37
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Research on the influence of foaming silica gel-filled on low-velocity impact performance of M-type GFRP foldcore sandwich structure

, , , &
Received 07 Mar 2024, Accepted 21 Apr 2024, Published online: 06 May 2024

References

  • V. Birman and G. A. Kardomateas, Review of current trends in research and applications of sandwich structures, Comp. B., vol. 142, pp. 221–240, 2018. DOI: 10.1016/j.compositesb.2018.01.027.
  • J. Xiong, Y.T. Du, W. Yang, et al., Recent progress in sandwich structure design and mechanical properties of lightweight composite materials, J. Astronaut. 41., vol. 06, pp. 749–760, 2020.
  • A. Farrokhabadi, M.M. Ashrafian, A.H. Behravesh, and S.K. Hedayati, Assessment of fiber-reinforcement and foam-filling in the directional energy absorption performance of a 3D printed accordion cellular structure, Compos. Struct., vol. 297, pp. 115945, 2022. DOI: 10.1016/j.compstruct.2022.115945.
  • S. Song, C. Xiong, J. Yin, and K. Cui, Failure mechanism and size effect of new bioinspired sandwich under quasi-static load, Compos. Struct., vol. 324, pp. 117552, 2023. DOI: 10.1016/j.compstruct.2023.117552.
  • S. Song, C. Xiong, J. Yin, Z. Yang, C. Han, and S. Zhang, Cell-filling reinforced materials for improving the low-velocity impact performance of composite square honeycomb sandwiches: polymethacrylimide foam vs. aluminum foam, Alexandria Eng. J., vol. 78, pp. 543–560, 2023. DOI: 10.1016/j.aej.2023.07.034.
  • Y. Deng, W. Zhang, X. Zeng, X. Liang, and C. Zhou, Experimental study of the low-velocity impact behavior of hybrid sandwich panel with S-shaped foldcore, Thin-Walled Struct., vol. 181, pp. 110057, 2022. DOI: 10.1016/j.tws.2022.110057.
  • M. Yang, M. Yang, B. Han, Y. Mao, J. Zhang, and T. J. Lu, Crashworthiness of foam-filled truncated conical sandwich shells with corrugated cores, Thin-Walled Struct., vol. 179, pp. 109677, 2022. DOI: 10.1016/j.tws.2022.109677.
  • H. Taghipoor, F. Musharavati, T.A. Sebaey, A. Eyvazian, and A. Ghiaskar, Experimental investigation of the three-point bending properties of sandwich beams with polyurethane foam-filled lattice cores, Structures., vol. 28, pp. 424–432, 2020. DOI: 10.1016/j.istruc.2020.08.082.
  • S.H. Yoo, S. Chang, and M. Sutcliffe, Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures, Comp. A., vol. 41, 427–434, 2009. DOI: 10.1016/j.compositesa.2009.11.010.
  • G. Zhang, B. Wang, L. Ma, L. Wu, S. Pan, and J. Yang, Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels, Comp. Struct., vol. 108, pp. 304–310, 2014. DOI: 10.1016/j.compstruct.2013.09.040.
  • H. Mozafari, S. Khatami, and H. Molatefi, Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress—numerical study, Mater. Des., vol. 66, pp. 400–411, 2015. DOI: 10.1016/j.matdes.2014.07.037.
  • L.L. Yan, B. Yu, B. Han, C.Q. Chen, Q.C. Zhang, and T.J. Lu, Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores, Comp. Sci. Technol., vol. 86, pp. 142–148, 2013. DOI: 10.1016/j.compscitech.2013.07.011.
  • Z. Zhang, S. Liu, and Z. Tang, Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads, Thin-Walled Struct., vol. 49, no. 9, pp. 1–1079, 2011. DOI: 10.1016/j.tws.2011.03.017.
  • S. Krishnappa and S. Gururaja, Numerical investigation of intrinsic competing damage mechanisms in unidirectional fiber reinforced polymer composites under compression, Mech. Adv. Mater. Struct., vol. 30, pp. 1–18, 2023. DOI: 10.1080/15376494.2023.2274140.
  • X. Huo, H. Liu, Q. Luo, G. Sun, and Q. Li, On low-velocity impact response of foam-core sandwich panels, Int. J. Mech. Sci., vol. 181, pp. 681, 2020. DOI: 10.1016/j.ijmecsci.2020.105681.
  • P. Ren, Q. Tao, L. Yin, Y. Ma, J. Wu, W. Zhao, Z. Mu, Z. Guo, and Z. Zhao, High-velocity impact response of metallic sandwich structures with PVC foam core, Int. J. Impact Eng., vol. 144, pp. 657, 2020. DOI: 10.1016/j.ijimpeng.2020.103657.
  • O. Ozdemir, R. Karakuzu, and A. K. J. Al-Shamary, Core-thickness effect on the impact response of sandwich composites with poly(vinyl chloride) and poly(ethylene terephthalate) foam cores, J. Compos. Mater., vol. 49, no. 11, pp. 1315–1329, 2015. DOI: 10.1177/0021998314533597.
  • A.S. Vaidya, U.K. Vaidya, and N. Uddin, Impact response of three-dimensional multifunctional sandwich composite, Mater. Sci. Eng. A., vol. 472, no. 1, pp. 52–58, 2007. DOI: 10.1016/j.msea.2007.03.064.
  • C. Chen, H. Fang, L. Zhu, J. Han, X. Li, Z. Qian, and X. Zhang, Low-velocity impact properties of foam-filled composite lattice sandwich beams: experimental study and numerical simulation, Comp. Struct., vol. 306, pp. 116573, 2023. DOI: 10.1016/j.compstruct.2022.116573.
  • J. Wang, A.M. Waas, and H. Wang., Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels, Comp. Struct., vol. 96, pp. 298–311, 2013. DOI: 10.1016/j.compstruct.2012.09.002.
  • T.D.C. Dias, E. Antonio Wink de Menezes, M.L.P. Tonatto, and S.C. Amico, Edgewise compression mechanisms in sandwich panels with foam-core and jute/glass hybrid composite faces, Mech. Adv. Mater. Struct., vol. 31, pp. 1–13, 2024. DOI: 10.1080/15376494.2024.2338457.
  • A.K.J. Al-Shamary, R. Karakuzu, H. Kandas, and O. Ozdemir, Low velocity impact response of sandwich composites with hybrid glass/natural fiber face-sheet and PET foam core, Mater. Test., vol. 64, no. 10, pp. 1465–1479, 2022. DOI: 10.1515/mt-2022-0151.
  • H. Wang, W. Wang, B. Wang, and H. Fan, Foam-filling technique to improve low-velocity impact behaviors of woven lattice truss sandwich panels, Polym. Test., vol. 114, pp. 107714, 2022. DOI: 10.1016/j.polymertesting.2022.107714.
  • G. Li and V. S. Chakka, Isogrid stiffened syntactic foam cored sandwich structure under low velocity impact, Comp. A., vol. 41, no. 1, pp. 177–184, 2009. DOI: 10.1016/j.compositesa.2009.10.007.
  • Y.-T. Kao, A.R. Amin, N. Payne, J. Wang, and B.L. Tai, Low-velocity impact response of 3D-printed lattice structure with foam reinforcement, Comp. Struct., vol. 192, pp. 93, 2018. DOI: 10.1016/j.compstruct.2018.02.042.
  • Y. Mohamadi, H. Ahmadi, O. Razmkhah, and G. Liaghat, Axial crushing responses of aluminum honeycomb structures filled with elastomeric polyurethane foam, Thin-Walled Struct., vol. 164, pp. 785, 2021. DOI: 10.1016/j.tws.2021.107785.
  • F. Usta, H.S. Türkmen, and F. Scarpa, High-velocity impact resistance of doubly curved sandwich panels with re-entrant honeycomb and foam core, Int. J. Impact Eng., vol. 165, pp. 230, 2022. DOI: 10.1016/j.ijimpeng.2022.104230.
  • H.E. Yalkın, R. Karakuzu, and T. Alpyıldız, Low velocity impact behavior of sandwich composites with different structural configurations of foam core: an experimental study, J. Sandwich Struct. Mater., vol. 24, no. 6, pp. 1941–1960, 2022. DOI: 10.1177/10996362221115050.
  • H.E. Yalkın, R. Karakuzu, and T. Alpyıldız, Low velocity impact behaviors of sandwich composites with different structural configurations of foam core: numerical study and experimental validation, Phys. Scr., vol. 98, no. 11, pp. 115942, 2023. DOI: 10.1088/1402-4896/ad008f.
  • A.K.J. Al-Shamary, R. Karakuzu, and O. Özdemir, Low-velocity impact response of sandwich composites with different foam core configurations, J. Sandwich Struct. Mater., vol. 18, no. 6, pp. 754–768, 2016. DOI: 10.1177/1099636216653267.
  • Z. Xue, X. Geng, X. Li, Y. Cao, J. Zhang, A. Aydeng, and J. Liu, Compressive mechanical properties of lattice structures filled with silicone rubber, Mech. Adv. Mater. Struct., vol. 30, pp. 1–11, 2023. DOI: 10.1080/15376494.2023.2265354.
  • R.-P. Yu, X. Wang, Q.-C. Zhang, L. Li, S.-Y. He, B. Han, C.-Y. Ni, Z.-Y. Zhao, and T.J. Lu, Effects of sand filling on the dynamic response of corrugated core sandwich beams under foam projectile impact, Compos. B., vol. 197, 2020.
  • G. Wang, X. Liao, J. Yang, W. Tang, Y. Zhang, Q. Jiang, and G. Li, Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite, Compos. Sci. Technol., vol. 184, pp. 107847–107847, 2019. DOI: 10.1016/j.compscitech.2019.107847.
  • M. Yannick, and B. Corinne, Safe operations with composite aircraft, Saf First., vol. 18, pp. 3–18, 2014.
  • Railway applications-Fire protection on railway vehicles-Part 2: requirements for fire behaviour of materials and components: EN45545-2:2013 + A1:2015[S/OL]. https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:61093,6237&cs=1F2C6DDBD6F5A5639BAB840B24B36873B.
  • Y.F. Deng, X.Z. Zeng, Y.T. Wang, J. Du, and Y.B. Zhang, Research on the low-velocity impact performance of composite sandwich structure with curved-crease origami foldcore, Thin-Walled Struct., vol. 174, pp. 106, 2022. DOI: 10.1016/j.tws.2022.109106.
  • Y. Du, C. Song, J. Xiong, and L. Wu, Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami, Comp. Sci. Technol., vol. 174, pp. 94, 2019. DOI: 10.1016/j.compscitech.2019.02.019.
  • D. Yunfei and W. Yuetong, Research on low-velocity impact resistance and damage characteristics of M-type GFRP foldcore sandwich structure, Archiv.Civ.Mech.Eng., vol. 23, no. 3, 2023. DOI: 10.1007/s43452-023-00709-4.
  • J.M. Gattas and Z. You, The behaviour of curved-crease foldcores under low-velocity impact loads, Int. J. Solids Struct., vol. 53, pp. 80–91, 2015. DOI: 10.1016/j.ijsolstr.2014.10.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.