622
Views
22
CrossRef citations to date
0
Altmetric
Reviews

A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity

, , , &
Pages 84-95 | Received 13 Aug 2018, Accepted 04 Nov 2018, Published online: 06 Dec 2018

References

  • AL-Jobori, K. M., AL-Waiely, M. M. (2017). Expression pattern of wheat mitogen-activated protein kinase (MAPK1 and MAPK4) genes under salinity stress. Curr. Res. Microbiol. Biotechnol. 5:1184–1195.
  • Arthur, J. S. C., Ley, S. C. (2013). Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13:679–692. doi: 10.1038/nri3495.
  • Barnes, F. S., Greenebaum, B. (2006). Biological and medical aspects of electromagnetic fields: CRC press.
  • Blank, M., Goodman, R. (2008). A mechanism for stimulation of biosynthesis by electromagnetic fields: Charge transfer in DNA and base pair separation. J. Cell. Physiol. 214:20–26. doi: 10.1002/jcp.21198.
  • Boscolo, P., Bergamaschi, A., Di Sciascio, M. B., et al. (2001). Effects of low frequency electromagnetic fields on expression of lymphocyte subsets and production of cytokines of men and women employed in a museum. Sci. Total Environ. 270:13–20.
  • Boscolo, P., Di, L. G., Di, A. D., et al. (2006). The immune response of women with prolonged exposure to electromagnetic fields produced by radiotelevision broadcasting stations. Int. J. Immunopathol. Pharmacol. 19:43–48.
  • Bouwens, M., de Kleijn, S., Ferwerda, G., et al. (2012). Low‐frequency electromagnetic fields do not alter responses of inflammatory genes and proteins in human monocytes and immune cell lines. Bio. Electromagnetics. 33:226–237. doi: 10.1002/bem.20695.
  • Brubaker, S. W., Bonham, K. S., Zanoni, I., Kagan, J. C. (2015). Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 33:257–290. doi: 10.1146/annurev-immunol-032414-112240.
  • Bullock, T. H., Bennett, M. V., Johnston, D., et al. (2005). The neuron doctrine, redux. Science. 310:791–793. doi: 10.1126/science.1114394.
  • Cho, H., Seo, Y. K., Yoon, H. H., et al. (2012). Neural stimulation on human bone marrow‐derived mesenchymal stem cells by extremely low frequency electromagnetic fields. Biotechnol. Prog. 28:1329–1335. doi: 10.1002/btpr.1607.
  • Cho, S., Lee, Y., Lee, S., et al. (2014). Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug. Chem. Toxicol. 37:440–447. doi: 10.3109/01480545.2013.879662.
  • Chou, K.-C., Maggiora, G. M., Mao, B. (1989). Quasi-continuum models of twist-like and accordion-like low-frequency motions in DNA. Biophys. J. 56:295–305. doi: 10.1016/S0006-3495(89)82676-1.
  • Ciombor, D. M., Lester, G., Aaron, R. K., et al. (2002). Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J. orthopaedic res. 20:40–50. doi: 10.1016/S0736-0266(01)00071-7.
  • Conti, P., Gigante, G., Cifone, M., et al. (1985). Effect of electromagnetic fields on two calcium dependent biological systems. J. Bioelectricity. 4:227–236. doi: 10.3109/15368378509040375.
  • Costin, G.-E., Birlea, A. S., Norris, A. D. (2012). Trends in wound repair: Cellular and molecular basis of regenerative therapy using electromagnetic fields. Curr. Mol. Med. 12:14–26.
  • D’Angelo, C., Costantini, E., Kamal, M., Reale, M. (2015). Experimental model for ELF-EMF exposure: Concern for human health. Saudi Journal. Bio. Sci. 22:75–84. doi: 10.1016/j.sjbs.2014.07.006.
  • de Groot, M. W., Kock, M. D., Westerink, R. H. (2014). Assessment of the neurotoxic potential of exposure to 50 Hz extremely low frequency electromagnetic fields (ELF-EMF) in naive and chemically stressed PC12 cells. Neurotoxicology. 44:358–364. doi: 10.1016/j.neuro.2014.07.009.
  • de Kleijn, S., Bouwens, M., Verburg-van Kemenade, B. L., et al. (2011). Extremely low frequency electromagnetic field exposure does not modulate toll-like receptor signaling in human peripheral blood mononuclear cells. Cytokine. 54:43–50. doi: 10.1016/j.cyto.2010.12.016.
  • Del Signore, A., Boscolo, P., Kouri, S., et al. (2000). Combined effects of traffic and electromagnetic fields on the immune system of fertile atopic women. Ind. Health. 38:294–300.
  • Dermani, F. K., Samadi, P., Rahmani, G., et al. (2018). PD‐1/PD‐L1 immune checkpoint: Potential target for cancer therapy. J. Cell. Physiol. doi: 10.1002/jcp.27172.
  • Di, L. G., Di, A. D., Antonucci, A., et al. (2006). Follow up study on the immune response to low frequency electromagnetic fields in men and women working in a museum. Int. J. Immunopathol. Pharmacol. 19:37–42.
  • Doğan, M. S., Yavaş, M. C., Günay, A., et al. (2017). The protective effect of melatonin and ganoderma lucidum against the negative effects of extremely low frequency electric and magnetic fields on pulp structure in rat teeth. Biotechnol. Biotechnol. Equip. 31:979–988. doi: 10.1080/13102818.2017.1358668.
  • Erdal, N., Gürgül, S., Celik, A. (2007). Cytogenetic effects of extremely low frequency magnetic field on Wistar rat bone marrow. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 630:69–77. doi: 10.1016/j.mrgentox.2007.03.001.
  • Fan, W., Qian, F., Ma, Q., et al. (2015). 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells. Int. J. Clin. Exp. Med. 8:7394–7404.
  • Feychting, M., Ahlbom, A., Kheifets, L. (2005). EMF and health. Annu. Rev. Public Health. 26:165–189. doi: 10.1146/annurev.publhealth.26.021304.144445.
  • Frahm, J., Lantow, M., Lupke, M., et al. (2006). Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J. Cell. Biochem. 99:168–177. doi: 10.1002/jcb.20920.
  • Frahm, J., Mattsson, M.-O., Simkó, M. (2010). Exposure to ELF magnetic fields modulate redox related protein expression in mouse macrophages. Toxicol. Lett. 192:330–336. doi: 10.1016/j.toxlet.2009.11.010.
  • Freitas-Rodríguez, S., Folgueras, A. R., López-Otín, C. (2017). The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond. Biochim Biophys Acta Mol Cell Res. 2017:1864:2015-2025. doi: 10.1016/j.bbamcr.2017.05.007.
  • Guerriero, F., Ricevuti, G. (2016). Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: A possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural. Regen. Res. 11:1888–1895. doi: 10.4103/1673-5374.189172.
  • Hefeneider, S. H., McCoy, S. L., Hausman, F. A., et al. (2001). Long‐term effects of 60‐Hz electric vs. magnetic fields on IL‐1 and IL‐2 activity in sheep. Bio. Electromagnetics. 22:170–177.
  • Hemmer, B., Kerschensteiner, M., Korn, T. (2015). Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 14:406–419. doi: 10.1016/S1474-4422(14)70305-9.
  • Ikeda, K., Shinmura, Y., Mizoe, H., et al. (2003). No effects of extremely low frequency magnetic fields found on cytotoxic activities and cytokine production of human peripheral blood mononuclear cells in vitro. Bio. Electromagnetics. 24:21–31. doi: 10.1002/bem.10062.
  • Jonai, H., Villanueva, M., Yasuda, A. (1997). Cytokine profile of human peripheral blood mononuclear cells exposed to 50 Hz EMF. Occup. Health Ind. Med. 36:359–368.
  • Kim, J., Yenari, M. (2017). Heat Shock Proteins and the Stress Response. Primer on Cerebrovascular Diseases . 2. Elsevier. 273–275.10.1016/B978-0-12-803058-5.00056-4 .
  • Kim, S. J., Jang, Y. W., Hyung, K. E., et al. (2017). Extremely low‐frequency electromagnetic field exposure enhances inflammatory response and inhibits effect of antioxidant in RAW 264.7 cells. Bio. Electromagnetics. 38:374–385. doi: 10.1002/bem.22049.
  • Lee, J.-S., Lee, -J.-J., Seo, J.-S. (2005). HSP70 deficiency results in activation of c-jun N-terminal kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J. Biol. Chem. 280:6634–6641. doi: 10.1074/jbc.M412393200.
  • Lee, Y.-J., Hyung, K. E., Yoo, J.-S., et al. (2016). Effects of exposure to extremely low-frequency electromagnetic fields on the differentiation of Th17 T cells and regulatory T cells. Gen. Physiol. Biophys. 35:487–495. doi: 10.4149/gpb_2016011.
  • Lewis, R. C., Hauser, R., Maynard, A. D., et al. (2016). Exposure to power-frequency magnetic fields and the risk of infertility and adverse pregnancy outcomes: Update on the human evidence and recommendations for future study designs. J. Toxicol. Environ. Health, B. 19:29–45. doi: 10.1080/10937404.2015.1134370.
  • Li, Q., Engelhardt, J. F. (2006). Interleukin-1β induction of NFκB is partially regulated by H2O2-mediated activation of NFκB-inducing kinase. J. Biol. Chem. 281:1495–1505. doi: 10.1074/jbc.M511153200.
  • Lin, -W.-W., Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117:1175–1183. doi: 10.1172/JCI31537.
  • Locati, M., Mantovani, A., Sica, A. (2013). Macrophage activation and polarization as an adaptive component of innate immunity. Advances in Immunology. Elsevier. Vol. 120:163–184. doi: 10.1016/B978-0-12-417028-5.00006-5.
  • Luo, X., Jia, S., Li, R., et al. (2016). Occupational exposure to 50 Hz magnetic fields does not alter responses of inflammatory genes and activation of splenic lymphocytes in mice. Int. J. Occup. Med. Environ. Health. 29:277–291. doi: 10.13075/ijomeh.1896.00519.
  • Lupke, M., Frahm, J., Lantow, M., et al. (2006). Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochimica. Biophysica. Acta. (BBA)-Molecular Cell. Research. 1763:402–412. doi: 10.1016/j.bbamcr.2006.03.003.
  • Madkan, A., Blank, M., Elson, E., et al. (2009). Steps to the clinic with ELF EMF. Nat. Sci. 1:157–165. doi: 10.4236/ns.2009.13020.
  • Maes, A., Anthonissen, R., Verschaeve, L. (2017). On the alleged association between extremely low frequency magnetic fields exposures and an increased risk of Alzheimer’s disease. Studies. 1:151–154.
  • Mahdavinejad, L., Alahgholi-Hajibehzad, M., Eftekharian, M. M., et al. (2018). Extremely low frequency electromagnetic fields decrease serum levels of interleukin-17, transforming growth factor-β and downregulate Foxp3 expression in the spleen. J. Interferon. Cytokine. Res. 38:457–462. doi: 10.1089/jir.2018.0048.
  • Morandi, M. A., Del Rio, J. A., Caren, R. P., Caren, L. D. (1994). Effects of short term exposure to 60 Hz electromagnetic fields on interleukin 1 and interleukin 6 production by peritoneal exudate cells. Life Sci. 54:731–738.
  • Pall, M. L. (2014). Electromagnetic field activation of voltage-gated calcium channels: Role in therapeutic effects. Electromagn. Biol. Med. 33:251. doi: 10.3109/15368378.2014.906447.
  • Palomares, O., Martin-Fontecha, M., Lauener, R., et al. (2014). Regulatory T cells and immune regulation of allergic diseases: Roles of IL-10 and TGF-β. Genes Immun. 15:511. doi: 10.1038/gene.2014.45.
  • Patruno, A., Ferrone, A., Costantini, E., et al. (2018). Extremely low‐frequency electromagnetic fields accelerates wound healing modulating MMP‐9 and inflammatory cytokines. Cell Prolif. 51:e12432. doi: 10.1111/cpr.12432.
  • Pesce, M., Patruno, A., Speranza, L., Reale, M. (2013). Extremely low frequency electromagnetic field and wound healing: Implication of cytokines as biological mediators. Eur. Cytokine Netw. 24:1–10. doi: 10.1684/ecn.2013.0332.
  • Protection, I. C. o. N.-I. R. (2010). Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health. Phys. 99:818–836. doi: 10.1097/HP.0b013e3181f06c86.
  • Rajendra, P., Sujatha, H., Sashidhar, R., et al. (2012). Viability of unstimulated lymphocytes exposed to extremely low frequency electromagnetic fields is dependent on intensity. Biodiscovery. 2:e8925.
  • Reale, M., De Lutiis, M. A., Patruno, A., et al. (2006). Modulation of MCP-1 and iNOS by 50-Hz sinusoidal electromagnetic field. Nitric Oxide. 15:50–57. doi: 10.1016/j.niox.2005.11.010.
  • Rollwitz, J., Lupke, M., Simkó, M. (2004). Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochimica Et Biophysica Acta (Bba)-General Subjects. 1674:231–238. doi: 10.1016/j.bbagen.2004.06.024.
  • Rosado, M. M., Simkó, M., Mattsson, M.-O., Pioli, C. (2018). immune-modulating perspectives for low frequency electromagnetic fields in innate immunity. Frontiers in Public Health. 6:85. doi: 10.3389/fpubh.2018.00085.
  • Salehi, I., Sani, K. G., Zamani, A. (2013). Exposure of rats to extremely low-frequency electromagnetic fields (ELF-EMF) alters cytokines production. Electromagn. Biol. Med. 32:1–8. doi: 10.3109/15368378.2012.692343.
  • Seifpanahi-Shabani, H., Abbasi, M., Salehi, I., et al. (2016). Long-term exposure to extremely low frequency electromagnetic field and melatonin production by blood cells. Int. J. Occup. Environ. Med. 7:193–807. doi: 10.15171/ijoem.2016.807.
  • Selvam, R., Ganesan, K., Raju, K. N., et al. (2007). Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life Sc.. 80:2403–2410. doi: 10.1016/j.lfs.2007.03.019.
  • Shi, B., Farboud, B., Nuccitelli, R., Isseroff, R. R. (2003). Power-line frequency electromagnetic fields do not induce changes in phosphorylation, localization, or expression of the 27-kilodalton heat shock protein in human keratinocytes. Environ. Health Perspect.. 111:281. doi: 10.1289/ehp.5395.
  • Simkó, M. (2004). Induction of cell activation processes by low frequency electromagnetic fields. Sci. Wor. J. 4:4–22. doi: 10.1100/tsw.2004.174.
  • Simkó, M., Mattsson, M. O. (2004). Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: Possible immune cell activation. J. Cell. Biochem. 93:83–92. doi: 10.1002/jcb.20198.
  • Singh, S., Kapoor, N. (2014). Health implications of electromagnetic fields, mechanisms of action, and research needs. Advances in Biology, 2014. 2014:1-24. doi: 10.1155/2014/198609.
  • Singh, V., Aballay, A. (2006). Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc. Natl. Acad. Sci. 103:13092–13097. doi: 10.1073/pnas.0604050103.
  • Starkov, A. A., Chinopoulos, C., Fiskum, G. (2004). Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium. 36:257–264. doi: 10.1016/j.ceca.2004.02.012.
  • Sun, L., Chen, L., Bai, L., et al. (2018). Reactive oxygen species mediates 50-Hz magnetic field-induced EGF receptor clustering via acid sphingomyelinase activation. Int. J. Radiat. Biol. 94:678–684. doi: 10.1080/09553002.2018.1466208.
  • Talaat, R. M., Mohamed, S. F., Bassyouni, I. H., Raouf, A. A. (2015). Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 72:146–153. doi: 10.1016/j.cyto.2014.12.027.
  • Tanzadehpanah, H., Asoodeh, A., Mahaki, H., et al. (2016). Bioactive and ACE binding properties of three synthetic peptides assessed by various spectroscopy techniques. Process. Biochemistry. 51:2067–2075. doi: 10.1016/j.procbio.2016.09.017.
  • Tanzadehpanah, H., Asoodeh, A., Saidijam, M., et al. (2017). Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides. J. Biomol. Struct. Dyn. 1–16. doi: 10.1080/07391102.2017.1401001.
  • Vianale, G., Reale, M., Amerio, P., et al. (2008). Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br. J. Dermatol. 158:1189–1196. doi: 10.1111/j.1365-2133.2008.08540.x.
  • Wang, W., Li, W., Song, M., et al. (2016). Effects of electromagnetic fields on the metabolism of lubricin of rat chondrocytes. Connect. Tissue Res. 57:152–160. doi: 10.3109/03008207.2015.1121249.
  • Wei, J., Sun, J., Xu, H., et al. (2015). Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes. Electromagn. Biol. Med. 34:77–84. doi: 10.3109/15368378.2014.881744.
  • Wu, D.-C., Ye, W., Che, X.-M., Yang, G.-Y. (2000). Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. Journal of Cerebral Blood Flow & Metabolism. 20:1320–1330. doi: 10.1097/00004647-200009000-00007.
  • Yang, J., Sundrud, M. S., Skepner, J., Yamagata, T. (2014). Targeting Th17 cells in autoimmune diseases. Trends Pharmacol. Sci. 35:493–500. doi: 10.1016/j.tips.2014.07.006.
  • Yoon, H. E., Lee, J. S., Myung, S. H., Lee, Y.-S. (2014). Increased γ-H2AX by exposure to a 60-Hz magnetic fields combined with ionizing radiation, but not hydrogen peroxide, in non-tumorigenic human cell lines. Int. J. Radiat. Biol. 90:291–298. doi: 10.3109/09553002.2014.887866.
  • Zhang, D., Zhang, Y., Zhu, B., et al. (2017). Resveratrol may reverse the effects of long-term occupational exposure to electromagnetic fields on workers of a power plant. Oncotarget. 8:47497–47506.
  • Zhang, H. H., Cheng, Y. X., Luo, X. P., et al. (2016). Preventive effects of lotus seed pod procyanidins on extremely low frequency electromagnetic exposure-induced immune function injury. Mod. Food Sci. Technol. 32:1–5.
  • Zhong, C., Zhang, X., Xu, Z., He, R. (2012). Effects of low-intensity electromagnetic fields on the proliferation and differentiation of cultured mouse bone marrow stromal cells. Phys. Ther. 92:1208–1219. doi: 10.2522/ptj.20110224.
  • Zhou, J., Yao, G., Zhang, J., Chang, Z. (2002). CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra-and intracellular Ca2+ but not PKA, PKC, ERK, or p38 MAPK. Biochem. Biophys. Res. Commun. 296:1013–1018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.