treat. July 2009, 20(2008), 219–222. DOI: 10.1080/09546630802582037.
  • Conte, R.;. Recent Advances on Nano Delivery of Helix Mucus Pharmacologically Active Components. Int. J. Nano Dimens. 2016, 7(3), 181–185.
  • Robin, A. Snail Slime ‘Could Mend Bones’. 2000
  • Kumar, V.; Choedon, T. Medicinal Plants Used in the Practice of Tibetan Medicine. Phytoconstituents Physiol. Process. 2014, 34(May): 385.
  • Sarkar, A.; Gomes, A.; Gomes, A. Anti-osteoporosis Activity of Fresh Water Snail (Viviparous Bengalensis) Flesh Extracted Protein Fraction VB-P4 in Rat Models. Int. J. Curr. Res. Biosci. Plant. Biol. 2015, 2(6), 60–72.
  • Abarrategui, C. L.; Alba, A.; Lima, L. A.; Neto, S. M.; Vasconcelos, L. M.; Oliveira, J. T. A.; Dias, S. C.; Gonzalez, A. J. O.; Franco, O. L. Screening of Antimicrobials from Caribbean Sea Animals and Isolation of Bactericidal Proteins from the Littoral Mollusk Cenchritis Muricatus. Curr. Microbiol. 2012, 64(2012), 501–505. DOI: 10.1007/s00284-012-0096-5.
  • Franco, A.; Kompella, S. N.; Akondi, K. B.; Melaun, C.; Daly, N. L.; Luetje, C. W.; Alewood, P. F.; Craik, D. J.; Adams, D. J.; Marı, F. RegIIA : An a 4/7-conotoxin from the Venom of Conus Regius that Potently Blocks a 3 B 4 nAChRs. Biochem. Pharmacol. 2012, 83, 419–426. DOI: 10.1016/j.bcp.2011.11.006.
  • Paul Bingham, J.; Baker, M. R.; Chun, J. Analysis of a Cone Snail’s Killer Cocktail – The Milked Venom of Conus Geographus. Toxicon. 2012, 60(6), 1166–1170. DOI: 10.1016/j.toxicon.2012.07.014.
  • Menting, J. G.; Gajewiak, J.; Macraild, C. A.; Chou, D. H.; Disotuar, M. M.; Smith, N. A.; Miller, C.; Erchegyi, J.; Rivier, J. E.; Olivera, B. M.; et al. A Minimized Human Insulin-receptor-binding Motif Revealed in A Conus Geographus Venom Insulin. Nat. Struct. Mol. Biol. 2016, 23(10), 916–920. DOI: 10.1038/nsmb.3292.
  • Nair, A. S.; Poornachand, A.; Kodisharapu, P. K. Ziconotide: Indications, Adverse Effects, and Limitations in Managing Refractory Chronic Pain. Indian J. Palliat. Care. 2018, 24, 1.
  • Hershler, R.; Ponder, W. F. A Review of Morphological Characters of Hydrobioid Snails. Smithsonian Contrib. Zool. 1998, 1–55. doi:10.5479/si.00810282.600.
  • Tobins, F. H.; Abubakre, O.; Muriana, R.; Abdulrahman, S. Snail Shell as an Inspiring Engineering Material in Science and Technology Development: A Review. Int. J. Contemporary Res. Rev. 2018, 9(3), 20408–20416. DOI: 10.15520/ijcrr/2018/9/03/473.
  • Liu, L.; Sood, A.; Steinweg, S. Snails and Skin Care—An Uncovered Combination. JAMA Dermatol. 2017, 153(7), 650. DOI: 10.1001/jamadermatol.2017.1383.
  • Ahmed, M.; Mubarak, S. E.; Lamari, F. N.; Kontoyannis, C. Simultaneous Determination of Allantoin and Glycolic Acid in Snail Mucus and Cosmetic Creams with High Performance Liquid Chromatography and Ultraviolet Detection. J. Chromatogr. A. August 2013, 1322(2017), 49–53. DOI: 10.1016/j.chroma.2013.10.086.
  • Thomas, S.;. Medicinal Use of Terrestrial Molluscs (Slugs and Snails) with Particular Reference to Their Role in the Treatment of Wounds and Other Skin Lesions. World Wide Wounds. 2015. http://www.worldwidewounds.com/2013/July/Thomas/slugsteve-thomas.html.
  • Ahmad, T. B.; Liu, L.; Kotiw, M.; Benkendorff, K. Review of Anti-inflammatory, Immune-modulatory and Wound Healing Properties of Molluscs. J. Ethnopharmacol. 2018, 210, 156–178. DOI: 10.1016/j.jep.2017.08.008.
  • Dang, V. T.; Benkendorff, K.; Green, T.; Speck, P.; Goff, S. P. Marine Snails and Slugs: A Great Place to Look for Antiviral Drugs. J. Virol. 2015, 89(16), 8114–8118. DOI: 10.1128/JVI.00287-15.
  • Bauer-wu, S.; Kachupa, T. L.; Tidwell, T.; Menrampa, T. L.; Silva, C. O.; Menrampa, J. D.; Menrampa, P. D.; Rapten, D.; Menrampa, N.; Menrampa, R. S.; et al. Tibetan Medicine for Cancer : An Overview and Review of Case Studies. Integr. Cancer Ther. 2014, 13(6), 502–512. DOI: 10.1177/1534735414549624.
  • Roberti, P.; Ottaviani, L.; Mella, J. Tibetan Medicine : A Unique Heritage of Person-centered Medicine. Epma J. 2011, 2, 385–389. DOI: 10.1007/s13167-011-0130-x.
  • Garrett, F.;. Tapping the Body’s Nectar: Gastronomy and Incorporation in Tibetan Literature. History Religions. 2010, 49(3), 300–326. DOI: 10.1086/651992.
  • Yeshi, K.; Morisco, P.; Wangchuk, P. Animal-derived Natural Products of Sowa Rigpa Medicine: Their Pharmacopoeial Description, Current Utilization and Zoological Identification. J. Ethnopharmacol. 2017, 207, 192–202. DOI: 10.1016/j.jep.2017.06.009.
  • Lo, V.; Barrett, P. Cooking up Fine Remedies: On the Culinary Aesthetic in a Sixteenth-century Chinese Materia Medica. Med. History. 2005, 49(4), 395–422. DOI: 10.1017/S0025727300009133.
  • Lu, Y.;. A History of Chinese Science and Technology; Springer, Berlin, Heidelberg, 2014.
  • Mehlhorn, H.; Wu, Z.; Ye, B. Treatment of Human Parasitosis in Traditional Chinese Medicine; Springer, Berlin, Heidelberg, 2013.
  • Lev, E.;. Traditional Healing with Animals (Zootherapy): Medieval to Present-day Levantine Practice. J. Ethnopharmacol. 2003, 85(1), 107–118. DOI: 10.1016/S0378-8741(02)00377-X.
  • Marques, J. G. W. Pescando Pescadores: Etnoecologia Abrangente No Baixo São Francisco Alagoano. 1995.
  • Mahawar, M. M.; Jaroli, D. P. Traditional Zootherapeutic Studies in India: A Review. J. Ethnobiol. Ethnomed. 2008, 4(1), 17. DOI: 10.1186/1746-4269-4-17.
  • Marques, J. G. W.;. Fauna Medicinal: Recurso Do Ambiente Ou Ameaça À Biodiversidade. Mutum. 1997, 1(1), 4.
  • Alves, R. R. N.; Rosa, I. L. Why Study the Use of Animal Products in Traditional Medicines? J. Ethnobiol. Ethnomed. 2005, 1(1), 5. DOI: 10.1186/1746-4269-1-5.
  • Costa-Neto, E. M.; Alves, R. R. N. Estado Da Arte Da Zooterapia Popular No Brasil. Zooterapia: Os Animais Na Medicina Popular Brasileira. 2010, 2(1): 13-54.
  • Costa-Neto, E.M., 2005. Animal-based medicines: biological prospection and the sustainable use of zootherapeutic resources. Anais da Academia Brasileira de ciências, 77 (1), 33–43.
  • Alves, R. R. N.; Neto, N. A. L.; Santana, G. G.; Vieira, W. L. S.; Almeida, W. O. Reptiles Used for Medicinal and Magic Religious Purposes in Brazil. Appl. Herpetol. 2009, 6(3), 257–274. DOI: 10.1163/157075409X432913.
  • Alves, R. R. N.; Rosa, I. L. Zootherapeutic Practices among Fishing Communities in North and Northeast Brazil: A Comparison. J. Ethnopharmacol. 2007, 111(1), 82–103. DOI: 10.1016/j.jep.2006.10.033.
  • Immanuel, G.; Thaddaeus, B. J.; Usha, M.; Ramasubburayan, R.; Prakash, S.; Palavesam, A. Antipyretic, Wound Healing and Antimicrobial Activity of Processed Shell of the Marine Mollusc Cypraea Moneta. Asian Pac. J. Trop. Biomed. 2012, 2(3), S1643–S1646. DOI: 10.1016/S2221-1691(12)60469-9.
  • Alves, R.; Barbosa, J. A. A.; Santos, S. L. D. X.; Souto, W.; Barboza, R. R. D. Animal-based Remedies as Complementary Medicines in the Semi-arid Region of Northeastern Brazil. Evid. Based Complement. Altern. Med. 2011, 2011.
  • Confessor, M. V. A.; Mendonça, L. E. T.; Mourão, J. S.; Alves, R. R. N. Animals to Heal Animals: Ethnoveterinary Practices in Semiarid Region, Northeastern Brazil. J. Ethnobiol. Ethnomed. 2009, 5(1), 37. DOI: 10.1186/1746-4269-5-37.
  • Ferreira, F. S.; Brito, S. V.; Ribeiro, S. C.; Saraiva, A. A. F.; Almeida, W. O.; Alves, R. R. N. Animal-based Folk Remedies Sold in Public Markets in Crato and Juazeiro Do Norte, Ceará, Brazil. BMC Complementary Altern. Med. 2009, 9(1), 17. DOI: 10.1186/1472-6882-9-17.
  • Alves, R.R.N., 2009. Fauna used in popular medicine in Northeast Brazil. Journal of Ethnobiology and Ethnomedicine, 5 (1), 1.
  • AJA, R. S.; Padmalatha, C., Ethno-entomological Practices in Tirunelveli District, Tamil Nadu. 2004.
  • Costa-Neto, E. M.;. Os Moluscos Na Zooterapia: Medicina Tradicional E Importância Clínico-farmacológica. Biotemas. 2006, 19(3), 71–78.
  • Cranga, F.; Cranga, Y. L’escargot: Zoologie, Symbolique, Imaginaire, Médecine Et Gastronomie; Les éd. du bien public, 1991.
  • Julien, P.; Charroppin, P. L’escargot Contre La Hernie. RHP. 1983, 258, 215–219.
  • Bonnemain, B. Helix and Drugs: Snails for Western Health Care from Antiquity to the Present. Adv. Access Publ. January 2005, 2(1): 25–28.
  • Bonnemain, B.;. Hélices Et Médicaments : L ’ escargot au service de la santé depuis l ’ Antiquité jusqu ’ à nos jours. Rev. Hist. Pharm. 2003, 91, 211–218. DOI: 10.3406/pharm.2003.5514.
  • Kijjoa, A.; Sawangwong, P. Marine Drugs. Mar. Drugs. 2004, 2, 73–82. DOI: 10.3390/md202073.
  • Webster, L.; Henderson, R.; Katz, N.; Ellis, D. 233) Characterization of Confusion, an Adverse Event Associated with Intrathecal Ziconotide Infusion in Chronic Pain Patients. Pain Med. 2001, 2(3), 253–254. DOI: 10.1046/j.1526-4637.2001.002003253.x.
  • Benkendorff, K.; Rudd, D.; Nongmaithem, B. D.; Liu, L.; Young, F.; Edwards, V.; Avila, C.; Abbott, C. A. Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds? Mar. Drugs. 2015, 13, 5237–5275. DOI: 10.3390/md13085237.
  • Nawata, H.An Exported Item from Badi’on the Western Red Sea Coast in the Eighth Century: Historical and Ethnographical Studies on Operculum as Incense and Perfume. Ethiopia in Broader Perspective: Papers of 13th International Conference of Ethiopian Studies, 1997. Shokado Book Sellers, 307–325. 1997
  • Becker, L. C.; Bergfeld, W. F.; Belsito, D. V.; Klaassen, C. D.; Marks, J. G.; Shank, R. C.; Slaga, T. J.; Snyder, P. W.; Andersen, F. A. Final Report of the Safety Assessment of Allantoin and Its Related Complexes. Int. J. Toxicol. 2010, 29(Supplement 2), 84S–97–S. DOI: 10.1177/1091581810362805.
  • Ellijimi, C.; Ben, M.; Othman, H.; Moslah, W.; Jebali, J.; Ben, H.; Morjen, M.; Haoues, M.; Luis, J.; Marrakchi, N. Helix Aspersa Maxima Mucus Exhibits Antimelanogenic and Antitumoral Effects against Melanoma Cells. Biomed. Pharmacol. 2018, 101(March), 871–880. DOI: 10.1016/j.biopha.2018.03.020.
  • Yu, D.; Tian, D.; He, J. Snail-based Nanofibers. Mater. Lett. 2018, 220(February), 5–7. DOI: 10.1016/j.matlet.2018.02.076.
  • Alameda, M. T.; Morel, E.; Parrado, C.; Gonzalez, S.; Juarranz, A. Cryptomphalus Aspersa Mollusc Egg Extract Promotes Regenerative Effects in Human Dermal Papilla Stem Cells. Int. J. Mol. Sci. 2017, 18(2), 463. DOI: 10.3390/ijms18020463.
  • Benkendorff, K.; McIver, C. M.; Abbott, C. A. Bioactivity of the Murex Homeopathic Remedy and of Extracts from an Australian Muricid Mollusc against Human Cancer Cells. Evid. Based Complement. Altern. Med. 2011, 2011.
  • Esmaeelian, B.; Benkendorff, K.; Johnston, M. R.; Abbott, C. A. Purified Brominated Indole Derivatives from Dicathais Orbita Induce Apoptosis and Cell Cycle Arrest in Colorectal Cancer Cell Lines. Mar. Drugs. 2013, 11(10), 3802–3822. DOI: 10.3390/md11103802.
  • Valles-Regino, R.; Mouatt, P.; Rudd, D.; Yee, L. H.; Benkendorff, K. Extraction and Quantification of Bioactive Tyrian Purple Precursors: A Comparative and Validation Study from the Hypobranchial Gland of A Muricid Dicathais Orbita. Molecules. 2016, 21(12), 1672. DOI: 10.3390/molecules21121672.
  • Wiesner, I.;. Listening to Stone, Wood and Shell. Homoeopathic Links. 2005, 18(4), 222.
  • Dwek, M. V.; Ross, H. A.; Streets, A. J.; Brooks, S. A.; Adam, E.; Titcomb, A.; Woodside, J. V.; Schumacher, U.; Leathem, A. J. Helix Pomatia Agglutinin Lectin-binding Oligosaccharides of Aggressive Breast Cancer. Int. J. Cancer. 2001, 95, 79–85.
  • El Ouar, I.; Braicu, C.; Naimi, D.; Irimie, A.; Berindan-Neagoe, I. Effect of Helix Aspersa Extract on TNFα, NF-κB and Some Tumor Suppressor Genes in Breast Cancer Cell Line Hs578T. Pharmacogn. Mag. 2017, 13(50), 281. DOI: 10.4103/0973-1296.204618.
  • Ouar, I. E. L.; Braicu, C.; Naimi, D.; Irimie, A. L. E. X. E. N. D. R. U. 4.; NEAGOE, I. B. Anti Tumour Effect of Aqueous Extract from Helix Aspersa. Int. J. Pharm. Bio. Sci. 2013, 4(3), 1325–1332.
  • Kompella, S. N.; Hung, A.; Clark, R. J.; Marí, F.; Adams, D. J. Alanine Scan of ␣ -conotoxin RegIIA Reveals a Selective ␣ 3 ␤ 4 Nicotinic Acetylcholine Receptor Antagonist *. J. Biol. Chem. 2015, 290(2), 1039–1048. DOI: 10.1074/jbc.M114.605592.
  • Anderson, P. D.; Bokor, G. Conotoxins : Potential Weapons from the Sea. J. Bioterrorism Biodefense. 2012, 3(3), 3–6.
  • Layer, R. T.; Mcintosh, J. M. Conotoxins : Therapeutic Potential and Application. Mar. Drugs. 2006, 4, 119–142. DOI: 10.3390/md403119.
  • Hoggard, M. F.; Rodriguez, A. M.; Cano, H.; Clark, E.; Tae, H.-S.; Adams, D. J.; Godenschwege, T. A.; Marí, F. In vivo and in vitro Testing of Native α-conotoxins from the Injected Venom of Conus Purpurascens. Neuropharmacology. 2017, 127, 253–259. DOI: 10.1016/j.neuropharm.2017.09.020.
  • Mӧller, C.; Clark, E.; Safavi-hemani, H.; DeCaprio, A.; Marí, F. Isolation and Characterization of Conohyal-P1, a Hyaluronidase from the Injected Venom of Conus Purpurascens. J. Proteomics. 2017, 164, 73–84. DOI: 10.1016/j.jprot.2017.05.002.
  • Dine, J.; Gordon, R.; Shames, Y.; Kasler, M. K.; Burke, M. B. Immune Checkpoint Inhibitors : An Innovation in Immunotherapy for the Treatment and Management of Patients with Cancer. Asia Pac.J. Oncol. Nurs. 2017, 4(2), 127. DOI: 10.4103/apjon.apjon_4_17.
  • Kamta, J.; Chaar, M.; Ande, A.; Altomare, D. A.; Oudhia, S. A. Advancing Cancer Therapy with Present and Emerging immuno-Oncology Approaches. Front. Oncol. 2017, 7(April), 1–15. DOI: 10.3389/fonc.2017.00064.
  • Oiseth, S. J.; Aziz, M. S. Cancer Immunotherapy : A Brief Review of the History, Possibilities, and Challenges Ahead. J. Cancer Metastatis Treat. 2017, 3, 250–261. DOI: 10.20517/2394-4722.2017.41.
  • Harrington, S. E.; Smith, T. J. The Role of Chemotherapy at the End of Life: “When Is Enough, Enough? JAMA. 2011, 299(22), 2667–2678. DOI: 10.1001/jama.299.22.2667.
  • Lake, R. A.; Robinson, W. S. Immunotherapy and Chemotherapy — A Practical Partnership. Nat. Rev. Cancer. 2005, 5(5), 397. DOI: 10.1038/nrc1613.
  • Jr, T. W. D.; Reed, S. G. Adjuvants for Cancer Vaccines. Semin. Immunopathol. 2010, 22, 155–161. DOI: 10.1016/j.smim.2010.04.007.
  • Kalos, M.; June, C. H. Adoptive T Cell Transfer for Cancer Immunotherapy in the Era of Synthetic Biology. Immunity. 2013, 39(1), 49–60. DOI: 10.1016/j.immuni.2013.07.002.
  • Pardoll, D.;. Cancer and the Immune System: Basic Concepts and Targets for Intervention. Semin. Oncol. 2015, 42(4), 523–538. DOI: 10.1053/j.seminoncol.2015.05.003.
  • Houot, R.; Michal Schultz, L.; Marabelle, A.; Kohrt, H. T-cell – Based Immunotherapy : Adoptive Cell Transfer and Checkpoint Inhibition. Cancer Immunol. Res. 2015, 3(10), 1115–1122. DOI: 10.1158/2326-6066.CIR-15-0190.
  • Dolashka, P.; Dolashki, A.; Velkova, L.; Stevanovic, S.; Molin, L.; Traldi, P.; Velikova, R.; Voelter, W. Bioactive Compounds Isolated from Garden Snails. J. BioSci. Biotechnol. 2015, (september), 147–155.
  • Velkova, L.; Dimitrov, I.; Schwarz, H.; Stevanovic, S.; Voelter, W.; Salvato, B.; Dolashka-Angelova, P. Glycan Structures of the Structural Subunit (Hth1) of Haliotis Tuberculata Hemocyanin. Comp. Biochem. Physiol., Part B. 2010, 157, 16–25. DOI: 10.1016/j.cbpb.2010.04.012.
  • Riggs, D. R.; Jackson, B.; Vona-davis, L.; Ph, D.; Mcfadden, D. In Vitro Anticancer Effects of a Novel Immunostimulant : Keyhole Limpet Hemocyanin. J. Surg. Res. 2002, 108, 279–284. DOI: 10.1006/jsre.2002.6548.
  • Boyanova, O.; Dolashka, P.; Toncheva, D.; Rammensee, H. G.; Ć, S. S. In Vitro Effect of Molluscan Hemocyanins on CAL ‑ 29 and T ‑ 24 Bladder Cancer Cell Lines. Biomed. Rep. 2013, 1, 235–238. DOI: 10.3892/br.2012.46.
  • Antonova, O.; Dolashka, P.; Toncheva, D.; Rammensee, H.; Stevanovic, S.; Dolashka, P. In Vitro Antiproliferative Effect of Helix Aspersa Hemocyanin on Multiple Malignant Cell Lines. Zeitschrift Für Naturforschung C. 2014, 68(7–8), 325–334. DOI: 10.5560/znc.2013-0148.
  • Olsson, C. A.; Chute, R.; Rao, C. N. Immunologic Reduction of Bladder Cancer Recurrence Rate. J. Urol. 1974, 111(2), 173–176. DOI: 10.1016/S0022-5347(17)59919-X.
  • Walker, S.E., Spencer, G.E., Necakov, A., and Carlone, R.L., 2018. Retinoic Acid-Induced miR-124 Upregulation Enhances Axonal Sprouting in Isolated Motor Neurons from Lymnaea stagnalis. International Journal of Molecular Sciences, 19, 2741.
  • Safavi-hemami, H.; Lu, A.; Li, Q.; Fedosov, A. E.; Biggs, J.; Corneli, P. S.; Seger, J.; Yandell, M.; Olivera, B. M. Venom Insulins of Cone Snails Diversify Rapidly and Track Prey Taxa. Mol. Biol. Evol. 2016, 33(11), 2924–2934. DOI: 10.1093/molbev/msw174.
  • Safavi-hemami, H.; Gajewiak, J.; Karanth, S.; Robinson, S. D.; Ueberheide, B.; Douglass, A. D.; Schlegel, A.; Imperial, J. S.; Watkins, M.; Bandyopadhyay, P. K. Specialized Insulin Is Used for Chemical Warfare by Fish-hunting Cone Snails. Proc. National Academy Sci. 2015, 112(6), 1743–1748. DOI: 10.1073/pnas.1423857112.
  • Shymansky, T.; Hughes, E.; Rothwell, C. M.; Lukowiak, K. Propranolol Disrupts Consolidation of Emotional Memory in Lymnaea. Neurobiol. Learn. Mem. 2018, 149, 1–9. DOI: 10.1016/j.nlm.2018.01.010.
  • Walker, S.E., Spencer, G.E., Necakov, A., and Carlone, R.L., 2018. Retinoic Acid-Induced miR-124 Upregulation Enhances Axonal Sprouting in Isolated Motor Neurons from Lymnaea stagnalis. International Journal of Molecular Sciences, 19, 2741.
  • Zeng, X. S.; Geng, W. S.; Jia, J. J. Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. ASN Neuro. 2018, 10.
  • Gao, B.; Peng, C.; Yang, J.; Yi, Y.; Zhang, J.; Shi, Q. Cone Snails: A Big Store of Conotoxins for Novel Drug Discovery. Toxins. 2017, 9(12), 397. DOI: 10.3390/toxins9120397.
  • Thapa, P.; Espiritu, M. J.; Cabalteja, C. C.; Bingham, J.-P. Conotoxins and Their Regulatory Considerations. Regul. Toxicol. Pharmacol. 2014, 70(1), 197–202. DOI: 10.1016/j.yrtph.2014.06.027.
  • Matusiewicz, M.; Kosieradzka, I.; Niemiec, T.; Grodzik, M.; Antushevich, H.; Strojny, B.; Gołębiewska, M. In Vitro Influence of Extracts from Snail Helix Aspersa Müller on the Colon Cancer Cell Line Caco-2. Int. J. Mol. Sci. 2018b, 19(4), 1064.
  • Milner, J. A.; Romagnolo, D. F.; Connor, J. R.; Lee, S. Y. Bioactive Compounds and Cancer; Humana Press, Totowa, NJ: Springer, 2010.
  • King, G.;. Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics; Royal Society of Chemistry, 2015.
  • Pons, F.; Koenig, M.; Michelot, R.; Mayer, M. The Bronchorelaxant Effect of Helicidine, a Helix Pomatia Extract, Involves Prostaglandin E2 Release. Pharmaceutical Biol. 2008, 0209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.