100
Views
3
CrossRef citations to date
0
Altmetric
Articles

Interaction between pancreatic β cell and electromagnetic fields: A systematic study toward finding the natural frequency spectrum of β cell system

ORCID Icon
Pages 341-356 | Received 31 Jan 2017, Accepted 06 Aug 2017, Published online: 31 Oct 2017

References

  • Adair, R. (2002). Vibrational resonances in biological systems at microwave frequencies. Biophys J. 82:1147–1152. doi 10.1016/S0006-3495(02)75473-8.
  • Adeghate, E., Ponery, A. S., and Wahab, A. (2001). Effect of electrical field stimulation on insulin and glucagon secretion from the pancreas of normal and diabetic rats. Horm. Metab. Res. 33:281–289. doi 10.1055/s-2001-15284.
  • Attwell, D., Cohen, I., Eisner, D., et al. (1979). The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. PfluGers Archiv Eur. J. Physiol. 379:137–142. doi 10.1007/BF00586939.
  • Beigelman, P. M., Ribalet, B., and Atwater, I. (1977). Electrical activity of mouse pancreatic beta-cells. J. Physiol. Paris. 73:201–207.
  • Bertram, R., Satin, L., Pedersen, M., et al. (2007). Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets. Biophys. J. 92:1544–1555. doi 10.1529/biophysj.106.097154.
  • Binhi, V. N. (2008). Magnetobiology: Underlying Physical Problems. 1st. Academic Press, San Diego.
  • Braun, M., Ramracheya, R., Bengtsson, M., et al. (2008). Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes. 57:1618–1628. doi 10.2337/db07-0991.
  • Brizhik, L. S., and Eremko, A. A. (2003). Nonlinear model of the origin of endogenous alternating electromagnetic fields and selfregulation of metabolic processes in biosystems. Electromagn Biol. Med. 22:31–39. doi 10.1081/JBC-120020351.
  • Budi, A., Legge, F. S., Treutlein, H., & Yarovsky, I. (2007). Effect of frequency on insulin response to electric field stress. Journal of Physical Chemistry B, 111(20), 5748–5756.
  • Cha, C. Y., Nakamura, Y., Himeno, Y., et al. (2011). Ionic mechanisms and Ca2+ dynamics underlying the glucose response of pancreatic beta cells: a simulation study. J. Gen. Physiol. 138:21–37. doi 10.1085/jgp.201110611.
  • Chay, T., and Keizer, J. (1983). Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys. J. 42:181–189. doi 10.1016/S0006-3495(83)84384-7.
  • Chiu, H., Tsai, E., Juneja, R., et al. (2007). Equivalent insulin resistance in latent autoimmune diabetes in adults (LADA) and type 2 diabetic patients. Diabetes Res. Clin. Pract. 77:237–244. doi 10.1016/j.diabres.2006.12.013.
  • Cifra, M., Fields, J. Z., and Farhadi, A. (2011). Electromagnetic cellular interactions. Prog. Biophys. Mol. Biol. 105:223–246. doi 10.1016/j.pbiomolbio.2010.07.003.
  • Cosic, I., and Pirogova, E. (2007). Bioactive peptide design using the resonant recognition model. Nonlinear Biomed. Phys. 1(7):1–11. doi 10.1186/1753-4631-1-7.
  • Desoer, C. A., and Kuh, E. S. (1969). Basic Circuit Theory. McGraw-Hill, New York.
  • Dubey, A. K., Gupta, S. D., and Basu, B. (2011). Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces. J. Biomed. Mater. Res. . B: Appl. Biomater. 98:18–29. doi 10.1002/jbm.b.v98b.1.
  • Engstrom, S., and Bowman, J. D. (2004). Magnetic resonances of ions in biological systems. Bioelectromagnetic. 25:620–630.
  • FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. B Math. Biol. 17:257–278.
  • Gall, D., and Susa. (1999). Effect of Na/Ca exchange on plateau fraction and [Ca]i in models for bursting in pancreatic beta-cells. Biophys J. 77:45–53.
  • Galvanovskis, J., Braun, M., and Rorsman, P. (2011). Exocytosis from pancreatic β-cells: Mathematical modelling of the exit of low-molecular-weight granule content. Inter. Foc. 1:143–152.
  • Gembal, M., Gilon, P., and Henquin, J. C. (1992). Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J. Clin. Investig. 89:1288–1295.
  • Grundler, W. (1992). Intensiy- and frequency-dependent effects of microwaves on cell growth rates. Bioelectrochem. Biog. 27:361–365.
  • Havas, M. (2008). Dirty electricity elevates blood sugar among electrically sensitive diabetics and may explain brittle diabetes. Electromagn Biol. Med. 27:135–146.
  • Henquin, J. C. (2000). Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 49:1751–1760.
  • Higashikubo, R., Culbreth, V. O., Spitz, D. R., et al. (1999). Radiofrequency electromagnetic fields have no effect on the in vivo proliferation of the 9L brain tumor. Radiat. Res. 152:665–671.
  • Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117:500–544.
  • Hutcheon, B., and Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 23:216–222.
  • Jolley, W. B., Hinshaw, D. B., Knierim, K., and Hinshaw, D. B. (1983). Magnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromagnetics. 4:103–106.
  • Kelly, R. P., Sutton, R., and Ashcroft, F. M. (1991). Voltage-activated calcium and potassium currents in human pancreatic beta-cells. J Physiol. 443:175–192.
  • Kleijn, S. D., Bouwens, M., Verburg-Van Kemenade, B. M. L., et al. (2011). Extremely low frequency electromagnetic field exposure does not modulate toll-like receptor signaling in human peripheral blood mononuclear cells. Cytokine. 54:43–50.
  • Lewczuk, B., Redlarski, G., Zak, A., et al. (2014). Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge. Biomed. Res. Int. 2014:13.
  • Liang, X., Graham, K. A., Johannessen, A. C., et al. (2014). Human oral cancer cells with increasing tumorigenic abilities exhibit higher effective membrane capacitance. Integr Biol (Camb). 6:545–554.
  • Manikonda, P. K., Rajendra, P., Devendranath, D., et al. (2007). Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci. Lett. 413:145–149.
  • Mao, B. Q., MacLeish, P. R., and Victor, J. D. (2002). Relation between potassium-channel kinetics and the intrinsic dynamics in isolated retinal bipolar cells. J. Comput. Neurosci. 12:147–163.
  • Nunemaker, C. S., Bertram, R., Sherman, A. K. T.-A., et al. (2006). Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J. 91:2082–2096.
  • Paksy, K., Thuróczy, G., Forgács, Z., et al. (2000). Influence of sinusoidal 50-Hz magnetic field on cultured human ovarian granulosa cells. Electromagn Biol. Med. 19:91–97.
  • Pedersen, M. G. (2009). Contributions of Mathematical Modeling of Beta Cells to the Understanding of Beta-Cell Oscillations and Insulin Secretion. J. Diabetes Sci. Technol. 3:12–20.
  • Pedersen, M. G. (2010). A Biophysical Model of Electrical Activity in Human β-Cells. Biophys J. 99:3200–3207.
  • Pethig, R., Jakubek, L. M., Sanger, R. H., et al. (2005). Electrokinetic measurements of membrane capacitance and conductance for pancreatic beta-cells. IEE P-Nanobiotechnol. 152:189–193.
  • Plonsey, R., and Barr, R. C. (2007). Impulse Propagation. In: Bioelectricity: A Quantitative Approach. Boston, MA: Springer US. 155–186.
  • Pullar, C. E. (2016). The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer. CRC Press, Boca Raton. 97–98.
  • Riz, M., Braun, M., and Pedersen, M. G. (2014). Mathematical Modeling of Heterogeneous Electrophysiological Responses in Human beta Cells. PLoS Comput. Biol.. 10. e1003389.
  • Sabah, N., and Leibovic, K. (1969). Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon. Biophys J. 9:1206–1222.
  • Sakurai, T., Koyama, S., Komatsubara, Y., et al. (2005). Decrease in glucose-stimulated insulin secretion following exposure to magnetic fields. Biochem. Biophys. Res. Commun. 332:28–32.
  • Sakurai, T., Terashima, S., and Miyakoshi, J. (2009). Effects of strong static magnetic fields used in magnetic resonance imaging on insulin-secreting cells. Bioelectromagnetics. 30:1–8.
  • Sakurai, T., Yoshimoto, M., Koyama, S., and Miyakoshi, J. (2008). Exposure to extremely low frequency magnetic fields affects insulin-secreting cells. Bioelectromagnetics. 29:118–124.
  • Santini, M. T., Ferrante, A., Rainaldi, G., et al. (2005). Extremely low frequency (ELF) magnetic fields and apoptosis: A review. Int. J. Radiat. Biol. 81:1–11.
  • Satin, L., Butler, P., Ha, J., and Sherman, A. (2015). Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol Aspects Med. 42:61–77.
  • Sato, Y., Aizawa, T., Komatsu, M., et al. (1992). Dual Functional Role of Membrane Depolarization Ca2+ Influx in Rat Pancreatic B-Cell. Diabetes. 41:438–443.
  • Shapiro, M. G., Homma, K., Villarreal, S., et al. (2012). Infrared light excites cells by changing their electrical capacitance. Nat Commun. 3:736.
  • Simko, M., and Mattsson, M. O. (2004). Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: Possible immune cell activation. J. Cell. Biochem. 93:83–92.
  • Sperelakis, N. (2001). Cell Physiology Source Book: Essentials of Membrane Biophysics. 3. Elsevier Science. 1219. London UK; Waltham, MA.
  • Stewart, P., Aslanidi, O. V., Noble, D., et al. (2009). Mathematical models of the electrical action potential of Purkinje fibre cells. Philos. Trans. R. Soc. Lond. A. 367:2225–2255.
  • Sun, W., Chiang, H., Fu, Y., et al. (2001). Exposure to 50 Hz electromagnetic fields induces the phosphorylation and activity of stress-activated protein kinase in cultured cells. Electromagn Biol. Med. 20:415–423.
  • Topp, B., Promislow, K., deVries, G., et al. (2000). A model of beta-cell mass, insulin, and glucose kinetics: Pathways to diabetes. J. Theor. Biol. 206:605–619.
  • Tsong, T. Y., and Astumian, R. D. (1986). 863 — Absorption and conversion of electric field energy by membrane bound atpases. Bioelectrochem. Biog. 15:457–476.
  • Westermark, P. O., and Lansner, A. (2003). A model of phosphofructokinase and glycolytic oscillations in the pancreatic beta-cell. Biophys J. 85:126–139.
  • Wierschem, K., and Bertram, R. (2004). Complex bursting in pancreatic islets: A potential glycolytic mechanism. J. Theor. Biol. 228:513–521.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.