171
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Changes in the oxidative stress/anti-oxidant system after exposure to sulfur mustard and antioxidant strategies in the therapy, a review

ORCID Icon, , &
Pages 408-416 | Received 14 Mar 2017, Accepted 13 Apr 2017, Published online: 05 May 2017

References

  • AlMatar M, Batool T, Makky EA. (2016). Therapeutic potential of N-acetylcysteine for wound healing, acute bronchiolitis, and congenital heart defects. Curr Drug Metab 17:156–67.
  • Arefnasab Z, Babamahmoodi A, Babamahmoodi F, et al. (2016). Mindfulness-based stress reduction (MBSR) and its effects on psychoimmunological factors of chemically pulmonary injured veterans. Iran J Allergy Asthma Immunol 15:476–86.
  • Bailey HH, Mukhtar H. (2013). Green tea polyphenols and cancer chemoprevention of genitourinary cancer. Am Soc Clin Oncol Educ Book 2013:92–6.
  • Balszuweit F, John H, Schmidt A, et al. (2013a). Silibinin as a potential therapeutic for sulfur mustard injuries. Chem Biol Interact 206:496–504.
  • Balszuweit F, Menacher G, Schmidt A, et al. (2016). Protective effects of the thiol compounds GSH and NAC against sulfur mustard toxicity in a human keratinocyte cell line. Toxicol Lett 244:35–43.
  • Balszuweit F, Schmidt A, John H, et al. (2013b). Silibinin as a potential therapeutic for sulfur mustard injuries. Naunyn-Schmiedebergs Arch Pharmacol 386:S6.
  • Baradan-Rafii A, Estani M, Tseng SC. (2011). Sulfur mustard-induced ocular surface disorders. Ocul Surf 9:163–78.
  • Ben-Yehuda Greenwald M, Frusic-Zlotkin M, Soroka Y, et al. (2017). A novel role of topical iodine in skin: activation of the Nrf2 pathway. Free Radic Biol Med 104:238–48.
  • Bennett RA, Behrens E, Zinn A, et al. (2014). Mustard gas surrogate, 2-chloroethyl ethylsulfide (2-CEES), induces centrosome amplification and aneuploidy in human and mouse cells 2-CEES induces centrosome amplification and chromosome instability. Cell Biol Toxicol 30:195–205.
  • Boskabady MH, Vahedi N, Amery S, Khakzad MR. (2011). The effect of Nigella sativa alone, and in combination with dexamethasone, on tracheal muscle responsiveness and lung inflammation in sulfur mustard exposed guinea pigs. J Ethnopharmacol 137:1028–34.
  • Braicu C, Gherman CD, Irmie A, Berindan-Neagoe I. (2013). Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. J Nanosci Nanotechnol 13:632–7.
  • Broch H, Hamza A, Vasilescu D. (1996). Ab initio modeling of the interaction between guaninecytosine base pair and mustard alkylating agents. Int J Quant Chem 60:1745–64.
  • Cardiano P, Foti C, Giuffre O. (2016). On the interaction of N-acetylcysteine with Pb2+, Zn2+, Cd2+ and Hg2+. J Mol Liq 223:360–7.
  • Carr AC, McCall MR, Frei B. (2000). Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 20:1716–23.
  • Clement JG. (1994). Toxicity of the combined nerve agents GB/GF in mice: efficacy of atropine and various oximes as antidotes. Arch Toxicol 68:64–6.
  • Darvishi B, Panahi Y, Ghanei M, Farahmand L. (2017). Investigating prevalence and pattern of long-term cardiovascular disorders in sulphur mustard-exposed victims and determining proper biomarkers for early defining, monitoring and analysis of patients’ feedback on therapy. Basic Clin Pharmacol Toxicol 120:120–30.
  • Debiak M, Lex K, Ponath V, et al. (2016). Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions. Toxicol Lett 244:72–80.
  • Deppe J, Steinritz D, Santovito D, et al. (2016). Upregulation of miR-203 and miR-210 affect growth and differentiation of keratinocytes after exposure to sulfur mustard in normoxia and hypoxia. Toxicol Lett 244:81–7.
  • Doi M, Hattori N, Yokoyama A, et al. (2011). Effect of mustard gas exposure on incidence of lung cancer: a longitudinal study. Am J Epidemiol 173:659–66.
  • Dons D. (2013). As Syria crisis mounts, scientist looks back at last major chemical attack. Science 341:1051.
  • Doyle T, Chen Z, Muscoli C, et al. (2012). Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J Neurosci 32:6149–60.
  • Droge W. (2002). Free radicals in the physiological control of cell function. Physiol Rev 82:47–95.
  • Dudka J, burdan F, Korga A, et al. (2012). Intensification of doxorubicin-related oxidative stress in the heart by hypothyroidism is not related to the expression of cytochrome P450 NADPH-reductase and inducible nitric oxide synthase, as well as activity of xanthine oxidase. Oxid Med Cell Longev 2012:139327.
  • Ekstrand-Hammarstrom B, Wigenstam E, Bucht A. (2011). Inhalation of alkylating mustard causes long-term T cell-dependent inflammation in airways and growth of connective tissue. Toxicology 280:88–97.
  • Fraternale A, Brundu S, Magnani M. (2017). Glutathione and glutathione derivatives in immunotherapy. Biol Chem 398:261–75.
  • Gandor F, Gawlik M, Thiermann H, John H. (2015). Evidence of sulfur mustard exposure in human plasma by LC-ESI-MS-MS detection of the albumin-derived alkylated HETE-CP dipeptide and chromatographic investigation of its cis/trans isomerism. J Anal Toxicol 39:270–9.
  • Ghabili K, Agutter PS, Ghanei M, et al. (2011). Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol 41:384–403.
  • Ghanei M, Harandi AA. (2010). Lung carcinogenicity of sulfur mustard. Clin Lung Cancer 11:13–17.
  • Ghanei M, Shohrati M, Jafari M, et al. (2008). N-acetylcysteine improves the clinical conditions of mustard gas-exposed patients with normal pulmonary function test. Basic Clin Pharmacol Toxicol 103:428–32.
  • Ghashghaeinia M, Cluitmans JCA, Akel A, et al. (2012). The impact of erythrocyte age on eryptosis. Br J Haematol 157:606–14.
  • Goedert M, Spillantini MG, Del Tredici K, Braak H. (2013). 100 years of Lewy pathology. Nat Rev Neurol 9:13–24.
  • Goswami DG, Tewari-Singh N, Dhar D, et al. (2016). Nitrogen mustard-induced corneal injury involves DNA damage and pathways related to inflammation, epithelial-stromal separation, and neovascularization. Cornea 35:257–66.
  • Gould NS, White CW, Day BJ. (2009). A role for mitochondrial oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sulfide-induced lung cell injury and antioxidant protection. J Pharmacol Exp Ther 328:732–9.
  • Greffard S, Verny M, Bonnet AM, et al. (2010). A stable proportion of Lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiol Aging 31:99–103.
  • Gu JW, Makey KL, Tucker KB, et al. (2013). EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc Cell 5:9.
  • Hamza A, Broch D, Vasilescu D. (1996). Quantum molecular study of S-methylated forms of sulfur mustard. Chem Phys 204:373–89.
  • Hinshaw DB, Lodhi IJ, Hurley LL, et al. (1999). Activation of poly [ADP-Ribose] polymerase in endothelial cells and keratinocytes: role in an in vitro model of sulfur mustard-mediated vesication. Toxicol Appl Pharmacol 156:17–29.
  • Hnizdova I, Luhova L, Petrivalsky M. (2009). Protein nitration by reactive nitrogen species. Chem Listy 103:788–94.
  • Hosseini-khalili A, Hainess DD, Modirian E, et al. (2009). Mustard gas exposure and carcinogenesis of lung. Mutat Res 678:1–6.
  • Chen Y, Zhang HX, He QY. (2017). Involvement of bleomycin hydrolase and poly(ADP-ribose) polymerase-1 in Ubc9-mediated resistance to chemotherapy agents. Int J Oncol 50:223–31.
  • Imani S, Salimian J, Bozorgmehr M, et al. (2016a). Assessment of Treg/Th17 axis role in immunopathogenesis of chronic injuries of mustard lung disease. J Recept Signal Transduct Res 36:531–41.
  • Imani S, Salimian J, Fu J, et al. (2016b). Th17/Treg-related cytokine imbalance in sulfur mustard exposed and stable chronic obstructive pulmonary (COPD) patients: correlation with disease activity. Immunopharmacol Immunotoxicol 38:270–80.
  • Ischiropoulos H, Zhu L, Beckman JS. (1992). Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 298:446–51.
  • Jafari M. (2007). Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology 231:30–9.
  • Jafari M, Ghanei M. (2010). Evaluation of plasma, erythrocytes, and bronchoalveolar lavage fluid antioxidant defense system in sulfur mustard-injured patients. Clin Toxicol (Phila) 48:184–92.
  • Jain AK, Tewari-Singh N, Inturi S, et al. (2015). Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin. Toxicol Appl Pharmacol 285:71–8.
  • Jasinka R, Rakowska M, Lenart J, et al. (1996). Nonenzymatically evoked and cytochrome P450-dependent lipid peroxidation inhibits synthesis of phosphatidylethanolaminevia the ethanolamine base exchange reaction in rat liver microsomes. FEBS J 386:33–8.
  • Jin H, Gong W, Zhang C, Wang S. (2013). Epigallocatechin gallate inhibits the proliferation of colorectal cancer cells by regulating Notch signaling. Onco Targets Ther 6:145–53.
  • Jowsey PA, Blain PG. (2014). Whole genome expression analysis in primary bronchial epithelial cells after exposure to sulphur mustard. Toxicol Lett 230:393–401.
  • Juranek I, Bezek S. (2005). Controversy of free radical hypothesis: reactive oxygen species-cause or consequence of tissue injury? Gen Physiol Biophys 24:263–78.
  • Juranek I, Horakova L, Rackova L, Stefek M. (2010). Antioxidants in treating pathologies involving oxidative damage: an update on medicinal chemistry and biological activity of stobadine and related pyridoindoles. Curr Med Chem 17:552–70.
  • Kalyanaraman B, Hardy M, Zielonka J. (2016). A critical review of methodologies to detect reactive oxygen and nitrogen species stimulated by NADPH oxidase enzymes: implications in pesticide toxicity. Curr Pharmacol Rep 2:193–201.
  • Kasperczyk S, Dobrakowski M, Kasperczyk A, et al. (2013). The administration of N-acetylcysteine reduces oxidative stress and regulates glutathione metabolism in the blood cells of workers exposed to lead. Clin Toxicol 51:480–6.
  • Kaushik S, Kaur J. (2003). Chronic cold exposure affects the antioxidant defense system in various rat tissues. Clin Chim Acta 333:69–77.
  • Kehe K, Balszuweit F, Steinritz D, Thiermann H. (2009). Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology 263:12–19.
  • Kerr KJ. (2015). Gulf War illness: an overview of events, most prevalent health outcomes, exposures, and clues as to pathogenesis. Rev Environ Health 30:273–86.
  • Kim S, Jeong KJ, Cho SK, et al. (2016). Caffeic acid, morin hydrate and quercetin partially attenuate sulfur mustard-induced cell death by inhibiting the lipoxygenase pathway. Mol Med Rep 14:4454–60.
  • Klein JA, Ackerman SL. (2003). Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–93.
  • Kodama R, Kato M, Furuta S, et al. (2012). ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence. Genes Cells 18:32–41.
  • Komirishetty P, Areti A, Gogoi R, et al. (2017). Combination strategy of PARP inhibitor with antioxidant prevent bioenergetic deficits and inflammatory changes in CCI-induced neuropathy. Neuropharmacology 113:137–47.
  • Korkmaz A, Reiter RJ, Topal T, et al. (2009). Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 15:43–50.
  • Kumar C, Rani N, Lakshmi PTV, Arunachalam A. (2017). A comprehensive look of poly(ADP-ribose) polymerase inhibition strategies and future directions for cancer therapy. Future Med Chem 9:37–60.
  • Lamer AJ. (1997). The cerebellum in Alzheimer’s disease. Dement Geriatr Cogn Disord 8:203–9.
  • Lin CH, Lin KF, Mar K, et al. (2016). Antioxidant N-acetylcysteine and glutathione increase the viability and proliferation of MG63 cells encapsulated in the gelatin methacrylate/VA-086/blue light hydrogel system. Tissue Eng Part C Methods 22:792–800.
  • Liu F, Jiang N, Xiao ZY, et al. (2016). Effects of poly (ADP-ribose) polymerase-1 (PARP-1) inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo. Peer J 4:e1890.
  • Lowenstein EB. (2011). A history of sulfur mustard. Skinmed 9:310–11.
  • Maiti AK, Saha NC, More SS, et al. (2017). Neuroprotective efficacy of mitochondrial antioxidant MitoQ in suppressing peroxynitrite-mediated mitochondrial dysfunction inflicted by lead toxicity in the rat brain. Neurotox Res 31:358–72.
  • Malaviya R, Sunil VR, Cervelli J, et al. (2010). Inflammatory effects of inhaled sulfur mustard in rat lung. Toxicol Appl Pharmacol 248:89–99.
  • Mangerich A, Debiak M, Birtel M, et al. (2016). Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicol Lett 244:56–71.
  • Matijasevic Z, Volkert MR. (2007). Base excision repair sensitizes cells to sulfur mustard and chloroethyl ethyl sulfide. DNA Repair 6:733–41.
  • Mu Y, Gage FH. (2011). Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85.
  • Mukaida K, Hattori N, Iwamoto H, et al. (2016). Mustard gas exposure and mortality among retired workers at a poisonous gas factory in Japan: a 57-year follow-up cohort study. Occup Environ Med 11:2015–103437.
  • Naderi M, Jadidi K, Falahati F, Alavi SA. (2010). The effect of sulfur mustard and nitrogen mustard on corneal collagen degradation induced by the enzyme collagenase. Cutan Ocul Toxicol 29:234–40.
  • Naghii MR. (2002). Sulfur mustard intoxication, oxidative stress, and antioxidants. Mil Med 167:573–75.
  • Najafian B, Shohrati M, Saburi A. (2012). The effect of sulfur mustard on victims’ offspring; what is the challengeable issue? Iran J Pediatr 22:568–9.
  • Navarova J, Ujhazy E, Dubovicky M, Mach M. (2005). Phenytoin induced oxidative stress in pre- and postnatal rat development – effect of vitamin E on selective biochemical variables. Biomed Pap 149:325–8.
  • Nejad-Moghaddam A, Ajdary S, Tahmasbpour E, et al. (2016). Immunomodulatory properties of mesenchymal stem cells can mitigate oxidative stress and inflammation process in human mustard lung. Biochem Genet 54:769–83.
  • Niki E. (2012). Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett 586:3767–70.
  • Nobakht MGBF, Oskouie AA, Aliannejad R, et al. (2016). Pro-oxidant-antioxidant balance in Iranian veterans with sulfur mustard toxicity and different levels of pulmonary disorders. Drug Chem Toxicol 39:362–6.
  • Okuda A, Kurokawa S, Takehashi M, et al. (2017). Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells. BMC Neurosci 18:14.
  • Ortiz GG, Benitez-King GA, Rosales-Corral SA, et al. (2008). Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders. Curr Neuropharmacol 6:203–14.
  • Pal A, Tewari-Singh N, Gu M, et al. (2009). Sulfur mustard analog induces oxidative stress and activates signaling cascades in the skin of SKH-1 haireless mice. Free Radic Biol Med 47:1640–51.
  • Panahi Y, Ghanei M, Hajhashemi A, Sahebkar A. (2016a). Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J Diet 13:93–105.
  • Panahi Y, Jadidi-Niaragh F, Jamalkandi SA, et al. (2016b). Immunology of chronic obstructive pulmonary disease and sulfur mustard induced airway injuries: implications for immunotherapeutic interventions. Curr Pharm Des 22:2975–96.
  • Paromov V, Suntres Z, Smith MA, Stone WL. (2007). Sulfur mustard toxicity following dermal exposure: role of oxidative stress, and antioxidant therapy. J Burns Wounds 7:e7.
  • Pashandi Z, Saraygord-Afshari N, Naderi-Manesh H, Naderi M. (2015). Comparative proteomic study reveals the molecular aspects of delayed ocular symptoms induced by sulfur mustard. Int J Proteomics 2015:659241.
  • Pino MA, Pietka-Ottlik M, Billack B. (2013). Ebselen analogues reduce 2-chloroethyl ethyl sulphide toxicity in A-431 cells. Arh Hig Rada Toksikol 64:77–86.
  • Placha K, Luptakova D, Baciak L, et al. (2016). Neonatal brain injury as a consequence of insufficient cerebral oxygenation. Neuro Endocrinol Lett 37:79–96.
  • Pohanka M. (2011a). Alzheimer’s disease and related neurodegenerative disorders: implication and counteracting of melatonin. J Appl Biomed 9:185–96.
  • Pohanka M. (2011b). Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155:219–29.
  • Pohanka M. (2012a). Acetylcholinesterase inhibitors: a patent review (2008–present). Expert Opin Ther Pat 22:871–86.
  • Pohanka M. (2012b). Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci 13:2219–38.
  • Pohanka M. (2012c). Antioxidants countermeasures against sulfur mustard. Mini Rev Med Chem 12:742–8.
  • Pohanka M. (2013). Role of oxidative stress in infectious diseases. A review. Folia Microbiol (Praha) 58:503–13.
  • Pohanka M. (2014). Alzheimer’s disease and oxidative stress: a review. Curr Med Chem 21:356–64.
  • Pohanka M, Pejchal J, Snopkova S, et al. (2012). Ascorbic acid: an old player with a broad impact on body physiology including oxidative stress suppression and immunomodulation: a review. Mini Rev Med Chem 12:35–43.
  • Pohanka M, Snopkova S, Havlickova K, et al. (2011a). Macrophage-assisted inflammation and pharmacological regulation of the cholinergic anti-inflammatory pathway. Curr Med Chem 18:539–51.
  • Pohanka M, Sobotka J, Jilkova M, Stetina R. (2011b). Oxidative stress after sulfur mustard intoxication and its reduction by melatonin: efficacy of antioxidant therapy during serious intoxication. Drug Chem Toxicol 34:85–91.
  • Pohanka M, Sobotka J, Stetina R. (2011c). Sulfur mustard induced oxidative stress and its alteration by epigallocatechin gallate. Toxicol Lett 201:105–9.
  • Pohanka M, Stetina R, Svobodova H, et al. (2013). Sulfur mustard causes oxidative stress and depletion of antioxidants in muscles, livers, and kidneys of Wistar rats. Drug Chem Toxicol 36:270–6.
  • Poursaleh Z, Ghanei M, Babamahmoodi F, et al. (2012). Pathogenesis and treatment of skin lesions caused by sulfur mustard. Cutan Ocul Toxicol 31:241–9.
  • Quillen C. (2016). The islamic state’s evolving chemical arsenal. Stud Confl Terror 39:1019–30.
  • Radomska-Lesniewska DM, Skopinski P. (2012). N-acetylcysteine as an antioxidant and anti-inflammatory drug and its some clinical applications. Central Eur J Immunol 37:57–66.
  • Rao MK, Bhadury PS, Sharma M, et al. (2002). A facile methodology for the synthesis and detection of N7-guanine adduct of sulfur mustard as a biomarker. Can J Chem-Rev Can Chim 80:504–9.
  • Razavi SM, Saghafinia M, Salamati P. (2017). Paraclinical findings in Iranian veterans exposed to sulfur mustard gas: a literature review. Chin J Traumatol 21:30044–5.
  • Rice P. (2012). Sulphur mustard. Medicine 40:82–3.
  • Roshan R, Rahnama P, Ghazanfari Z, et al. (2013). Long-term effects of sulfur mustard on civilians’ mental health 20 years after exposure (The Sardasht-Iran Cohort Study). Health Qual Life Outcomes 11:69.
  • Rosic G, Selakovic D, Joksimovic J, et al. (2016). The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol Lett 242:34–46.
  • Rowell M, Kehe K, Balszuweit F, Thiermann H. (2009). The chronic effects of sulfur mustard exposure. Toxicology 263:9–11.
  • Rybka J, Kedziora-Kornatowska K, Kedziora J, Kucharski R. (2009). Immunosenescence and late life depression. Centr Eur J Immunol 34:271–5.
  • Sagar S, Kumar P, Behera RR, Pal A. (2014). Effects of CEES and LPS synergistically stimulate oxidative stress inactivates OGG1 signaling in macrophage cells. J Hazard Mater 278:236–49.
  • Sanchez-Lopez F, Tasset I, Aguera E, et al. (2012). Oxidative stress and inflammation biomarkers in the blood of patients with Huntington’s disease. Neurol Res 34:721–4.
  • Sauvaigo S, Sarrazy F, Batal M, et al. (2016). Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature. Toxicol Lett 241:71–81.
  • Shoeibi N, Mousavi MN, Balali-Mood M, et al. (2017). Long-term complications of sulfur mustard poisoning: retinal electrophysiological assessment in 40 severely intoxicated Iranian veterans. Int J Retina Vitreous 3:017–0059.
  • Shohrati M, Karimzadeh I, Saburi A, et al. (2014). The role of N-acetylcysteine in the management of acute and chronic pulmonary complications of sulfur mustard: a literature review. Inhal Toxicol 26:507–23.
  • Schaue D, Kachikwu EL, McBride WH. (2012). Cytokines in radiobiological responses: a review. Radiat Res 178:505–23.
  • Smaga I, Pomierny B, Krzyzanowska W, et al. (2012). N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats. Prog Neuro Psychopharmacol Biol Psychiatry 39:280–7.
  • Steinritz D, Elischer A, Balszuweit F, et al. (2009). Sulphur mustard induces time- and concentration dependent regulation of NO-synthesizing enzymes. Toxicol Lett 188:263–9.
  • Steinritz D, Schmidt A, Balszuweit F, et al. (2016). Epigenetic modulations in early endothelial cells and DNA hypermethylation in human skin after sulfur mustard exposure. Toxicol Lett 244:95–102.
  • Steinritz D, Schmidt A, Simons T, et al. (2014). Chlorambucil (nitrogen mustard) induced impairment of early vascular endothelial cell migration – Effects of alpha-linolenic acid and N-acetylcysteine. Chem Biol Interact 219:143–50.
  • Tahmasbpour E, Ghanei M, Qazvini A, et al. (2016). Gene expression profile of oxidative stress and antioxidant defense in lung tissue of patients exposed to sulfur mustard. Mutat Res Genet Toxicol Environ Mutagen 801:12–21.
  • Tahmasbpour Marzony E, Ghanei M, Panahi Y. (2016a). Oxidative stress and altered expression of peroxiredoxin genes family (PRDXS) and sulfiredoxin-1 (SRXN1) in human lung tissue following exposure to sulfur mustard. Exp Lung Res 42:217–26.
  • Tahmasbpour Marzony E, Nejad-Moghadam A, Ghanei M, Panahi Y. (2016b). Sulfur mustard causes oxidants/antioxidants imbalance through the overexpression of free radical producing-related genes in human mustard lungs. Environ Toxicol Pharmacol 45:187–92.
  • Tang FR, Loke WK. (2012). Sulfur mustard and respiratory diseases. Crit Rev Toxicol 42:688–702.
  • Taravati A, Ardestani SK, Soroush MR, et al. (2012). Serum albumin and paraoxonase activity in Iranian veterans 20 years after sulfur mustard exposure. Immunopharmacol Immunotoxicol 34:706–13.
  • Taravati A, Ardestani SK, Ziaee AA, et al. (2013). Effects of paraoxonase 1 activity and gene polymorphisms on long-term pulmonary complications of sulfur mustard-exposed veterans. Int Immunopharmacol 17:974–9.
  • Tewari-Singh N, Agarwal R. (2016). Mustard vesicating agent-induced toxicity in the skin tissue and silibinin as a potential countermeasure. Ann N Y Acad Sci 1:184–92.
  • Tewari-Singh N, Jain AK, Inturi S, et al. (2012). Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation. PLoS One 7:e46149.
  • Thompson VR, DeCaprio AP. (2013). Covalent adduction of nitrogen mustards to model protein nucleophiles. Chem Res Toxicol 26:1263–71.
  • Uhlig S, Stanic A, Hofgaard IS, et al. (2016). Glutathione-conjugates of deoxynivalenol in naturally contaminated grain are primarily linked via the epoxide group. Toxins 8:329.
  • Vijayaraghavan R, Kulkarni A, Pant SC, et al. (2005). Differential toxicity of sulfur mustard administered through percutaneous, subcutaneous, and oral routes. Toxicol Appl Pharmacol 202:180–8.
  • Wallace TL, Bertrand D. (2013). Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85:1713–20.
  • Wattana M, Bey T. (2009). Mustard gas or sulfur mustard: an old chemical agent as a new terrorist threat. Prehosp Disaster Med 24:19–29.
  • Weinberger B, Malaviya R, Sunil VR, et al. (2016). Mustard vesicant-induced lung injury: advances in therapy. Toxicol Appl Pharmacol 305:1–11.
  • Wolf M, Siegert M, Rothmiller S, et al. (2016). Characterization of sulfur mustard resistant keratinocyte cell line HaCaT/SM. Toxicol Lett 244:49–55.
  • Yamakura F, Taka H, Fujimura T, Murayama K. (1998). Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–9.
  • Ye WB, Zhong ZM, Zhu SY, et al. (2017). Advanced oxidation protein products induce chondrocyte death through a redox-dependent, poly (ADP-ribose) polymerase-1-mediated pathway. Apoptosis 22:86–97.
  • Young Park S, Jeong YJ, Kim SH, et al. (2013). Epigallocatechin gallate protects against nitric oxide-induced apoptosis via scavenging ROS and modulating the Bcl-2 family in human dental pulp cells. J Toxicol Sci 38:371–8.
  • Yu D, Bei YY, Li Y, et al. (2017). In vitro the differences of inflammatory and oxidative reactions due to sulfur mustard induced acute pulmonary injury underlying intraperitoneal injection and intratracheal instillation in rats. Int Immunopharmacol 47:78–87.
  • Zafarghandi MR, Soroush MR, Mahmood M, et al. (2013). Incidence of cancer in Iranian sulfur mustard exposed veterans: a long-term follow-up cohort study. Cancer Causes Control 24:99–105.
  • Zhang YJ, Yue LJ, Nie ZY, et al. (2014). Simultaneous determination of four sulfur mustard-DNA adducts in rabbit urine after dermal exposure by isotope-dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B 961:29–35.
  • Zhu XJ, Meng X, Xu R, et al. (2016). Mechanism underlying acute lung injury due to sulfur mustard exposure in rats. Toxicol Ind Health 32:1345–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.