831
Views
48
CrossRef citations to date
0
Altmetric
Reviews

Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals

Pages 231-248 | Received 17 Apr 2019, Accepted 04 Aug 2019, Published online: 26 Aug 2019

References

  • Abuasbi, F., A. Lahham, and I. R. Abdel-Raziq. 2018a. Residential exposure to extremely low frequency electric and magnetic fields in the city of Ramallah-Palestine. Radiat. Prot. Dosimetry. 179:49–57. doi:10.1093/rpd/ncx209.
  • Abuasbi, F., A. Lahham, and I. R. Abdel-Raziq. 2018b. Levels of extremely low-frequency electric and magnetic fields from overhead power lines in the outdoor environment of Ramallah City- Palestine. Radiat. Prot. Dosimetry. 179:229–32. doi:10.1093/rpd/ncx259.
  • Aher, Y. D., S. Subramaniyan, B. Shanmugasundaram, A. Sase, S. R. Saroja, M. Holy, H. Höger, T. Beryozkina, H. H. Sitte, J. J. Leban, et al. 2016. A novel heterocyclic compound CE-104 enhances spatial working memory in the radial arm maze in rats and modulates the dopaminergic system. Front. Behav. Neurosci. 10:55. doi:10.3389/fnbeh.2016.00020.
  • Ahmad, M., P. Galland, T. Ritz, and R. Wiltschko. 2007. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–24. doi:10.1007/s00425-006-0416-8.
  • Akan, Z., B. Aksu, A. Tulunay, S. Bilsel, and A. Inhan-Garip. 2010. Extremely low-frequency electromagnetic fields affect the immune response of monocyte-derived macrophages to pathogens. Bioelectromagnetics 31:603–12. doi:10.1002/bem.20607.
  • Akbarnejad, Z., K. Esmaeilpour, M. Shabani, M. Asadi-Shekaari, M. Saeedi Goraghani, and M. Ahmadi-Zeidabadi. 2018. Spatial memory recovery in Alzheimer’s rat model by electromagnetic field exposure. Int. J. Neurosci. 128:691–96. doi:10.1080/00207454.2017.1411353.
  • Akpınar, D., D. K. Gok, E. Hidisoglu, M. Aslan, S. Ozen, A. Agar, and P. Yargicoglu. 2016. Effects of pre- and postnatal exposure to extremely low-frequency electric fields on mismatch negativity component of the auditory event-related potentials: Relation to oxidative stress. Electromagn. Biol. Med. 35:245–59. doi:10.3109/15368378.2015.1076727.
  • Akpinar, D., N. Ozturk, S. Ozen, A. Agar, and P. Yargicoglu. 2012. The effect of different strengths of extremely low-frequency electric fields on antioxidant status, lipid peroxidation, and visual evoked potentials. Electromagn. Biol. Med. 31:436–48. doi:10.3109/15368378.2012.692342.
  • Ansari, A. M., S. Farzampour, A. Sadr, B. Shekarchi, and K. Majidzadeh-A. 2016. Effects of short term and long term extremely low frequency magnetic field on depressive disorder in mice: Involvement of nitric oxide pathway. Life Sci. 146:52–57. doi:10.1016/j.lfs.2015.12.055.
  • Ayşe, I.-G., A. Zafer, O. Sule, I.-T. Işil, and T. Kalkan. 2010. Differentiation of K562 cells under ELF-EMF applied at different time courses. Electromagn. Biol. Med. 29:122–30. doi:10.3109/15368378.2010.502451.
  • Baliatsas, C., I. Van Kamp, E. Lebret, and G. J. Rubin. 2012. Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF): A systematic review of identifying criteria. BMC Public Health 12:643. doi:10.1186/1471-2458-12-643.
  • Barnes, F. S., and B. Greenebaum. 2015. The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36:45–54. doi:10.1002/bem.21883.
  • Bawin, S. M., A. Sheppard, and W. R. Adey. 1978. Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochem. Bioenerg. 5:67–76. doi:10.1016/0302-4598(87)87008-3.
  • Bawin, S. M., W. M. Satmary, R. A. Jones, W. R. Adey, and G. Zimmerman. 1996. Extremely-low-frequency magnetic fields disrupt rhythmic slow activity in rat hippocampal slices. Bioelectromagnetics 17:388–95. doi:10.1002/(SICI)1521-186X(1996)17:5<388::AID-BEM6>3.0.CO;2-#.
  • Bediz, C. S., A. K. Baltaci, R. Mogulkoc, and E. Oztekin. 2006. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J. Exp. Med. 208:133–40. doi:10.1620/tjem.208.133.
  • Begall, S., J. Cerveny, J. Neef, O. Vojtech, and H. Burda. 2008. Magnetic alignment in grazing and resting cattle and deer. Proc. Natl. Acad. Sci. U.S.A. 105:13451–5. doi:10.1073/pnas.0803650105.
  • Belova, N. A., M. M. Potselueva, L. K. Srebnitskaya, A. V. Znobishcheva, and V. V. Lednev. 2010. The influence of weak magnetic fields on the production of the reactive oxygen species in peritoneal neutrophils of mice. Biophysics (Biofizika) 55:586–91. doi:10.1134/S0006350910040123.
  • Benassi, B., G. Filomeni, C. Montagna, C. Merla, V. Lopresto, R. Pinto, C. Marino, and C. Consales. 2016. Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the Pro-Parkinson’s disease toxin MPP(.). Mol. Neurobiol. 53:4247–60. doi:10.1007/s12035-015-9354-4.
  • Binhi, V. N., and F. S. Prato. 2017. A physical mechanism of magnetoreception: Extension and analysis. Bioelectromagnetics 38:41–52. doi:10.1002/bem.22011.
  • Bioinitiative Report 2012. Edited by Sage C and Carpenter D. Accessed April, 2019: https://www.bioinitiative.org/.
  • Bobkova, N. V., V. V. Novikov, N. I. Medvinskaya, I. Y. Aleksandrova, I. V. Nesterova, and E. E. Fesenko. 2018. Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer’s disease. Electromagn. Biol. Med. 37:127–37. doi:10.1080/15368378.2018.1471700.
  • Brothers, J. R., and K. J. Lohmann. 2015. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr. Biol. 25:392–96. doi:10.1016/j.cub.2014.12.035.
  • Budziosz, J., A. Stanek, A. Sieroń, J. Witkoś, A. Cholewka, and K. Sieroń. 2018. Effects of low-frequency electromagnetic field on oxidative stress in selected structures of the central nervous system. Oxid Med Cell Longev 2018:1–8. doi:10.1155/2018/1427412.
  • Burda, H., S. Begall, J. Cervený, J. Neef, and P. Nemec. 2009. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc. Natl. Acad. Sci. U.S.A. 106:5708–13. doi:10.1073/pnas.0811194106.
  • Bürgi, A., S. Sagar, B. Struchen, S. Joss, and M. Röösli. 2017. Exposure modelling of extremely low-frequency magnetic fields from overhead power lines and its validation by measurements. Int. J. Environ. Res. Public. Health. 14:pii: E949. doi:10.3390/ijerph14090949.
  • Calcabrini, C., U. Mancini, R. De Bellis, A. R. Diaz, M. Martinelli, L. Cucchiarini, P. Sestili, V. Stocchi, and L. Potenza. 2017. Effect of extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544. Biotechnol. Appl. Biochem. 64:415–22. doi:10.1002/bab.1495.
  • Calota, V., S. Dragoiu, A. Meghea, and M. Giurginca. 2006. Decrease of luminol chemiluminescence upon exposure of human blood serum to 50 Hz electric fields. Bioelectrochemistry 69:126–27. doi:10.1016/j.bioelechem.2005.12.006.
  • Cichoń, N., M. Bijak, E. Miller, J. Saluk, C. S. Bediz, A. K. Baltaci, R. Mogulkoc, and E. Oztekin. 2017a. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics 38:386–96. doi:10.1002/bem.v38.5.
  • Cichoń, N., P. Czarny, M. Bijak, E. Miller, T. Śliwiński, J. Szemraj, and J. Saluk-Bijak. 2017b. Benign effect of extremely low-frequency electromagnetic field on brain plasticity assessed by nitric oxide metabolism during poststroke rehabilitation. Oxid Med Cell Longev 2017:1–9. doi:10.1155/2017/2181942.
  • Cichoń, N., P. Rzeźnicka, M. Bijak, E. Miller, S. Miller, and J. Saluk. 2018. Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patients. Adv. Clin. Exp. Med. 27:1285–93. doi:10.17219/acem/73699.
  • Ciejka, E. B., and A. Goraca. 2009. The influence of low-frequency magnetic field on plasma antioxidant capacity and heart rate. Wiad. Lek. 62:81–86.
  • Consales, C., M. Panatta, A. Butera, G. Filomeni, C. Merla, M. T. Carrì, C. Marino, and B. Benassi. 2019. 50-Hz magnetic field impairs the expression of iron-related genes in the in vitro SOD1G93A model of amyotrophic lateral sclerosis. Int. J. Radiat. Biol. 95:368–77. doi:10.1080/09553002.2019.1552378.
  • Crocetti, S., C. Beyer, G. Schade, M. Egli, J. Fröhlich, A. Franco-Obregón, and I. Ulasov. 2013. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS ONE 8:e72944. doi:10.1371/journal.pone.0072944.
  • Cui, Y., Z. Ge, J. D. Rizak, C. Zhai, Z. Zhou, S. Gong, Y. Che, and P. A. Adlard. 2012. Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure. PLoS ONE 7:e32196. doi:10.1371/journal.pone.0032196.
  • Curley, S. A., F. Palalon, K. E. Sanders, and N. Koshkina. 2014. The effects of non-invasive radiofrequency treatment and hyperthermia on malignant and nonmalignant cells, Int. Int. J. Environ. Res. Public. Health. 11:9142–53. doi:10.3390/ijerph110909142.
  • D’Inzeo, G., P. Bernardi, F. Eusebi, F. Grassi, C. Tamburello, and B. M. Zani. 1988. Microwave effects on acetylcholine-induced channels in cultured chick myotubes. Bioelectromagnetics 9:363–72.
  • De Mattei, M., M. Pasello, A. Pellati, G. Stabellini, L. Massari, D. Gemmati, and A. Caruso. 2003. Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect. Tissue Res. 44:154–59.
  • De Nicola, M., S. Cordisco, C. Cerella, M. C. Albertini, M. D’Alessio, A. Accorsi, A. Bergamaschi, A. Magrini, and L. Ghibelli. 2006. Magnetic fields protect from apoptosis via redox alteration. Ann. N. Y. Acad. Sci. 1090:59–68. doi:10.1196/annals.1378.006.
  • de Pomerai, D. I., B. Smith, A. Dawe, K. North, T. Smith, D. B. Archer, I. R. Duce, D. Jones, and E. P. M. Candido. 2003. Microwave radiation can alter protein conformation without bulk heating. FEBS Lett. 543:93–97. doi:10.1016/s0014-5793(03)00413-7.
  • Deng, Y., Y. Zhang, S. Jia, J. Liu, Y. Liu, W. Xu, and L. Liu. 2013. Effects of aluminum and extremely low frequency electromagnetic radiation on oxidative stress and memory in brain of mice. Biol. Trace Elem. Res. 156:243–52. doi:10.1007/s12011-013-9847-9.
  • Dey, S., S. Bose, S. Kumar, R. Rathore, R. Mathur, and S. Jain. 2017. Extremely low frequency magnetic field protects injured spinal cord from the microglia- and iron-induced tissue damage. Electromagn. Biol. Med. 36:330–40. doi:10.1080/15368378.2017.1389750.
  • Di Loreto, S., S. Falone, V. Caracciolo, P. Sebastiani, A. D’Alessandro, A. Mirabilio, V. Zimmitti, and F. Amicarelli. 2009. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J. Cell Physiol. 219:334–43. doi:10.1002/jcp.21674.
  • Ding, G.-R., T. Nakahara, H. Hirose, S. Koyama, Y. Takashima, and J. Miyakoshi. 2004. Extremely low frequency magnetic fields and the promotion of H2O2-induced cell death in HL-60 cells. Int. J. Radiat. Biol. 80:317–24. doi:10.1080/09553000410001679802.
  • Djordjevic, N. Z., M. G. Paunović, and A. S. Peulić. 2017. Anxiety-like behavioural effects of extremely low-frequency electromagnetic field in rats. Environ. Sci. Pollut. Res. Int. 24:21693–99. doi:10.1007/s11356-017-9710-1.
  • Dodson, C. A., P. J. Hore, and M. I. Wallace. 2013. A radical sense of direction: Signalling and mechanism in cryptochrome magnetoreception. Trends Biochem. Sci. 38:435–46. doi:10.1016/j.tibs.2013.07.002.
  • Duan, Y., Z. Wang, H. Zhang, Y. He, R. Lu, R. Zhang, G. Sun, and X. Sun. 2013. The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure. Food Funct 4:1252–62. doi:10.1039/c3fo60116a.
  • Duong, C. N., and J. Y. Kim. 2016. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS. Int. J. Radiat. Biol. 92:195–201. doi:10.3109/09553002.2016.1136851.
  • Ehnert, S., A.-K. Fentz, A. Schreiner, J. Birk, B. Wilbrand, P. Ziegler, M. K. Reumann, H. Wang, K. Falldorf, and A. K. Nussler. 2017. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2− and H2O2. Sci. Rep. 7:14544. doi:10.1038/s41598-017-14983-9.
  • Emre, M., S. Cetiner, S. Zencir, I. Unlukurt, I. Kahraman, and Z. Topcu. 2011. Oxidative stress and apoptosis in relation to exposure to magnetic field. Cell. Biochem. Biophys. 59:71–77. doi:10.1007/s12013-010-9113-0.
  • Engels, S., N.-L. Schneider, N. Lefeldt, C. M. Hein, M. Zapka, A. Michalik, D. Elbers, A. Kittel, P. J. Hore, and H. Mouritsen. 2014. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509:353–56. doi:10.1038/nature13290.
  • Errico Provenzano, A., S. Amatori, M. G. Nasoni, G. Persico, S. Russo, A. R. Mastrogiacomo, A. Gambarara, and M. Fanelli. 2018. Effects of fifty-hertz electromagnetic fields on granulocytic differentiation of ATRA-treated acute promyelocytic leukemia NB4 cells. Cell. Physiol. Biochem. 46:389–400. doi:10.1159/000488473.
  • Falone, S., M. R. Grossi, B. Cinque, B. D’Angelo, E. Tettamanti, A. Cimini, C. Di Ilio, and F. Amicarelli. 2007. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int. J. Biochem. Cell. Biol. 39:2093–106. doi:10.1016/j.biocel.2007.06.001.
  • Falone, S., N. Marchesi, C. Osera, L. Fassina, S. Comincini, M. Amadio, and A. Pascale. 2016. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells. Int. J. Radiat. Biol. 92:281–86. doi:10.3109/09553002.2016.1150619.
  • Falone, S., S. Santini Jr., V. Cordone, P. Cesare, A. Bonfigli, M. Grannonico, G. Di Emidio, C. Tatone, M. Cacchio, and F. Amicarelli. 2017. Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms. Sci. Rep. 7:11470. doi:10.1038/s41598-017-11869-8.
  • Feagin, J. E., M. A. Wurscher, and C. Ramon. 1999. Magnetic fields and malaria. In M. F. Holick and E. G. Jung, eds. “Biologic Effects of Light: Proceedings of the Biologic Effects of Light Symposium” (pp.343–49), Kluwer Academic Publishers, Hingham, MA, USA.
  • Feng, B., C. Ye, L. Qiu, L. Chen, Y. Fu, and W. Sun. 2016. Mitochondrial ROS release and subsequent Akt Activation potentially mediated the anti-apoptotic effect of a 50-Hz magnetic field on FL cells. Cell. Physiol. Biochem. 38:2489–99. doi:10.1159/000445599.
  • Fernie, K. J., and D. M. Bird. 2001. Evidence of oxidative stress in American kestrels exposed to electromagnetic fields. Environ. Res. 86:198–207. doi:10.1006/enrs.2001.4263.
  • Fitak, R. R., B. R. Wheeler, D. A. Ernst, K. J. Lohmann, and S. Johnsen. 2017. Candidate genes mediating magnetoreception in rainbow trout (Oncorhynchus mykiss). Biol. Lett 13:pii: 20170142. doi:10.1098/rsbl.2017.0142.
  • Fitzsimmons, R. J., S. L. Gordon, J. Kronberg, T. Ganey, and A. A. Pilla. 2008. A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling. J. Orthop. Res. 26:854–59. doi:10.1002/jor.20590.
  • Frahm, J., M. Lantow, M. Lupke, D. G. Weiss, and M. Simkó. 2006. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J. Cell. Biochem. 99:168–77. doi:10.1002/jcb.20920.
  • Galler, S., B. G. Wang, and M. Kawai. 2005. Elementary steps of the cross-bridge cycle in fast-twitch fiber types from rabbit skeletal muscles. Biophys. J. 89:3248–60. doi:10.1529/biophysj.104.056614.
  • Garip, A. I., and Z. Akan. 2010. Effect of ELF-EMF on number of apoptotic cells; correlation with reactive oxygen species and HSP. Acta Biol. Hung. 61:158–67. doi:10.1556/ABiol.61.2010.2.4.
  • Ghodbane, S., M. Ammari, A. Lahbib, M. Sakly, and H. Abdelmelek. 2015. Static magnetic field exposure-induced oxidative response and caspase-independent apoptosis in rat liver: Effect of selenium and vitamin E supplementations. Environ. Sci. Pollut. Res. Int. 22:16060–66. doi:10.1007/s11356-015-4802-2.
  • Giorgi, G., C. Pirazzini, M. G. Bacalini, C. Giuliani, P. Garagnani, M. Capri, F. Bersani, and B. Del Re. 2017. Assessing the combined effect of extremely low-frequency magnetic field exposure and oxidative stress on LINE-1 promoter methylation in human neural cells. Radiat. Environ. Biophys. 56:193–200. doi:10.1007/s00411-017-0683-8.
  • Glinka, M., A. Sieroń, E. Birkner, and G. Cieślar. 2013. Influence of extremely low-frequency magnetic field on the activity of antioxidant enzymes during skin wound healing in rats. Electromagn. Biol. Med. 32:463–70. doi:10.3109/15368378.2012.743906.
  • Gourzoulidis, G. A., P. Tsaprouni, Ν. Skamnakis, C. Tzoumanika, E. Kalampaliki, E. Karastergios, A. Gialofas, A. Achtipis, C. Kappas, and E. Karabetsos. 2018. Occupational exposure to electromagnetic fields. The situation in Greece. Phys. Med 49:83–89. doi:10.1016/j.ejmp.2018.05.011.
  • Guler, G., Z. Turkozer, A. Tomruk, and N. Seyhan. 2008. The protective effects of N-acetyl-L-cysteine and epigallocatechin-3-gallate on electric field-induced hepatic oxidative stress. Int. J. Radiat. Biol. 84:669–80. doi:10.1080/09553000802241747.
  • Güler, G., Z. Türközer, E. Ozgur, A. Tomruk, N. Seyhan, and Ç. Karasu. 2009a. Protein oxidation under extremely low frequency electric field in guinea pigs. Effect of N-acetyl-L-cysteine treatment. Gen. Physiol. Biophys. 28:47–55. doi:10.4149/gpb_2009_01_47.
  • Güler, G., Z. Türközer, E. Ozgur, and N. Seyhan. 2009b. Antioxidants alleviate electric field-induced effects on lung tissue based on assays of heme oxygenase-1, protein carbonyl content, malondialdehyde, nitric oxide, and hydroxyproline. Sci. Total Environ. 407:1326–32. doi:10.1016/j.scitotenv.2008.10.050.
  • Gunnarsson, L. G., and L. Bodin. Oct 26 2018. Amyotrophic lateral sclerosis and occupational exposures: A systematic literature review and meta-analyses. Int. J. Environ. Res. Public Health. 15:pii: E2371. doi:10.3390/ijerph15061188.
  • Haghighat, N., P. Abdolmaleki, J. Parnian, and M. Behmanesh. 2017a. The expression of pluripotency and neuronal differentiation markers under the influence of electromagnetic field and nitric oxide. Mol. Cell. Neurosci. 85:19–28. doi:10.1016/j.mcn.2017.08.005.
  • Haghighat, N., P. Abdolmaleki, M. Behmanesh, and M. Satari. 2017b. Stable morphological-physiological and neural protein expression changes in rat bone marrow mesenchymal stem cells treated with electromagnetic field and nitric oxide. Bioelectromagnetics 38:592–601. doi:10.1002/bem.v38.8.
  • Hajipour Verdom, B., P. Abdolmaleki, and M. Behmanesh. 2018. The static magnetic field remotely boosts the efficiency of doxorubicin through modulating ROS behaviors. Sci. Rep. 8:990. doi:10.1038/s41598-018-19247-8.
  • Hajnorouzi, A., M. Vaezzadeh, F. Ghanati, H. Jamnezhad, and B. Nahidian. 2011. Growth promotion and a decrease of oxidative stress in maize seedlings by a combination of geomagnetic and weak electromagnetic fields. J. Plant Physiol. 168:1123–28. doi:10.1016/j.jplph.2010.12.003.
  • Harakawa, S., N. Inoue, T. Hori, K. Tochio, T. Kariya, K. Takahashi, F. Doge, H. Suzuki, and H. Nagasawa. 2005. Effects of a 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats. Bioelectromagnetics 26:589–94. doi:10.1002/bem.20137.
  • Hart, V., E. P. Malkemper, T. Kušta, S. Begall, P. Nováková, V. Hanzal, L. Pleskač, M. Ježek, R. Policht, V. Husinec, et al. 2013b. Directional compass preference for landing in water birds. Front. Zool. 10:38. doi:10.1186/1742-9994-10-38.
  • Hart, V., P. Nováková, E. P. Malkemper, S. Begall, V. Hanzal, M. Ježek, T. Kušta, V. Němcová, J. Adámková, K. Benediktová, et al. 2013a. Dogs are sensitive to small variations of the Earth’s magnetic field. Front. Zool. 10:80. doi:10.1186/1742-9994-10-80.
  • Hart, V., T. Kušta, P. Němec, V. Bláhová, M. Ježek, P. Nováková, S. Begall, J. Červený, V. Hanzal, E. P. Malkemper, et al. 2012. Magnetic alignment in carps: Evidence from the Czech Christmas fish market. PLoS ONE 7:e51100. doi:10.1371/journal.pone.0051100.
  • Hecht, S., S. Shlaer, and M. H. Pirenne. 1942. Energy, quanta, and vision. J. Gen. Physiol 25:819–40. doi:10.1085/jgp.25.6.819.
  • Hore, P. J. Feb 2019. Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. Elife 25:pii: e44179. doi: 10.7554/eLife.44179.
  • Hore, P. J., and H. Mouritsen. 2016. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45:299–344. doi:10.1146/annurev-biophys-032116-094545.
  • Hu, Y., J. Lai, B. Wan, X. Liu, Y. Zhang, J. Zhang, D. Sun, G. Ruan, E. Liu, G.-P. Liu, et al. 2016. Long-term exposure to ELF-MF ameliorates cognitive deficits and attenuates tau hyperphosphorylation in 3xTg AD mice. NeuroToxicology 53:290–300. doi:10.1016/j.neuro.2016.02.012.
  • Huss, A., S. Peters, and R. Vermeulen. 2018. Occupational exposure to extremely low-frequency magnetic fields and the risk of ALS: A systematic review and meta-analysis. Bioelectromagnetics 39:156–63. doi:10.1002/bem.22104.
  • Ilonen, K., A. Markkanen, G. Mezei, and J. Juutilainen. 2008. Indoor transformer stations as predictors of residential ELF magnetic field exposure. Bioelectromagnetics 29:213–18. doi:10.1002/bem.20385.
  • Irigaray, P., D. Caccamo, and D. Belpomme. 2018. Oxidative stress in electrohypersensitivity self-reporting patients: Results of a prospective in vivo investigation with comprehensive molecular analysis. Int. J. Mol. Med. 42:1885–98. doi:10.3892/ijmm.2018.3774.
  • Jajte, J., M. Zmyślony, J. Palus, E. Dziubałtowska, and E. Rajkowska. 2001. Protective effect of melatonin against in vitro iron ions and 7 mT 50 Hz magnetic field-induced DNA damage in rat lymphocytes. Mutat. Res. 483:57–64. doi:10.1016/s0027-5107(01)00230-5.
  • Jalilian, H., S. H. Teshnizi, M. Röösli, and M. Neghab. 2018. Occupational exposure to extremely low frequency magnetic fields and risk of Alzheimer disease: A systematic review and meta-analysis. NeuroToxicology 69:242–52. doi:10.1016/j.neuro.2017.12.005.
  • Jeong, J. H., C. Kum, H. J. Choi, E. S. Park, and U. D. Sohn. 2006. Extremely low frequency magnetic field induces hyperalgesia in mice modulated by nitric oxide synthesis. Life Sci. 78:1407–12. doi:10.1016/j.lfs.2005.07.006.
  • Kamalipooya, S., P. Abdolmaleki, Z. Salemi, F. Javani Jouni, J. Zafari, and H. Soleimani. 2017. Simultaneous application of cisplatin and static magnetic field enhances oxidative stress in HeLa cell line. In Vitro Cell. Dev. Biol. Anim. 53:783–90. doi:10.1007/s11626-017-0148-z.
  • Kantar Gok, D., D. Akpinar, P. Yargicoglu, S. Ozen, M. Aslan, N. Demir, N. Derin, and A. Agar. 2014. Effects of extremely low-frequency electric fields at different intensities and exposure durations on mismatch negativity. Neuroscience 272:154–66. doi:10.1016/j.neuroscience.2014.04.056.
  • Kapri-Pardes, E., T. Hanoch, G. Maik-Rachline, M. Murbach, P. L. Bounds, N. Kuster, and R. Seger. 2017. Activation of signaling cascades by weak extremely low frequency electromagnetic fields. Cell. Physiol. Biochem. 43:1533–46. doi:10.1159/000481977.
  • Karimi, S. A., I. Salehi, T. Shykhi, S. Zare, and A. Komaki. 2019. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behav. Brain Res. 359:630–38. doi:10.1016/j.bbr.2018.10.002.
  • Karin, M., and B. Mintz. 1981. Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J. Biol. Chem. 256:3245–52.
  • Kavaliers, M., E. Choleris, F. S. Prato, and K. Ossenkopp. 1998. Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail. Brain Res. 809:50–57. doi:10.1016/s0006-8993(98)00844-0.
  • Kesari, K. K., J. Juutilainen, J. Luukkonen, and J. Naarala. Jan 2016. Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields. J R Soc Interface 13:pii: 20150995. doi: 10.1098/rsif.2015.0995.
  • Kim, S. J., Y. W. Jang, K. E. Hyung, D. K. Lee, K. H. Hyun, S. H. Jeong, K. H. Min, W. Kang, J. H. Jeong, S.-Y. Park, et al. 2017. Extremely low-frequency electromagnetic field exposure enhances inflammatory response and inhibits effect of antioxidant in RAW 264.7 cells. Bioelectromagnetics 38:374–85. doi:10.1002/bem.22049.
  • Kirschvink, J. L., M. M. Walker, and C. E. Diebel. 2001. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11:462–67. doi:10.1016/S0959-4388(00)00235-X.
  • Koeman, T., P. Slottje, L. J. Schouten, S. Peters, A. Huss, J. H. Veldink, H. Kromhout, P. A. van Den Brandt, and R. Vermeulen. 2017. Occupational exposure and amyotrophic lateral sclerosis in a prospective cohort. Occup. Environ. Med. 74:578–85. doi:10.1136/oemed-2016-103780.
  • Koh, E. K., B.-K. Ryu, D.-Y. Jeong, I.-S. Bang, M. H. Nam, and K.-S. Chae. 2008. A 60-Hz sinusoidal magnetic field induces apoptosis of prostate cancer cells through reactive oxygen species. Int. J. Radiat. Biol. 84:945–55. doi:10.1080/09553000802460206.
  • Koyama, S., T. Sakurai, T. Nakahara, and J. Miyakoshi. 2008. Extremely low frequency (ELF) magnetic fields enhance chemically induced formation of apurinic/apyrimidinic (AP)sites in A172 cells. Int. J. Radiat. Biol. 84:53–59. doi:10.1080/09553000701616064.
  • Koziorowska, A., M. Romerowicz-Misielak, P. Sołek, and M. Koziorowski. 2018. Extremely low frequency variable electromagnetic fields affect cancer and noncancerous cells in vitro differently: Preliminary study. Electromagn. Biol. Med. 37:35–42. doi:10.1080/15368378.2017.1408021.
  • Lai, H. 2018. A summary of recent literature (2007-2017) on neurobiological effects of radiofrequency radiation. In Mobile Communications and Public Health, ed. M. Markov, 187–222. Boca Raton, FL, USA: CRC Press.
  • Lai, H., A. Horita, C. K. Chou, and A. W. Guy. 1984. Effects of acute low-level microwaves on pentobarbital-induced hypothermia depend on exposure orientation. Bioelectromagnetics 5:203–11.
  • Lai, H., H. W. Chan, and N. P. Singh. 2016. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells. Int. J. Rad. Biol. 92:156–61. doi:10.3109/09553002.2016.1135264.
  • Lai, H., and N. P. Singh. 1997a. Acute exposure to a 60-Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics 18:156–65. doi:10.1002/(ISSN)1521-186X.
  • Lai, H., and N. P. Singh. 1997b. Melatonin and N-tert-butyl-?-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J. Pineal Res 22:152–62. doi:10.1111/jpi.1997.22.issue-3.
  • Lai, H., and N. P. Singh. 2004. Magnetic field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 112:687–94. doi:10.1289/ehp.6355.
  • Lai, H., and N. P. Singh 2010. Medical applications of electromagnetic fields. Institute of Physics Conference Series: Earth and Environmental Science, London, UK, 10 012006 (doi: 10.1088/1755-1315/10/1/012006)
  • Lai, H., N. P. Singh, and T. Sasaki. 2013. Development of artemisinin compounds for cancer treatment. Invest New Drugs 31:230–46. doi:10.1007/s10637-012-9873-z.
  • Landler, L., and D. A. Keays. 2018. Cryptochrome: The magnetosensor with a sinister side? PLoS Biol. 16:e3000018. doi:10.1371/journal.pbio.3000018.
  • Laramee, C. B., P. Frisch, K. McLeod, and G. C. Li. 2014. Elevation of heat shock gene expression from static magnetic field exposure in vitro. Bioelectromagnetics 35:406–13. doi:10.1002/bem.21857.
  • Lee, H.-M., U.-H. Kwon, H. Kim, H.-J. Kim, B. Kim, J.-O. Park, E.-S. Moon, and S.-H. Moon. 2010. Pulsed electromagnetic field stimulates cellular proliferation in human intervertebral disc cells. Yonsei Med. J. 51:954–59. doi:10.3349/ymj.2010.51.6.954.
  • Lee, H.-N., K.-N. Ko, H.-J. Kim, A. Rosebud Aikins, and C.-W. Kim. 2015. Ferritin is associated with neural differentiation of bone marrow-derived mesenchymal stem cells under extremely low-frequency electromagnetic field. Cell. Mol. Biol. (noisy-le-grand) 61:55–59.
  • Levitt, B. B., and H. Lai. 2010. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ. Rev. 18:369–95. doi:10.1139/A10-018.
  • Li, Y., Y. Zhang, and W. Wang. 2019. Effects of pulsed electromagnetic fields on learning and memory abilities of STZ-induced dementia rats, Electromagn. Biol. Med. doi:10.1080/15368378.2019.1591437.
  • Lian, H.-Y., K.-W. Lin, C. Yang, and P. Cai. 2018. Generation and propagation of yeast prion [URE3] are elevated under electromagnetic field. Cell Stress Chaperones 23:581–94. doi:10.1007/s12192-017-0867-9.
  • Lindgren, M., M. Gustavsson, Y. Hamnerius, and S. Galt. 2001. ELF magnetic fields in a city environment. Bioelectromagnetics 22:87–90.
  • Liu, X., H. Zuo, D. Wang, R. Peng, T. Song, S. Wang, X. Xu, Y. Gao, Y. Li, S. Wang, et al. 2015. Improvement of spatial memory disorder and hippocampal damage by exposure to electromagnetic fields in an Alzheimer’s disease rat model. PLoS ONE 10:e0126963. doi:10.1371/journal.pone.0126963.
  • Luo, K., C. Luo, G. Li, X. Yao, R. Gao, Z. Hu, G. Zhang, and H. Zhao. 2019. High-voltage electrostatic field-induced oxidative stress: Characterization of the physiological effects in Sitobion avenae (Hemiptera: Aphididae) across multiple generations. Bioelectromagnetics 40:52–61. doi:10.1002/bem.22157.
  • Maes, A., R. Anthonissen, and L. Verschaeve. 2016. On the allerged association between extremely low frequency magnetic field exposures and increase risk of Alzheimer’s disease. Rad. Applic. 1:151–54.
  • Makinistian, L., E. Marková, and I. Belyaev. 2019. A high throughput screening system of coils for ELF magnetic fields experiments: Proof of concept on the proliferation of cancer cell lines. BMC Cancer 19:188. doi:10.1186/s12885-019-5699-9.
  • Malewski, S., E. P. Malkemper, F. Sedláček, R. Šumbera, K. R. Caspar, H. Burda, and S. Begall. 2018. Attracted by a magnet: Exploration behaviour of rodents in the presence of magnetic objects. Behav. Processes. 151:11–15. doi:10.1016/j.beproc.2018.02.023.
  • Malkemper, E. P., S. H. K. Eder, S. Begall, J. B. Phillips, M. Winklhofer, V. Hart, and H. Burda. 2015. Magnetoreception in the wood mouse (Apodemus sylvaticus): Influence of weak frequency-modulated radio frequency fields. Sci. Rep. 5:9917. doi:10.1038/srep09917.
  • Manger, P. R., and J. D. Pettigrew. 1996. Ultrastructure, number, distribution and innervation of electroreceptors and mechanoreceptors in the bill skin of the platypus, Ornithorhynchus anatinus. Brain Behav. Evol. 48:27–54. doi:10.1159/000113185.
  • Manikonda, P. K., P. Rajendra, D. Devendranath, B. Gunasekaran, R. S. Aradhya, R. B. Sashidhar, and C. Subramanyam. 2014. Extremely low frequency magnetic fields induce oxidative stress in rat brain. Gen. Physiol. Biophys. 33:81–90. doi:10.4149/gpb_2013059.
  • Mannerling, A.-C., M. Simkó, K. H. Mild, and M.-O. Mattsson. 2010. Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiat. Environ. Biophys. 49:731–41. doi:10.1007/s00411-010-0306-0.
  • Marinelli, F., D. La Sala, G. Cicciotti, L. Cattini, C. Trimarchi, S. Putti, A. Zamparelli, L. Giuliani, G. Tomassetti, and C. Cinti. 2004. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J. Cell. Physiol. 198:324–32. doi:10.1002/jcp.10425.
  • Martínez, M. A., A. Úbeda, J. Moreno, and M. Trillo. 2016. Power frequency magnetic fields affect the p38 MAPK-mediated regulation of NB69 cell proliferation implication of free radicals. Int. J. Mol. Sci. 17:510. doi:10.3390/ijms17040510.
  • Martino, C. F., and P. R. Castello. 2011. Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields. PLoS ONE 6:e22753. doi:10.1371/journal.pone.0022753.
  • Marycz, K., K. Kornicka, and M. Röcken. 2018. Static magnetic field (SMF) as a regulator of stem cell fate - new perspectives in regenerative medicine arising from an underestimated tool. Stem Cell Rev 14:785–92. doi:10.1007/s12015-018-9847-4.
  • May, W. S., and W. S. Cuatrecasas. 1985. Transferrin receptor: Its biological significance. J. Membrane Biol. 88:205–15. doi:10.1007/BF01871086.
  • Miliša, M., D. Đikić, T. Mandić, D. Grozić, I. Čolić, and A. Ostojić. 2017. Response of aquatic protists to electric field exposure. Int. J. Radiat. Biol. 93:818–30. doi:10.1080/09553002.2017.1321809.
  • Mohammadi, F., F. Ghanati, M. Sharifi, and N. A. Chashmi. 2018. On the mechanism of the cell cycle control of suspension-cultured tobacco cells after exposure to static magnetic field. Plant Sci. 277:139–44. doi:10.1016/j.plantsci.2018.08.004.
  • Montgomery, J. C., and D. Bodznick. 1999. Signals and noise in the elasmobranch electrosensory system. J. Exp. Biol. 202:1349–55.
  • Morabito, C., S. Guarnieri, G. Fanò, and M. A. Mariggiò. 2010. Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cell. Physiol. Biochem. 26:947–58. doi:10.1159/000324003.
  • Morotomi-Yano, K., H. Akiyama, and K. Yano. 2014. Different involvement of extracellular calcium in two modes of cell death induced by nanosecond pulsed electric fields. Arch. Biochem. Biophys 555–556:47–54. doi:10.1016/j.abb.2014.05.020.
  • Naarala, J., K. K. Kesari, I. McClure, C. Chavarriaga, J. Juutilainen, and C. F. Martino. 2017. Direction-dependent effects of combined static and ELF magnetic fields on cell proliferation and superoxide radical production. Biomed Res Int 2017:1–8. doi:10.1155/2017/5675086.
  • Naisbett-Jones, L. C., N. F. Putman, J. F. Stephenson, S. Ladak, and K. A. Young. 2017. A magnetic map leads juvenile European eels to the gulf stream. Curr. Biol. 27:1236–40. doi:10.1016/j.cub.2017.03.015.
  • Navakatikian, M. A., and L. A. Tomashevskaya. 1994. Phasic behavioral and endocrine effects of microwaves of nonthermal intensity. In Biological effects of electric and magnetic fields, ed. D. O. Carpenter, Vol. 1., pp. 333–342. San Diego, CA, USA: Academic Press.
  • Osera, C., L. Fassina, M. Amadio, L. Venturini, E. Buoso, G. Magenes, S. Govoni, G. Ricevuti, and A. Pascale. 2011. Cytoprotective response induced by electromagnetic stimulation on SH-SY5Y human neuroblastoma cell line. Tissue Eng. Part A. 17:2573–82. doi:10.1089/ten.TEA.2011.0071.
  • Osera, C., M. Amadio, S. Falone, L. Fassina, G. Magenes, F. Amicarelli, G. Ricevuti, S. Govoni, and A. Pascale. 2015. Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2 -induced ROS production by increasing MnSOD activity. Bioelectromagnetics 36:219–32. doi:10.1002/bem.21900.
  • Pakhomova, O. N., V. A. Khorokhorina, A. M. Bowman, R. Rodaitė-Riševičienė, G. Saulis, S. Xiao, and A. G. Pakhomov. 2012. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch. Biochem. Biophys. 527:55–64. doi:10.1016/j.abb.2012.08.004.
  • Park, J.-E., Y.-K. Seo, -H.-H. Yoon, C.-W. Kim, J.-K. Park, and S. Jeon. 2013. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem. Int. 62:418–24. doi:10.1016/j.neuint.2013.02.002.
  • Patruno, A., P. Amerio, M. Pesce, G. Vianale, S. Di Luzio, A. Tulli, S. Franceschelli, A. Grilli, R. Muraro, and M. Reale. 2010. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: Potential therapeutic effects in wound healing. Br. J. Dermatol. 162:258–66. doi:10.1111/j.1365-2133.2009.09527.x.
  • Patruno, A., S. Tabrez, P. Amerio, M. Pesce, G. Vianale, S. Franceschelli, A. Grilli, M. A. Kamal, and M. Reale. 2011. Kinetic study on the effects of extremely low frequency electromagnetic field on catalase, cytochrome P450 and inducible nitric oxide synthase in human HaCaT and THP-1 cell lines. CNS Neurol. Disord. Drug Targets. 10:936–44.
  • Pedersen, C., A. H. Poulsen, N. H. Rod, P. Frei, J. Hansen, K. Grell, O. Raaschou-Nielsen, J. Schüz, and C. Johansen. 2017. Occupational exposure to extremely low-frequency magnetic fields and risk for central nervous system disease: An update of a Danish cohort study among utility workers. Int. Arch. Occup. Environ. Health. 90:619–28. doi:10.1007/s00420-017-1224-0.
  • Persson, B. R. R., L. G. Salford, and A. Brun. 1997. Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wireless Network 3:455–61. doi:10.1023/A:1019150510840.
  • Pishchalnikov, R. Y., Y. I. Gurfinkel, R. M. Sarimov, A. L. Vasin, M. L. Sasonko, T. A. Matveeva, V. N. Binhi, and M. V. Baranov. 2019. Cardiovascular response as a marker of environmental stress caused by variations in geomagnetic field and local weather. Biomed Signal Process Control 51:401–10. doi:10.1016/j.bspc.2019.03.005.
  • Pizzino, G., N. Irrera, M. Cucinotta, G. Pallio, F. Mannino, V. Arcoraci, F. Squadrito, D. Altavilla, and A. Bitto. 2017. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longevity 2017:1–13. doi:10.1155/2017/8416763.
  • Poniedzialek, B., P. Rzymski, H. Nawrocka-Bogusz, F. Jaroszyk, and K. Wiktorowicz. 2013. The effect of electromagnetic field on reactive oxygen species production in human neutrophils in vitro. Electromagn. Biol. Med. 32:333–41. doi:10.3109/15368378.2012.721845.
  • Poprac, P., K. Jomova, M. Simunkova, V. Kollar, C. J. Rhodes, and M. Valko. 2017. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 38:592–607. doi:10.1016/j.tips.2017.04.005.
  • Pugh, E. N. 2018. The discovery of the ability of rod photoreceptors to signal single photons. J. Gen. Physiol. 150:383–88. doi:10.1085/jgp.201711970.
  • Putman, N. F., A. M. Meinke, and D. L. G. Noakes. 2014b. Rearing in a distorted magnetic field disrupts the ‘map sense’ of juvenile steelhead trout. Biol. Lett 10:pii: 20140169. doi:10.1098/rsbl.2014.0169.
  • Putman, N. F., E. S. Jenkins, C. G. J. Michielsens, and D. L. G. Noakes. 2014a. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon. J. R. Soc. Interface. 11:20140542. doi:10.1098/rsif.2014.0542.
  • Qiu, L., L. Chen, X. Yang, A. Ye, W. Jiang, and W. Sun. 2019. S1P mediates human amniotic cells proliferation induced by a 50-Hz magnetic field exposure via ERK1/2 signaling pathway. J. Cell. Physiol. 234:7734–41. doi:10.1002/jcp.28102.
  • Rauš Balind, S., V. Selaković, L. Radenović, Z. Prolić, B. Janać, and T. V. Arumugam. 2014. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS ONE 9:e88921. doi:10.1371/journal.pone.0088921.
  • Regoli, F., S. Gorbi, N. Machella, S. Tedesco, M. Benedetti, R. Bocchetti, A. Notti, D. Fattorini, F. Piva, and G. Principato. 2005. Pro-oxidant effects of extremely low frequency electromagnetic fields in the land snail Helix aspersa. Free Radic. Biol. Med. 39:1620–28. doi:10.1016/j.freeradbiomed.2005.08.004.
  • Reizenstein, P. 1991. Iron, free radicals and cancer. Med. Oncol. Tumor Pharmacother. 8:229–33.
  • Romeo, S., A. Sannino, M. R. Scarfì, R. Massa, R. d’Angelo, and O. Zeni. 2016. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field. Sci. Rep 6:19398. doi:10.1038/srep19398.
  • Sadeghipour, R., S. Ahmadian, B. Bolouri, Y. Pazhang, and M. Shafiezadeh. 2012. Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D). Electromagn. Biol. Med. 31:425–35. doi:10.3109/15368378.2012.683844.
  • Sakhaie, M. H., M. Soleimani, B. Pourheydar, Z. Majd, P. Atefimanesh, S. S. Asl, and M. Mehdizadeh. 2017. Effects of extremely low-frequency electromagnetic fields on neurogenesis and cognitive behavior in an experimental model of hippocampal injury. Behav. Neurol. 2017:1–9. doi:10.1155/2017/9194261.
  • Salunke, B. P., S. N. Umathe, and J. G. Chavan. 2014. Experimental evidence for involvement of nitric oxide in low frequency magnetic field induced obsessive compulsive disorder-like behavior. Pharmacol. Biochem. Behav. 122:273–78. doi:10.1016/j.pbb.2014.04.007.
  • Schwartz, J. L., D. E. House, and G. A. Mealing. 1990. Exposure of frog hearts to CW or amplitude-modulated VHF fields: Selective efflux of calcium ions at 16 Hz. Bioelectromagnetics 11:349–58.
  • Selye, H. 1951. The general-adaptation-sydrome. Ann Rev Med 2:327–42. doi:10.1146/annurev.me.02.020151.001551.
  • Sharifian, A., M. Gharavi, P. Pasalar, and O. Aminian. 2009. Effect of extremely low frequency magnetic field on antioxidant activity in plasma and red blood cells in spot welders. Int. Arch. Occup. Environ. Health. 82:259–66. doi:10.1007/s00420-008-0332-2.
  • Shen, Z., J. Song, B. C. Yung, Z. Zhou, A. Wu, and X. Chen. 2018. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater. 30:e1704007. doi:10.1002/adma.v30.12.
  • Shepherd, S., M. A. P. Lima, E. E. Oliveira, S. M. Sharkh, C. W. Jackson, and P. L. Newland. 2018. Extremely low frequency electromagnetic fields impair the cognitive and motor abilities of honey bees. Sci. Rep. 8:7932. doi:10.1038/s41598-018-26185-y.
  • Sheppard, D. M. W., J. Li, K. B. Henbest, S. R. T. Neil, K. Maeda, J. Storey, E. Schleicher, T. Biskup, R. Rodriguez, S. Weber, et al. 2017. Millitesla magnetic field effects on the photocycle of an animal cryptochrome. Sci. Rep. 7:42228. doi:10.1038/srep42228.
  • Sherrard, R. M., N. Morellini, N. Jourdan, M. El-Esawi, L.-D. Arthaut, C. Niessner, F. Rouyer, A. Klarsfeld, M. Doulazmi, J. Witczak, et al. 2018. Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species. PLoS Biol. 16:e2006229. doi:10.1371/journal.pbio.2006229.
  • Shokrollahi, S., F. Ghanati, and R. H. Sajedi. 2018. Possible role of iron containing proteins in physiological responses of soybean to static magnetic field. J. Plant Physiol. 226:163–71. doi:10.1016/j.jplph.2018.04.018.
  • Shterman, N., B. Kupfer, and C. Moroz. 1991. Comparison of transferrin receptors, iron content and isoferritin profile in normal and malignant human breast cell lines. Pathobiol 59:19–25. doi:10.1159/000163611.
  • Solek, P., L. Majchrowicz, D. Bloniarz, E. Krotoszynska, and M. Koziorowski. 2017. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology 382:84–92. doi:10.1016/j.tox.2017.03.015.
  • Somosy, Z., G. Thuroczy, and T. Kubasova, et al. 1991. Effects of modulated and continuous microwave irradiation on the morphology and cell surface negative charge of 3T3 fibroblasts. Scanning Microsc 5:1145–1155.
  • Song, K., S. H. Im, Y. J. Yoon, H. M. Kim, H. J. Lee, G. S. Park, and M. R. Scarfi. 2018. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS ONE 13:e0199753. doi:10.1371/journal.pone.0199753.
  • Sullivan, K., A. K. Balin, and R. G. Allen. 2011. Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics 32:140–47. doi:10.1002/bem.20624.
  • Tasset, I., F. J. Medina, I. Jimena, E. Agüera, F. Gascón, M. Feijóo, F. Sánchez-López, E. Luque, J. Peña, R. Drucker-Colín, et al. 2012. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: Effects on neurotrophic factors and neuronal density. Neuroscience 209:54–63. doi:10.1016/j.neuroscience.2012.02.034.
  • Tattersall, J. E., I. R. Scott, S. J. Wood, J. J. Nettell, M. K. Bevir, Z. Wang, N. P. Somasiri, and X. Chen. 2001. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res. 904:43–53. doi:10.1016/s0006-8993(01)02434-9.
  • Tofani, S., D. Barone, M. Cintorino, M. M. de Santi, A. Ferrara, R. Orlassino, P. Ossola, F. Peroglio, K. Rolfo, and F. Ronchetto. 2001. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics 22:419–28.
  • Trowbridge, I. S., R. A. Newman, D. L. Domingo, and C. Sauvage. 1984. Transferrin receptors: Structure and function. Biochem. Pharmacol. 33:925–32. doi:10.1016/0006-2952(84)90447-7.
  • Túnez, I., R. Drucker-Colín, I. Jimena, F. J. Medina, M. D. C. Muñoz, J. Peña, and P. Montilla. 2006. Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease. J. Neurochem. 97:619–30. doi:10.1111/j.1471-4159.2006.03724.x.
  • Türközer, Z., G. Güler, and N. Seyhan. 2008. Effects of exposure to 50 Hz electric field at different strengths on oxidative stress and antioxidant enzyme activities in the brain tissue of guinea pigs. Int. J. Radiat. Biol. 84:581–90. doi:10.1080/09553000802203606.
  • Valko, M., D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 39:44–84. doi:10.1016/j.biocel.2006.07.001.
  • Van Huizen, A. V., J. M. Morton, L. J. Kinsey, D. G. Von Kannon, M. A. Saad, and T. R. Birkholz. 2019. Weak magnetic fields alter stem cell-mediated growth. Sci. Adv 5:eaau7201. doi:10.1126/sciadv.aax7333.
  • Vignola, M. B., S. Dávila, D. Cremonezzi, J. C. Simes, J. A. Palma, and V. R. Campana. 2012. Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of magnetic therapy on experimental myopathy in rats. Electromagn. Biol. Med. 31:320–32. doi:10.3109/15368378.2011.641706.
  • von der Emde, G. 1999. Active electrolocation of objects in weakly electric fish. Exp. Biol. 202:1205–15.
  • Wang, C. X., I. A. Hilburn, and D.-A. Wu. 2019. Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. eNeuro, 6(2):  e0483-18 2019 1–23.
  • Wang, D., L. Zhang, G. Shao, S. Yang, S. Tao, K. Fang, and X. Zhang. 2018a. 6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels. Environ. Sci. Pollut. Res. Int. 25:28237–47. doi:10.1007/s11356-018-2868-3.
  • Wang, S., J. Luo, Z. Zhang, D. Dong, Y. Shen, Y. Fang, L. Hu, M. Liu, C. Dai, S. Peng, et al. 2018b. Iron and magnetic: New research direction of the ferroptosis-based cancer therapy. Am. J. Cancer Res. 8:1933–46.
  • Wartenberg, M., N. Wirtz, and A. Grob. 2008. Direct current electrical fields induce apoptosis in oral mucosa cancer cells by NADPH oxidase-derived reactive oxygen species. Bioelectromagnetics 29:47–54. doi:10.1002/bem.20361.
  • Wiltschko, R., P. Thalau, D. Gehring, C. Nießner, T. Ritz, and W. Wiltschko. 2015. Magnetoreception in birds: The effect of radio-frequency fields. J. R. Soc. Interface 12:pii: 20141103. doi:10.1098/rsif.2014.1103.
  • Wolf, F. I., A. Torsello, B. Tedesco, S. Fasanella, A. Boninsegna, M. D’Ascenzo, C. Grassi, G. B. Azzena, and A. Cittadini. 2005. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism. Biochim. Biophys. Acta. 1743:120–29. doi:10.1016/j.bbamcr.2004.09.005.
  • Wolke, S., U. Neibig, R. Elsner, F. Gollnick, and R. Meyer. 1996. Calcium homeostasis of isolated heart muscle cells exposed to pulsed high-frequency electromagnetic fields. Bioelectromagnetics 17:144–53. doi:10.1002/(SICI)1521-186X(1996)17:2<144::AID-BEM9>3.0.CO;2-3.
  • Wu, S. X., Y. Q. Xu, and G. Q. Di. 2016. Influence of environmental static electric field on antioxidant enzymes activities in hepatocytes of mice. Genet. Mol. Res. 15. doi:10.4238/gmr.15038800.
  • Yakymenko, I., O. Tsybulin, E. Sidorik, D. Henshel, O. Kyrylenko, and S. Kyrylenko. 2016. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn. Biol. Med. 35:186–202. doi:10.3109/15368378.2015.1043557.
  • Yang, M. L., and Z. M. Ye. 2015. Extremely low frequency electromagnetic field induces apoptosis of osteosarcoma cells via oxidative stress. Zhejiang Da Xue Xue Bao Yi Xue Ban 44:323–28. [Article in Chinese].
  • Yitzhak, N.-M., R. Hareuveny, S. Kandel, and R. Ruppin. 2012. Time dependence of 50 Hz magnetic fields in apartment buildings with indoor transformer stations. Radiat. Prot. Dosimetry. 149:191–95. doi:10.1093/rpd/ncr226.
  • Yokus, B., D. U. Cakir, M. Z. Akdag, C. Sert, and N. Mete. 2005. Oxidative DNA damage in rats exposed to extremely low frequency electromagnetic fields. Free Radic. Res. 39:317–23. doi:10.1080/10715760500043603.
  • Yokus, B., M. Z. Akdag, S. Dasdag, D. U. Cakir, and M. Kizil. 2008. Extremely low frequency magnetic fields cause oxidative DNA damage in rats. Int. J. Radiat. Biol. 84:789–95. doi:10.1080/09553000802348203.
  • Zeni, O., M. Simkó, and M. R. Scarfi. 2017. Cellular response to ELF-MF and heat: Evidence for a common involvement of heat shock proteins? Front Public Health 18:280.
  • Zhang, D., Y. Zhang, B. Zhu, H. Zhang, Y. Sun, and C. Sun. 2017. Resveratrol may reverse the effects of long-term occupational exposure to electromagnetic fields on workers of a power plant. Oncotarget 8:47497–506. doi:10.18632/oncotarget.17668.
  • Zhang, J., C. Ding, X. Meng, and P. Shang. 2018. Nitric oxide modulates the responses of osteoclast formation to static magnetic fields. Electromagn. Biol. Med. 37:23–34. doi:10.1080/15368378.2017.1414057.
  • Zimmerman, J. W., M. J. Pennison, I. Brezovich, N. Yi, C. T. Yang, R. Ramaker, D. Absher, R. M. Myers, N. Kuster, F. P. Costa, et al. 2012. Cancer cell proliferation is inhibited by specific modulation frequencies. Br. J. Cancer 106:307–13. doi:10.1038/bjc.2011.523.
  • Zmyslony, M., E. Rajkowska, P. Mamrot, P. Politanski, and J. Jajte. 2004. The effect of weak 50 Hz magnetic fields on the number of free oxygen radicals in rat lymphocytes in vitro. Bioelectromagnetics 25:607–12. doi:10.1002/bem.20045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.