229
Views
11
CrossRef citations to date
0
Altmetric
Articles

Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize or destabilize living cells

&

References

  • Adey, W. R. (1992). Collective properties of cell membranes. In: Norden, B., Ramel, K.eds.. Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. Oxford: Oxford University Press.
  • Adey, W. R., Byus, C. V., Cain, C. D., et al. (2000). Spontaneous and nitrosourea-induced primary tumors of the central nervous system in fischer 344 rats exposed to frequency-modulated microwave fields. In: Cancer Research. pp. 2000. Philadelphia: American Association for Cancer Research
  • Adhikari, S. K. (2015). Stable spatial and spatiotemporal optical soliton in the core of an optical vortex. Phys. Rev. E. 92:042926.
  • Arndt, M., Juffmann, T., Vedral, V. (2009). Quantum physics meets biology. Hfsp J. 3:386–400.
  • Bambardekar, K., Clément, R., Blanc, O., et al. (2015). Direct laser manipulation reveals the mechanics of cell contacts in vivo. Pnas. 112:1416–1421.
  • Bandyopadhyay S, Mehta M, Kuo D, et al. (2010). Rewiring of genetic networks in response to DNA damage. Science. 330:1385–1389. doi: 10.1126/science.1195618.
  • Barnes, F. S., Greenebaum, B. (2014). The Effects of weak magnetic fields on radical pairs. Bioelectromagnetics. 36(1):45–54. doi: 10.1002/bem.21883 Wiley Periodicals, Inc. B.
  • Belyaev, I. Y. (2015). Biophysical Mechanisms for Nonthermal Microwave Effects.
  • Belyaev, I. Y., Markova, E., Malmgren, L. (2010). Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: Possible mechanistic link to cancer. Risk. Environ Health Perspect. 118:394–399.
  • Blackman, C., Benane, S. G., Rabinowitz, J. R., et al. (1985). A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 6:327–337.
  • Blackman, C. F., Blanchard, J. P., Benane, S. G., House, D. E. (1995). The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. Faseb J. 9:547–551.
  • Blanchard, J. P., Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics. 15:217–238.
  • Blank, M., Findl, E. (1970). Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. 1987. Springer Science+Business Media, LLC. ISBN: 978-1-4899-1970-0.
  • Brizhik, L., Cruzeiro-Hansson, L., Eremo, A. (1998). Influence of electromagnetic radiation on molecular solitons. J Biol Phys. 24:19–39.
  • Buchachenko, A. (2015). Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics. 37:1–13. Wiley Periodicals, Inc.
  • Butikov, E. I. (2004). Parametric excitation of a linear oscillator. Eur. J. Phys. 25:535–554.
  • Byrnes, T., Kim, N. Y., Yamamoto, Y. (2014). Exciton-polariton condensates. arXiv.1411.6822v1.
  • Chaplin, M. F. (2000). A proposal for the structuring of water. Biophys Chem. 24:211–221.
  • Chevy, F. (2014). Viewpoint: Solitons with a twist. laboratoire kastler brossel, École Normale Supérieure, Paris, France. Physics. 7:82.
  • Chin, A. W., Prior, J., Rosenbach, R., et al. (2013). The Role of Non-Equilibrium Vibrational Structures in Electronic Coherence and Recoherence in Pigment–Protein Complexes. Nat. Phys. 9:113–118. doi: 10.1038/nphys2515.
  • Chladni, E. F. F. (1817). Neue Beyträge zur Akustik, by Ernst Florens Friedrich Chladni.
  • Chladni, E. F. F. (1980). Entdeckungen über die Theorie des Klanges [Discoveries in the Theory of Sound], Leipzig, 1787; 78 pp. Reprint, Leipzig.
  • Chou, K. C. (1985). Low-frequency vibration of DNA molecules: Beta-sheet and beta-barrel. Biophys. J. 48:289–297.
  • Chou, K. C., Chen, N. Y. (1977). The biological functions of low-frequency phonons. Scientia Sinica. 20:447–457.
  • Chou, K. C., Zhang, C. T., Maggiora, G. M. (1994). Solitary wave dynamics as a mechanism for explaining the internal motion during microtube growth. Biopolymers. 34:143–153.
  • Cosic, I. (1997). The Resonant Recognition Model of Macromolecular Bioactivity Theory and Applications. Basel, Boston, Berlin: Birkhauser Verlag. ISBN: 978-3-0348-7477-9.
  • Cosic, I., Cosic, D., Lazar, K. (2015). Is it possible to predict electromagnetic resonances in proteins. DNA and RNA? EPJ Nonlinear Biomedical Physics. 3:5.
  • Cosic, I., Cosic, D., Lazar, K. (2016). Environmental light and its relationship with electromagnetic resonances of biomolecular interactions, as predicted by the resonant recognition model. Int. J. Environ. Res. Public Health. 13:647.
  • Coyne, L. M. (1985). A possible energetic role of mineral surfaces in chemical evolution. Orig Life Evol Biosph. 15:161–206.
  • Davydov, A. S. (1973). The theory of contraction of proteins under their excitation. J. Theor. Biol. 38:559–569. doi 10.1016/0022-5193(73)90256-7. PMID 4266326.
  • Davydov, A. S. (1977). Solitons and energy transfer along protein molecules. J. Theor. Biol. 66:379–387. doi 10.1016/0022-5193(77)90178-3. PMID 886872.
  • Del Giudice, E., Spinetti, P. S., Tedeschi, A. (2010). Water dynamics at the root of metamorphosis in living organisms. Water. 2:566–586. doi 10.3390/w2030566.
  • Engstrom, S. (1996). Dynamic properties of Lednev’s parametric resonance mechanism. Bioelectromagnetics. 17:58–70.
  • Einstein, A., Infield, L. (1961). The Evolution of Physics, 1961. New York: Simon and Schuster. ISBN-13:978-0671-20156-2.
  • Fata, J. E., Werb, Z., Bissell, M. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 6:1–11.
  • Feldman, Y., Puzenko, A., Ishai, P. B., et al. (2008). Human skin as arrays of helical antennas in the millimeter and submillimeter wave range . Phys. Rev. Lett. 100:128102.
  • Fermi, E., Pasta, J. R., Ulam, S. (1955). Studies of nonlinear problems, I. Report LA-1940. Los Alamos: Los Alamos Scientific Laboratory.
  • Ferris, J. P. (2005). Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements. 1:145–149.
  • Fischer, B. M., Walther, M., Jepsen, P. U. (2002). Phys Med Biol. 47:3807–3814.
  • Fröhlich, H. (1968). Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem.. 2:641–649.
  • Fröhlich, H. (1969). Quantum mechanical concepts in biology. In: Marois, M.Ed. From Theoretical Physics to Biology. Amsterdam, the Netherlands: North-Holland. pp. 13–22
  • Fröhlich, H. (1978). Coherent electric vibrations in biological systems and the cancer problem. Microwave theory and techniques. IEEE Trans. 26:33.
  • Fröhlich, H. (1988). Biological Coherence and Response to External Stimuli. Berlin, Heidelberg, New York: Springer.
  • Gander, M. J., Kwok, F. (2012). Chladni figures and the tacoma bridge: motivating PDE eigenvalue problems via vibrating plates. SIAM REV Soc. Ind. Appl. Math. 54:573–596.
  • Gander, M. J., Wanner, G. (2010). From euler, ritz and galerkin to modern computing. SIAM REVIEW, Soc. Ind. Appl. Math. 54:4.
  • Geesink, J. H. (2007). Description silicate mineral in mineral composition. EP 1834926:A1.
  • Geesink, J. H., Meijer, D. K. F. (2016). Quantum wave information of life revealed: An algorithm for EM frequencies that create stability of biological order, with implications for brain function and consciousness. NeuroQuantology. 14:106–125.
  • Gordon, N. K., Gordon, R. (2016). The organelle of differentiation in embryos: The cell state splitter. Gordon Gordon Theor. Biol. Med. Modell.. 13:11.
  • Halgamuge, M. N., Perssont, B. R. R., Salford, L. G., et al. (2009). Comparison between two models for interactions between electric and magnetic fields and proteins in cell membranes. Environ. Eng. Sci.. 26.
  • Heimburg, T., Jackson, A. D. (2005). On soliton propagation in bio-membranes and nerves. Proc. Natl. Acad. Sci. U. S. A. 102:9790–9795.
  • Hendee, S. P., Faour, F. A., Christensen, D. A., et al. (1996). The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions. Biophys. J. 70:2915–2923.
  • Hidalgo, E. G. (2007). Quantum Econophysics. arXiv: physics/0609245[physics.soc-ph].
  • Hinrikus, H., Bachmann, M., Karai, D., Lass, J. (2016). Mechanism of low-level microwave radiation effect on nervous system. Electromagn Biol Med. 36:202–212. doi: 10.1080/15368378.2016.1251451.
  • Hinrikus, H., Bachmann, M., Lass, J. (2008). Effect of 7, 14 and 21 Hz modulated 450 MHz microwave radiation on human electroencephalographic rhythms. Int. J. Rad. Biol. 84:69–79.
  • Hinrikus, H., Bachmann, M., Lass, J. (2011). Parametric mechanism of excitation of the electroencephalographic rhythms by modulated microwave radiation. Int. J. Rad. Biol. 87:1077–1085.
  • Huelga, S. F., Plenio, M. B. (2013). Vibration, quanta and biology. Contemp. Phys. 54:181. and E-print: arxiv: 1307.3530.
  • Illinger, K. H. (1981). Electromagnetic-field interaction with biological systems in the microwave and far-infrared region. Physical Basis. doi 10.1021/bk-1981-0157.ch001.
  • Johnson, K. (2009). “Water Buckyball” Terahertz Vibrations in Physics, Chemistry, Biology, Cosmology.
  • Jović Savić, D., Piper, A., Žikić, R., Timotijević, D. (2015). Vortex solitons at the interface separating square and hexagonal lattices. Phys. Lett. 379:1110–1113.
  • Kauffman, S. (2010). Is There A ‘Poised Realm’ Between the Quantum and Classical Worlds? Cosmos and culture.
  • Korteweg, D. J., De Vries, G. (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39:422–443.
  • Kuwayama, H., Ishida, S. (2013). Biological soliton in multicellular movement. Sci Rep. 3:2272. doi 10.1038/srep02272.
  • Lai, H. (2014). Neurological Effects of Non-Ionizing Electromagnetic Fields. Supplement for BioInitiative Working Group.
  • Lai, H., Singh, N. P. (2005). Interaction of microwaves and a temporally incoherent magnetic field on single and double DNA strand breaks in rat brain cells. Electromag Biol Med. 24:23–29.
  • Lakshmanan, M. (2011). Solitons, tsunamis and oceanographical applications of. In: Meyers, R. A.ed.. Extreme Environmental Events. Berlin: Springer. pp. 873–888.
  • Lambert, N., Chen, Y., Cheng, Y., et al. (2013). Quantum biology. Nat Phys. 9:10–11. doi 10.1038/nphys2474.
  • Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 12:71–75. doi 10.1002/bem.2250120202.
  • Lednev, V. V. (1993). Possible mechanism for the effect of weak magnetic fields on biological systems: Correction of the basic expression and its consequences. In: Blank, M. Ed.. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press. pp. 550–552.
  • Levin, M. (2012). Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning. BioSystems. doi 10.1016/j.biosystems.2012.04.005.
  • Liboff, A. R. (1985). Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 13:99–102.
  • Lloyd, S. (2014). Better living through quantum mechanics. http://www.pbs.org/wgbh/nova/blogs/physics/2014/03/quantum-life.
  • Lundholm, I. V., Rodilla, H., Wahlgren, W. Y., et al. (2015). Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal. Struct Dyn. 2:054702. doi 10.1063/1.4931825.
  • Luzzi, R., Vasconcellos, A. R., Ramos, G. J. (2010). Predictive statistical mechanics: A Nonequilibrium Ensemble Formalism. Dordrecht, Netherlands: Springer. ISBN: 13 9789048159635.
  • Lyle, D. B., Schechter, P., Adey, W. R., Lundak, R. L. (1983). Suppression of T-lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics. 4:281–292.
  • Maini, P. K., Woolley, T. E., Baker, R. E., et al. (2012). Turing’s model for biological pattern formation and the robustness problem. Interface Focus. 2:487–496. doi 10.1098/rsfs.2011.0113.
  • Meijer, D. K. F., Geesink, J. H. (2016). Phonon guided biology: Architecture of life and conscious perception are mediated by toroidal coupling of phonon, photon and electron information fluxes at discrete eigenfrequencies. NeuroQuantology. 14:718–755. doi 10.14704/nq.2016.14.4.985.
  • Montell, D. J. (2008). Morphogenetic cell movements: Diversity from combinatorial use of modular mechanical properties. Science. 322:1502–1505.
  • Painter, P. C., Mosher, L. E., Rhoads, C. (1981). Low- frequency modes in the raman spectrum of DNA. Biopolymers. 20:243–247. doi 10.1002/bip.1981.360200119.
  • Pall, M. L. (2013). Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. XX:1–9.
  • Pang, X. F., Chen, S., Wang, X., Zhong, L. (2016). Influences of electromagnetic energy on bio-energy transport through protein molecules in living systems and its experimental evidence. Int. J. Mol. Sci. 17:1130.
  • Pang, X. F., Chen, X. R. (2001). Distribution of vibrational energy levels of protein molecular chains. Commun. Theor. Phys. (Beijing, China). 35:323–326.
  • Parker, N. G., Proukakis, N. P., Leadbeater, M., Adams, C. S. (2003). Soliton-sound interactions in quasi-one-dimensional bose-einstein- condensates. Phys. Rev. Lett. 90:220401.
  • Pettini, M. Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, 2007.
  • Pirogova, E., Cosic, I. (2001). Examination of amino acid indexes within the resonant recognition model, Proceedings of the 2nd Conference of the Victorian Chapter of the IEEE EMBS, Melbourne, Australia.
  • Plankar, M., Brežan, S., Jerman, I. (2012). The principle of coherence in multi-level brain information processing. Prog Biophys Mol Biol. 111:8–29. doi 10.1016/j.pbiomolbio.2012.08.006.
  • Pokorny, J. (1982). Multiple Fröhlich coherent states in biological systems: Computer simulation. J. Theor. Biol. 98:21–27.
  • Porter, M. A., Zabusky, N. J., Hu, B., Campbell, D. K. (2009). Fermi, pasta, ulam and the birth of experimental mathematics. American Scientist, Volume 97, Sigma Xi, The Scientific Research Society.
  • Preto, J. (2016). Classical investigation of long-range coherence in biological systems. J. Nonlinear Sci. 26. doi 10.1063/1.4971963.
  • Rao, V. S., Titushkin, I. A., Moros, E. G., et al. (2008). Nonthermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: Elucidation of calcium pathways. Radiat Res. 169:319–329. doi 10.1667/RR1118.1.
  • Ritz, W. (1909). Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern.
  • Rozzi, C. A., Falke, S. M., Spallanzani, N., et al (2012). Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system, Nature Communications 4.
  • Sahu, S., Ghosh, S., Fujit, A. D., Bandyopadhya, Y. A. (2014). Live visualizations of single isolated tubulin protein self-assembly via tunneling current: Effect of electromagnetic pumping during spontaneous growth of microtubule. Sci Rep. 4:7303. doi 10.1038/srep07303.
  • Salford, L. G., Nittby, H., Brun, A., et al (2008). The Mammalian Brain in the Electromagnetic Fields Designed by Man-with Special Reference to Blood-Brain Barrier Function, Neuronal Damage and Possible Physical Mechanisms, Progress of Theoretical Physics Supplement No. 173.
  • Shapiro, A. (1961). Mathematical definition of acoustic coherence. JAcoust. Soc. Am. 33:831.
  • Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26:1484–1509.
  • Shrivastava, S., Schneider, M. F. (2014). Evidence for two-dimensional solitary sound waves in a lipid controlled interface and its implications for biological signalling. J. R. Soc. Interface. 11:20140098. doi 10.1098/rsif.2014.0098.
  • Sinkala, Z. (2006). Soliton/exciton transport in proteins. J. Theor. Biol. 241:919–927.
  • Srobar, F. (2015). Radiating Fröhlich system as a model of cellular electromagnetism. Electromagn Biol Med. 34.
  • Swain, J. (2006). On the Possibility of Large Up-Conversions and Mode Coupling between Fröhlich States and Visible Photons. Biological Systems.
  • Tielrooij, K. J., Garcia-Araez, N., Bonn, M., Bakker, H. J. (2010). Cooperativity in ion hydration. Science. 328:1006−1009.
  • Tielrooij, K. J., Paparo, D., Piatkowski, ., L., et al. (2009). Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy. Biophys. J. 97:2484–2492.
  • Turing, M. A. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. B. 237:37–72.
  • Usselman, R. J., Chavarriaga, C., Castello, P. R., et al. (2016). The quantum biology of reactive oxygen species partitioning impacts cellular bioenergetics. Sci Rep. 6:38543. doi 10.1038/srep38543.
  • Vasconcellos, A. R., Castro De, A. R. B., Silva, C. A. B., Luzzi, R. (2013). Mesoscopic hydro-thermodynamics of phonons. AIP Adv. 3:072106.
  • Vasconcellos, A. R., Vannuchi, F. S., Mascarenhas, S., Luzzi, R. (2012). Fröhlich Condensate: Emergence of synergetic Dissipative Structures in Information Processing Biological and Condensed Matter Systems. Information.
  • Veljkovic, V., Cosic, I., Dimitrijevic, B., Lalovic, D. (1985). Is it possible to analyze DNA and protein sequence by the method of digital signal processing? IEEE Trans. Biomed. Eng. 32:337–341.
  • Veljkovic, V., Slavic, I. (1972). Simple General-Model Pseudopotential. Phys. Rev. Lett. 29:105–107.
  • Xie, A., Van Der Meer, A. F. G., Austin, R. H. (2002). Phys. Rev. Lett. 88:018102.
  • Zabusky, N. J. (1965). Interaction of “solitons” in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15:240.
  • Zhadhin, M., Barnes, F. (2005). Frequency and amplitude windows at combined action of DC and low frequency AC magnetic fields on ion thermal motion in a macromolecule: Theoretical analysis. Bioelectromagnetics. 26:323–330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.