3,100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mobile phone induced EMF stress is reversed upon the use of protective devices: results from two experiments testing different boundary conditions

Pages 429-438 | Received 25 Jul 2022, Accepted 18 Sep 2022, Published online: 03 Oct 2022

References

  • Adair, E. R., and D. R. Black. 2003. Thermoregulatory responses to RF energy absorption. Bioelectromagnetics 24:17–38. doi:10.1002/bem.101334.
  • Alghamdi, M. S., and N. A. El-Ghazaly. 2012. Effects of exposure to electromagnetic field on some hematological parameters in mice. Open J Med Chem 2:30–42.
  • Andrzejak, R., R. Poreba, M. Poreba, A. Derkacz, R. Skalik, P. Gac, B. Beck, A. Steinmetz-Beck, and W. Pilecki. 2008. The influence of the call with a mobile phone on heart rate variability parameters in healthy volunteers. Ind Health 46:409–17. doi:10.2486/indhealth.46.409.
  • Barnothy, M. F. 1963. Biological effects of magnetic fields on small mammals. Biomed. Sci. Instrum. 1:127–35.
  • Barry, A. E., D. Valdez, P. Goodson, L. Szucs, and J. V. Reyes. 2019. Moving college health research forward: Reconsidering our reliance on statistical significance testing. J Am Coll Health 67:181–88. doi:10.1080/07448481.2018.1470091.
  • Béres, S., Á. Németh, Z. Ajtay, I. Kiss, B. Németh, and L. Hejjel. 2018. Cellular phone irradiation of the head affects heart rate variability depending on inspiration/expiration ratio. In Vivo 32(5), 1145–53. doi:10.21873/invivo.11357.
  • Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction to meta-analysis. Chichester: John Wiley & Sons.
  • Bortkiewicz, A., E. Gadzicka, W. Szymczak, and M. Zmyslony. 2012. Changes in tympanic temperature during the exposure to electromagnetic fields emitted by mobile phone. Int J Occup Med Environ Health 25:145–50. doi:10.2478/s13382-012-0013-y.
  • Braune, S., A. Riedel, J. Schulte-Monting, and J. Raczek. 2002. Influence of a radio frequency electromagnetic field on cardiovascular and hormonal parameters of the autonomic nervous system in healthy individuals. Radiat. Res. 158:352–56. doi:10.1667/0033-7587(2002)158[0352:IOAREF]2.0.CO;2.
  • Cohen, J. 2008. Statistical power analysis for the behavioral sciences. Hillsdale: Laurence Erlbaum Associates.
  • de Kleijn, S., G. Ferwerda, M. Wiese, J. Trentelman, J. Cuppen, T. Kozicz, L. de Jager, P. W. M. Hermans, and B. M. L. Verburg-van Kemenade. 2016. A short-term extremely low frequency electromagnetic field exposure increases circulating leukocyte numbers and affects HPA-axis signaling in mice. Bioelectromagnetics 37:433–43. doi:10.1002/bem.21998.
  • Ekici, B., A. Tanindi, G. Ekici, and E. Diker. 2016. The effects of the duration of mobile phone use on heart rate variability parameters in healthy subjects. Anatol J Cardiol 16:833–38. doi:10.14744/AnatolJCardiol.2016.6717.
  • Faul, F., E. Erdfelder, A. Buchner, and A.-G. Lang. 2009. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 41:1149–60. doi:10.3758/BRM.41.4.1149.
  • Greenland, S., S. J. Senn, K. J. Rothmann, J. B. Carlin, C. Poole, S. N. Goodman, and D. G. Altman. 2016. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 31:337–50.
  • Henz, D., W. I. Schöllhorn, and B. Poeggeler. 2018. Mobile phone chips reduce increases in EEG brain activity induced by mobile phone-emitted electromagnetic fields. Front. Neurosci. 12:190. doi:10.3389/fnins.2018.00190.
  • Hunter, J. E., and F. Schmidt. 2004. Methods of meta-analysis: Correcting error and bias in research findings. London: Sage Publishers.
  • Jbireal, J. M., A. E. Azab, and A. S. I. Elsayed. 2018. Disturbance in haematological parameters induced by exposure to electromagnetic fields. Hematol Transfus Int J 6:242–51. doi:10.15406/htij.2018.06.00193.
  • Kennedy-Shaffer, L. 2019. Before p < 0.05 to beyond < 0.05: Using history to contextualize < 0.05 to Beyond p < .05: Using History to Contextualize p-Values and Significance Testing. Am Stat 73:82–90. doi:10.1080/00031305.2018.1537891.
  • Kitaoka, K., S. Kawata, T. Yoshida, F. Kadoriku, M. Kitamura, and Y. Tsuji. 2016. Exposure to an extremely low-frequency magnetic field stimulates adrenal steroidogenesis via inhibition of phosphodiesterase activity in a mouse adrenal cell line. PLoS ONE 11:e0154167. doi:10.1371/journal.pone.0154167.
  • Kozma, N., H. Speletz, U. Reiter, G. Lanzer, and T. Wagner. 2011. Impact of 13.56-MHz radiofrequency identification systems on the quality of stored red blood cells. Transfusion 51:2384–90. doi:10.1111/j.1537-2995.2011.03169.x.
  • Lai, H. 2018. A summary of recent literature (2007-2017) on neurobiological effects of radio frequency radiation. In Mobile communications and public health, ed. M. Markov, 185–220. New York: CRC Press.
  • Loimaala, A., H. Sievanen, R. Laukkanen, J. Parkka, I. Vuori, and H. Huikuri. 1999. Accuracy of a novel real-time microprocessor QRS detector for heart rate variability assessment. Clin Physiol 19:84–88. doi:10.1046/j.1365-2281.1999.00152.x.
  • McClatchey, K. D. 2017. Clinical laboratory medicine. Philadelphia: Lippincott Williams & Wilkins.
  • Misek, J., I. Belyaev, V. Jakusova, I. Tonhajzerova, J. Barabas, and J. Jakus. 2018. Heart rate variability affected by radiofrequency electromagnetic field in adolescent students. Bioelectromagnetics 39:277–88. doi:10.1002/bem.22115.
  • Mousavy, S. J., G. H. Riazi, and M. Kamarei. 2009. Before p < .05 to Beyond p < .05: Using History to Contextualize p-Values and Significance Testing. Int. J. Biol. Macromol. 44:278–85. doi:10.1016/j.ijbiomac.2009.01.001.
  • Parazzini, M., P. Ravazzani, G. Thuroczy, F. B. Molnar, G. Ardesi, A. Sacchettini, and L. T. Mainardi. 2013. Nonlinear heart rate variability measures under electromagnetic fields produced by GSM cellularphones. Electromagn Biol Med 32:173–81. doi:10.3109/15368378.2013.776424.
  • Rauš Balind, S., M. Manojlović-Stojanoski, V. Milošević, D. Todorović, L. Nikolić, and B. Petković. 2016. Short- and long-term exposure to alternating magnetic field (50 Hz, 0.5 mT) affects rat pituitary ACTH cells: Stereological study. Environ. Toxicol. 31:461–68. doi:10.1002/tox.22059.
  • Ribeiro, D. S., G. V. Ribeiro Neves, L. Deresz, R. Domingues Melo, P. Dal Lago, and M. Karsten. 2018. Can RR intervals editing and selection techniques interfere with the analysis of heart rate variability? Braz J Phys Ther 22:383–90. doi:10.1016/j.bjpt.2018.03.008.
  • Sebastián, J. L., S. Muñoz San, M. Martín, J. Sancho, M. Miranda, and G. Alvarez. 2005. Erythrocyte rouleaux formation under polarized electromagnetic fields. Phys Rev E Stat Nonlin Soft Matter Phys 72:031913. doi:10.1103/PhysRevE.72.031913.
  • Shaffer, F., and J. P. Ginsberg. 2017. An overview of heart rate variability metrics and norms. Front Public Health 5:258. doi:10.3389/fpubh.2017.00258.
  • Tahvanainen, K., J. Nino, P. Halonen, T. Kuusela, T. Laitinen, E. Lansimies, J. Hartikainen, M. Hietanen, and H. Lindholm. 2004. Cellular phone use does not acutely affect blood pressure or heart rate of humans. Bioelectromagnetics 25:73–83. doi:10.1002/bem.10165.
  • Touitou, Y., and B. Selmaoui. 2012. The effects of extremely low-frequency magnetic fields on melatonin and cortisol, two marker rhythms of the circadian system. Dialogues Clin Neurosci 14:381–99. doi:10.31887/DCNS.2012.14.4/ytouitou.
  • Touitou, Y., B. Selmaoui, and J. Lambrozo. 2022. Assessment of cortisol secretory pattern in workers chronically exposed to ELF-EMF generated by high voltage transmission lines and substations. Environ Int 161:107103. doi:10.1016/j.envint.2022.107103.
  • Vagdatli, E., V. Konstandinidou, N. Adrianakis, I. Tsikopoulos, A. Tsikopoulos, and K. Mitsopoulou. 2014. Effects of electromagnetic fields on automated blood cell measurements. J Lab Autom 19:362–65. doi:10.1177/2211068213520492.
  • Zhang, J., A. Sumich, and G. Y. Wang. 2017. Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function. Bioelectromagnetics 38:329–38. doi:10.1002/bem.22052.