66
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Mercury Activates Phospholipase A2 and Induces Formation of Arachidonic Acid Metabolites in Vascular Endothelial Cells

, , , , , , & show all
Pages 541-557 | Received 17 Jan 2007, Accepted 03 Apr 2007, Published online: 09 Oct 2008

REFERENCES

  • Antoniotti S., Fiorio P. A., Pregnolato S., Mottola A., Lovisolo D., Munaron L. Control of endothelial cell proliferation by calcium influx and arachidonic acid metabolism: a pharmacological approach. J. Cell Physiol. 2003; 197(3)370–378
  • Aschner M. Astrocyte swelling, phospholipase A2, glutathione and glutamate: interactions in methylmercury-induced neurotoxicity. Cell Mol Biol. (Noisy-le-grande) 2000; 46(4)843–854
  • Balsinde J., Winstead M. V., Dennis E. A. Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett 2000; 531: 2–6
  • Blanusa M., Varnai V. M., Piasek M., Kostial K. Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr. Med. Chem. 2005; 12(23)2771–2794
  • Boening D. W. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 2000; 40: 1335–1351
  • Boffetta P., Sallsten G., Garcia-Gomez M., Pompe-Kirn V., Zaridze D., Bulbulyan M., Caballero J. D., Ceccarelli F., Kobal A. B., Merler E. Mortality from cardiovascular disease and exposure to inorganic mercury. Occup. Environ. Med. 2001; 58: 461–466
  • Bogatcheva N. V., Sergeeva M. G., Dudek S. M., Verin A. D. Arachidonic acid cascade in endothelial pathobiology. Microvasc. Res. 2005; 69: 107–127
  • Chakraborti S. Phospholipase A2 isoforms: a perspective. Cell Signal 2003; 15: 637–665
  • Chan H. M., Egeland G. M. Fish consumption, mercury exposure, and heart disease. Nutr. Rev. 2004; 62: 68–72
  • Clarkson T. W. The three modern faces of mercury. Environ. Health Perspect. 2002; 110: 11–23
  • Clarkson T. W., Magos L., Myers G. J. The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med. 2003; 349: 1731–1737
  • Dennis E. A., Rhee S. G., Billah M. M., Hannun Y. A. Role of phospholipases in generating lipid second messengers in signal transduction. FASEB J 1991; 5: 2068–2077
  • Divecha N., Irvine R. F. Phospholipid signaling. Cell 1995; 80: 269–278
  • Dopp E., Hartman L. M., Florea A. M., Rettenmeier A. W., Hirner A. V. Environmental distribution, analysis, and toxicity of organometal (loid) compounds. Crit. Rev. Toxicol. 2004; 34: 301–333
  • Egermayer P. Epidemics of vascular toxicity and pulmonary hypertension: what can be learned?. J. Intern. Med. 2000; 247: 11–17
  • Hagele T. J., Mazerik J. N., Gregory A., Kaufman B., Magalang U., Kuppusamy M., Marsh C. B., Kuppusamy P., Parinandi N. L. Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int. J. Toxicol. 2006; 26(1)57–69
  • Hare M. F., McGinnis K. M., Atchison W. D. Methylmercury increases intracellular concentrations of Ca++ and heavy metals in NG108–15 cells. J. Pharmacol. Exp. Ther. 1993; 266(3)1626–1635
  • Hurt-Camejo E., Camejo G., Peilot H., Oorni K., Kovanen P. Phospholipase A2 in vascular disease. Circ. Res. 2001; 89: 298–304
  • Kang M. S., Jeong J. Y., Seo J. H., Jeon H. J., Jung K. M., Chin M. R., Moon C. K., Bonventre J. V., Jung S. Y., Kim D. K. Methylmercury-induced toxicity is mediated by enhanced intracellular calcium through activation of phosphatidylcholine- specific phospholipase C. Toxicol. Appl. Pharmacol. 2006; 216(2)206–215
  • Kim D. S., Lee E. H., Yu S. D., Cha J. H, Ahn S. C. Heavy metal as risk factor of cardiovascular disease—an analysis of blood lead and urinary mercury. J. Prev. Med. Pub. Health 2005; 38: 401–407
  • Kostka B. Toxicity of mercury compounds as a possible risk for cardiovascular diseases. Br. J. Ind. Med. 1991; 48: 845
  • Kuehn B. Medical Groups Sue EPA Over Mercury Rule. JAMA. 2005; 294: 415–416
  • Lambert I. H., Pedersen S. F., Poulsen K. A. Activation of PLA2 isoforms by cell swelling and ischemia/hypoxia. Acta Physiol. 2006; 187: 75–85
  • Landmark K., Aursnes I. Mercury, fish, fish oil and the risk of cardiovascular disease. Tidsskr. Nor. Laegeforen. 2004; 124: 198–200
  • Limke T. L., Bearss J. J., Atchison W. D. Acute exposure to methylmercury causes Ca2 +dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor-linked pathway. Toxicol. Sci. 2004; 80: 60–68
  • Martinez J., Moreno J. Role of Ca2+-independent phospholipase A2 on arachidonic acid release induced by reactive oxygen species. Arch. Biochem. Biophys. 2001; 392(2)257–262
  • Marty M. S., Atchison W. D. Elevations of intracellular Ca2+ as a probable contributor to decreased viability in cerebellar granule cells following acute exposure to methylmercury. Toxicol. Appl. Pharmacol. 1998; 150(1)98–105
  • Mutter J., Naumann J., Sadaghiani C., Walach H., Drasch G. Amalgam studies disregarding basic principles of mercury toxicity. Int. J. Hyg. Environ. Health 2004; 207: 391–397
  • Nash R. A. Metals in medicine. Altern. Ther. Health Med. 2005; 11: 18–25
  • Nigam S., Schewe T. Phospholipase A2s and lipid peroxidation. Biochim. Biophys. Acta 2000; 1488: 1488, 167–181
  • Parinandi N. L., Scribner W. M., Vepa S., Shi S., Natarajan V. Phospholipase D activation in endothelial cells is redox sensitive. Antioxid. Redox. Signal 1999; 1(2)193–210
  • Phillis J. W., O'Regan M. H. The role of phospholipases, cyclooxygenases, and lipoxygenases in cerebral ischemic/traumatic injuries. Crit. Rev. Neurobiol. 2003; 15: 61–90
  • Pleva J. Dental mercury—a public health hazard. Rev. Environ. Health 1994; 10: 1–27
  • Reiss A. B., Edelman S. D. Recent insights into the role of prostanoids in atherosclerotic vascular disease. Curr. Vasc. Pharmacol. 2006; 4: 395–408
  • Riendeau D., Guay J., Weech P. K., Laliberte F., Yergey J., Li C., Desmarais S., Perrier H., Liu S., Nicoll-Griffith D., Street I. P. Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-kDa Phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets. J. Biol. Chem. 1994; 269(22)15619–15624
  • Sarafian T. A. Methylmercury increases intracellular Ca2+ and inositol phosphate levels in cultured cerebellar granule neurons. J. Neurochem. 1993; 61(2)648–657
  • Sarkar B. A. Mercury in the environment: effect on health and reproduction. Rev. Environ. Health 2005; 20: 39–56
  • Shanker G., Aschner M. Identification and characterization of uptake systems for cystine and cysteine ion cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport. J. Neurosci. Res. 2001; 66: 998–1002
  • Shanker G., Mutkus L. A., Walker S. J., Aschner M. Methylmercury enhances arachidonic acid and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes. Mol. Brain Res. 2002; 106: 1–11
  • Shanker G., Syversen T., Aschner M. Astrocyte-mediated methylmercury Neurotoxicity. Biol. Trace Elem. Res. 2003; 95(1)1–10
  • Shanker G., Syversen T., Aschner J. L., Aschner M. Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Mol. Brain Res. 2005; 137: 11–22
  • Valko M., Morris H., Cronin M. T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005; 12(10)1161–1208
  • Varadharaj S., Steinhour E., Hunter M. G., Watkins T., Baran C. P., Magalang U., Kuppusamy P., Zwier J. L., Marsh C. B., Natarajan V., Parinandi N. L. Vitamin C-induced activation of phospholipase D in lung microvascular endothelial cells: regulation by MAP kinases. Cell Signal 2006; 18: 1396–1407
  • Verity M. A., Sarafian T., Pacifici E. H. K., Sevanian A. Phospholipase A2 stimulation by methylmercury in neuron culture. J. Neurochem. 1994; 62: 705–714
  • Wakita Y. Hypertension induced by methylmercury in rats. Toxicol. Appl. Pharmacol. 1987; 89: 144–147
  • Xu J., Yu S., Sun A. Y., Sun G. Y. Oxidant-mediated AA release from astrocytes involves cPLA2 and iPLA2. Free Radic. Biol. Med. 2003; 34(12)1531–1543
  • Yoshizawa K., Rimm E. B., Morris J. S., Spate V. L., Hsieh C. C., Spiegelman D., Stampfer M. J., Willett W. C. Mercury and the risk of coronary heart disease in men. N. Engl. J. Med. 2002; 347: 1755–1760

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.