149
Views
0
CrossRef citations to date
0
Altmetric
Articles

Stability, electronic and magnetic properties of the Octagraphene-like boron nitride Nanosheets: In silico studies

ORCID Icon, , &
Pages 93-99 | Received 13 Nov 2017, Accepted 26 Dec 2017, Published online: 01 Feb 2018

References

  • Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306, 666–669, doi:10.1126/science.1102896.
  • Geim, A.K. Graphene Prehistory. Phys. Scr. 2012, T146, 014003–4, doi:10.1088/0031-8949/2012/T146/014003.
  • Dresselhaus, M.S. Fifty Years in Studying Carbon-Based Materials. Phys. Scr. 2012, T146, 014002–10, doi:10.1088/0031-8949/2012/T146/014002.
  • Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351–355, doi:10.1016/j.ssc.2008.02.024.
  • Du, K.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching Ballistic Transport in Suspended Graphene. Nat. Nanotechnol. 2008, 3, 491–495, doi:10.1038/nnano.2008.199.
  • Balandin, A.A.; Ghosh, S.; Bao, W.Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907, doi:10.1021/nl0731872.
  • Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene Science. 2008, 320, 1308, doi:10.1126/science.1156965.
  • Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene‐Based Materials: Synthesis, Characterization, Properties, and Applications. Small. 2011, 7, 1876–1902, doi:10.1002/smll.201002009.
  • He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-Based Electronics Sensors. Chem. Sci. 2012, 3, 1764–1772, doi:10.1039/C2SC20205K.
  • Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-Based Nanocomposites. Chem. Soc. Rev. 2012, 41, 666–686, doi:10.1039/c1cs15078b.
  • Das, S.; Kim, M.; Lee, J.w.; Choi, W. Synthesis, Properties, and Applications of 2D Materials: A Comprehensive Review. Crit. Rev. Solid State Mat. Sci. 2014, 39, 231–252, doi:10.1080/10408436.2013.836075.
  • Liao, L.; Peng, H.; Liu, Z. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200, doi:10.1021/ja5048297.
  • Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 0541–10453, doi:10.1073/pnas.0502848102.
  • Pakdel, A.; Zhi, C.; Bando, Y.; Golberg, D. Low-Dimensional Boron Nitride Nanomaterials. Materials Today. 2012, 15, 256–265, doi:10.1016/S1369-7021(12)70116-5.
  • Pakdel, A.; Bando, Y.; Golberg, D. Nano Boron Nitride Flatland. Chem. Soc. Rev. 2014, 43, 934–959, doi:10.1039/c3cs60260e.
  • Weng, Q.; Wang, B.; Wang, X.; Hanagata, N.; Li, X.; Liu, D.; Wang, X.; Jiang, X.; Bando, Y.; Golberg, D. Highly Water-Soluble, Porous, and Biocompatible Boron Nitrides for Anticancer Drug Delivery. ACS Nano. 2014, 8, 6123–6130, doi:10.1021/nn5014808.
  • Loukhovitski, B.I.; Sharipov, A.S.; Starik, A.M. Physical and Thermodynamic Properties of AlnCm Clusters: Quantum-Chemical Study. J. Phys. Chem. A. 2015, 119, 1369–1380, doi:10.1021/jp5108087.
  • Chigo-Anota, E.; Cárdenas-Jirón, G.; Salazar Villanueva, M.A.; Bautista Hernández, A.; Castro, M. Covalent Functionalization of Octagraphene with Magnetic Octahedral B6− and Non-planar C6− Clusters. Physica E. 2017, 94, 196–203, doi: 10.1016/j.physe.2017.08.012.
  • Tsuneda, T. Density Functional Theory in Quantum Chemistry; Springer: Japan, 2014.
  • Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Fox, D.J. Gaussian 09 Revision C.01; M; Gaussian, Inc.: Wallingford CT, 2010.
  • Heyd, J.; Scuseria, G.E. Efficient Hybrid Density Functional Calculations in Solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb Hybrid Functional. J. Chem. Phys. 2004, 121, 1187–1192, doi:10.1063/1.1760074.
  • Heyd, J.; Scuseria, G.E. Assessment and Validation of a Screened Coulomb Hybrid Density Functional. J. Chem. Phys. 2004, 120, 7274–7280, doi:10.1063/1.1668634.
  • Castro, M.; Chigo-Anota, E. BN and BN Oxide Nanosheets Based Nanosensor for Paracetamol Adsorption: A Density Functional Investigation. Mex. J. Mat. Sci. Eng. 2014, 1, 21–29.
  • Mohajeri, A.; Omidvar, A. Density Functional Theory Study on the Static Dipole Polarizability of Boron Nitride Nanotubes: Single Wall and Coaxial Systems. J. Phys. Chem. C. 2014, 118, 1739–1745, doi:10.1021/jp410932a.
  • Geerlings, P.; De Proft F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874, doi:10.1021/cr990029p.
  • Bergveld, P.; Hendrikse, J.; Olthuis, W. Theory and Application of the Material Work Function for Chemical Sensors Based on the Field Effect Principle. Meas. Sci. Technol. 1998, 9, 1801–1808.
  • Lu, H.; Liu, Z.; Yan, X.; Li, D.; Parent, L.; Tian, H. Electron Work Function- A Promising Guiding Parameter Formaterials Design. Sci. Rep. 2016, 6, 24366(1) -(11), doi:10.1038/srep24366.
  • Scrocco, E.; Tomasi, J. The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties, Top. Current. Chem. 1973, 42, 95–170, doi:10.1007/3-540-06399-4_6.
  • Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. J. Chem. Soc. Perkin. Trans. 1993, 2, 799–805, doi:10.1039/P29930000799.
  • Tomasi, J.; Persico, M. Molecular Interactions in Solution: An overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094, doi:10.1021/cr00031a013.
  • Delley, B. The Conductor-Like Screening Model for Polymers and Surfaces. Mol. Simul. 2006, 32, 117–123, doi:10.1080/08927020600589684.
  • Takahashi, L.; Takahashi, K. Structural Stability and Electronic Properties of an Octagonal Allotrope of Two Dimensional Boron Nitride. Dalton Trans. 2017, 46, 4259–4264, doi:10.1039/c7dt00372b.
  • Chigo-Anota, E.; Bautista Hernández, A.; Escobedo Morales, A.; Castro, M. Design of the Magnetic Homonuclear Bonds Boron Nitride Nanosheets using DFT Methods. J. Mol. Graph. Model. 2017, 74, 135–142, doi:10.1016/j.jmgm.2017.03.019.
  • Liu, Y.; Wang, G.; Huang, Q.; Guo, L.; Chen, X. Structural and Electronic Properties of t Graphene: a Two-Dimensional Carbon Allotrope with Tetrarings. Phys. Rev. Lett. 2012, 108, 225505–225508, doi:10.1103/PhysRevLett.108.225505.
  • Kotakoski, J.; Krasheninnikov, A.V.; Kaiser, U.; Meyer, J.C. From Point Defects in Graphene to Two-Dimensional Amorphous Carbon. Phys. Rev. Lett. 2011, 106, 105505–105508, doi:10.1103/PhysRevLett.106.105505.
  • Kochaev, A.I. Hypothetical Planar and Nanotubular Crystalline Structures with Five Interatomic Bonds of Kepler Nets Type. AIP Advances. 2017, 7, 025202–9, doi:10.1063/1.4975707.
  • Van Voorhis, T.; Scuseria, G.E. A Novel form for the Exchange-Correlation Energy Functional. J. Chem. Phys. 1998, 109, 400–410, doi:10.1063/1.476577.
  • Li, S.S. Semiconductor Physical Electronics. Second ed., Springer, USA, 2006.
  • Zhai, H.J.; Zhao, Y.F.; Li, W.L.; Chen, Q.; Bai, H.; Hu, H.S.; Piazza, Z.A.; Tian, W.J.; Lu, H.G.; Wu, Y.B.; Mu, Y.W.; Wei, G.F.; Liu, Z.P.; Li, L.; Li, S.D.; Wang, L.S. Observation of an All-Boron Fullerenes. Nat. Chem. 2014, 6, 727–731, doi:10.1038/nchem.
  • Li, X.; Zhi, C.; Hanagata, N.; Yamaguchi, M.; Bando, Y.; Golberg, D. Boron Nitride Nanotubes Functionalized with Mesoporous Silica for Intracellular Delivery of Chemotherapy Drugs. Chem. Commun. 2013, 49, 7337–7339, doi:10.1039/c3cc42743a.
  • Feng, S.; Zhang, H.; Yan, T.; Hung, D.; Zhi, C.; Nakanishi, H.; Dong, G.X. Folate-Conjugated Boron Nitride Nanospheres for Targeted Delivery of Anticancer Drugs. Int J Nanomedicine. 2016, 11, 4573–4582, doi:10.2147/IJN.S110689.
  • Lin, Y.; Williams, T.V.; Cao, W.; Elsayed-Ali, H.E.; Connell, J.W. Defect Functionalization of Hexagonal Boron Nitride Nanosheets. J. Phys. Chem. C. 2010, 114(41), 17434–17439, doi:10.1021/jp105454w.
  • Tiano, A.L.; Parka, C.; Lee, J.W.; Luong, H.H.; Gibbons, L.J.; Chua, S.H.; Applin, S.I.; Gnoffo, P.; Lowther, S.; Kim, H.J.; Danehy, P.M.; Inman, J.A.; Jones, S.B.; Kang, J.H.; Sauti, G.; Thibeault, S.A.; Yamakov, K.; Wise, K.E.; Sue, J.; Fay, C.C.; Vijay, K. Varadan ( Eds.), Published in SPIE Proceedings, Nanosensors, Biosensors, and Info-tech Sensors and Systems, vol. 9060, 2014, doi:10.1117/12.2045396.
  • De Robertis PhD Student, University of Parma, Department of Pharmacy, Parma, Italy, S., Bonferoni University of Pavia, Department of Drug Sciences, Pavia, Italy, M.C., Elviri University of Parma, Department of Pharmacy, Parma, Italy, L., Sandri University of Pavia, Department of Drug Sciences, Pavia, Italy, G., Caramella University of Pavia, Department of Drug Sciences, Pavia, Italy, C. Advances in Oral Controlled drug Delivery: The Role of Drug–Polymer and Interpolymer Non-Covalent Interactions. J. Exp. Opin. Drug Deliv. 2014, 12, 441–453, doi:10.1517/17425247.2015.966685.
  • Dong, H.; Lin, B.; Gilmore, K.; Hou, T.; Lee, S.T.; Li, Y. Theoretical Investigations on SiC2 Siligraphene as Promising Metal-Free Catalyst for Oxygen Reduction Reaction. J. Power Sources. 2015, 299, 371–379, doi:10.1016/j.jpowsour.2015.09.014.
  • Zhao, J.; Chen, Z. Carbon-Doped Boron Nitride Nanosheet: An Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. J. Phys. Chem. C 2015, 119, 26348–26354, doi:10.1021/acs.jpcc.5b09037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.