147
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons

, , , &
Pages 69-78 | Received 11 Jul 2017, Accepted 16 Jul 2017, Published online: 31 Jul 2017

References

  • Abbasi M, Saeed F, Rafique U. 2014. Preparation of silver nanoparticles from synthetic and natural sources: remediation model for PAHs. International Symposium on Advanced Materials (ISAM), IOP Conference Series: Materials Science and Engineering 60:012061.
  • Abdel-Shafy HI, Mansour MSM. 2016. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 25:107–123.
  • ACGIH (American Conference of Governmental Industrial Hygienists). 2005. Polycyclic aromatic hydrocarbons (PAHs) biologic exposure indices (BEI). Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
  • Alaraby M, Annangi B, Marcos R, Hernández A. 2016. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials, a review. J Toxicol Environ Health B. 19:65–104.
  • Anderson JW, Jones JM, Steinert S, Sanders B, Means J, McMillin D, Vu T, Tukey R. 1999. Correlation of CYP1A1 induction, as measured by the P450 RGS biomarker assay, with high molecular weight PAHs in mussels deployed at various sites in San Diego Bay in 1993 and 1995. Mar Environ Res. 48:389–405.
  • AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3:279–290.
  • Aueviriyavit S, Phummiratch D, Maniratanachote R. 2014. Mechanistic study on the biological effects of silver and gold nanoparticles in Caco-2 cells – induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles. Toxicol Lett. 224:73–83.
  • Babin K, Goncalves DM, Girard D. 2015. Nanoparticles enhance the ability of human neutrophils to exert phagocytosis by a Syk-dependent mechanism. Biochim Biophys Acta. 1850:2276–2282.
  • Barhoumi B, El Megdiche Y, Clérandeau C, Ameur WB, Mekni S, Bouabdallah S, Derouiche A, Touil S, Cachot J, Driss MR. 2016. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in mussel and eel from Bizerte lagoon, Tunisia, and associated human health risk assessment. Cont Shelf Res. 124:104–116.
  • Barkhordari A, Barzegar S, Hekmatimoghaddam H, Jebali A, Rahimi Moghadam S, Khanjani N. 2014. The toxic effects of silver nanoparticles on blood mononuclear cells. Int J Occup Environ Med. 5:164–168.
  • Benov L, Szteinberg L, Fridovich I. 1998. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med. 25:826–831.
  • Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K. 2008. Estimation of cumulative aquatic exposure and risk due to silver, contribution of nano-functionalized plastics and textiles. Sci Total Environ. 390:396–409.
  • Bruneau A, Turcotte P, Pilote M, Gagné F, Gagnon C. 2016. Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout. Aquat Toxicol. 174:70–81.
  • Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR. 2017. Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Front Chem. 5:6.
  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. 2008. Unique cellular interaction of silver nanoparticles, size-dependent generation of reactive oxygen species. J Phys Chem B. 112:13608–13619.
  • Chen BH, Lin YS. 1997. Formation of polycyclic aromatic hydrocarbons during processing of duck meat. J Agric Food Chem. 45:1394–1403.
  • Chen X, Schluesener HJ. 2008. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 176:1–12.
  • Christen V, Fent K. 2012. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere. 87:423–434.
  • Claxton LD, Woodall GM. 2007. A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res. 636:36–94.
  • Çok I, Mazmanci B, Mazmanci MA, Turgut C, Henkelmann B, Schramm K-W. 2012. Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin, Turkey. Environ Int. 40:63–69.
  • De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, Kshirsagar P, Sabella S, Bardi G, Pompa PP. 2015. Negligible particle-specific toxicity mechanism of silver nanoparticles, the role of Ag + ion release in the cytosol. Nanomedicine. 11:731–739.
  • Eom HJ, Choi J. 2010. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 44:8337–8342.
  • Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D. 2009. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem. 393:81–95.
  • Gagné F, Auclair J, Fortier M, Bruneau A, Fournier M, Turcotte P, Pilote M, Gagnon C. 2013. Bioavailability and immunotoxicity of silver nanoparticles to the freshwater mussel Elliptio complanata. J Toxicol Environ Health A. 76:767–777.
  • Gerets HHJ, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA. 2012. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 28:69–87.
  • Glinski A, Liebel S, Pelletier È, Voigt CL, Randi MA, Campos SX, Oliveira Ribeiro CA, Filipak Neto F. 2016. Toxicological interactions of silver nanoparticles and organochlorine pesticides in mouse peritoneal macrophages. Toxicol Mech Methods. 26:251–259.
  • Gomes F, Oliveira M, Ramalhosa MJ, Delerue-Matos C, Morais S. 2013. Polycyclic aromatic hydrocarbons in commercial squids from different geographical origins: levels and risks for human consumption. Food Chem Toxicol. 59:46–54.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol. 43:9216–9222.
  • Grafe C, Weidner A, Luhe MV, Bergemann C, Schacher FH, Clement JH, Dutz S. 2015. Intentional formation of a protein corona on nanoparticles – serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction. Int J Biochem Cell Biol. 75:196–202.
  • Hanzalova K, Rossner P, Jr, Sram RJ. 2010. Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter. Mutat Res Gen Toxicol Environ. 696:114–121.
  • He WW, Zhou YT, Wamer WG, Boudreau MD, Yin JJ. 2012. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials. 33:7547–7555.
  • Hendrickson OD, Klochkov SG, Novikova OV, Bravova IM, Shevtsova EF, Safenkova IV, Zherdev AV, Bachurin SO, Dzantiev BB. 2016. Toxicity of nanosilver in intragastric studies: biodistribution and metabolic effects. Toxicol Lett. 241:184–192.
  • Hsin Y-H, Chen C-F, Huang S, Shih T-S, Lai P-S, Chueh PJ. 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 179:130–139.
  • Jiao Z-H, Li M, Feng Y-X, Shi J-C, Zhang J, Shao B. 2014. Hormesis effects of silver nanoparticles at non-cytotoxic doses to human hepatoma cells. PLoS One. 9:e102564.
  • Jin YX, Miao WY, Lin XJ, Wu T, Shen HJ, Chen S, Li YH, Pan QQ, Fu ZW. 2014. Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers. Environ Toxicol Pharmcol. 38:353–363.
  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. 2010. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 40:328–346.
  • Kang B, Lee B-M, Shin H-S. 2014. Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in Korea. J Toxicol Environ Health A. 77:1359–1371.
  • Kaur J, Tikoo K. 2013. Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles. Food Chem Toxicol. 51:1–14.
  • Kawata K, Osawa M, Okabe S. 2009. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 43:6046–6051.
  • Khan FR, Paul KB, Dybowska AD, Valsami-Jones E, Lead JR, Stone V, Fernandes TF. 2015. Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches. Environ Sci Technol. 49:4389–4397.
  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro. 23:1076–1084.
  • Kishikawa N, Wada M, Kuroda N, Akiyama S, Nakashima K. 2003. Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluorescence detection. J Chromatogr B. 789:257–264.
  • Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. 2013. Multidrug resistance, physiological principles and nanomedical solutions. Adv Drug Deliver Rev. 65:1852–1865.
  • Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M. 2012. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett. 208:197–213.
  • Lankveld DPK, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, Van Eijkeren JCH, Geertsma RE, De Jong WH. 2010. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials. 31:8350–8361.
  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G. 2009. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology. 255:33–37.
  • Lee Y-H, Cheng F-Y, Chiu H-W, Tsai J-C, Fang C-Y, Chen C-W, Wang Y-J. 2014. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials. 35:4706–4715.
  • Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbühler K, Heuberger M, Nowack B. 2012. Characterization of silver release from commercially available functional (nano)textiles. Chemosphere. 89:817–824.
  • Madhavan ND, Naidu KA. 1995. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women. Hum Exp Toxicol. 14:503–506.
  • Marsili L, Caruso A, Fossi MC, Zanardelli M, Politi E, Focardi S. 2001. Polycyclic aromatic hydrocarbons (PAHs) in subcutaneous biopsies of Mediterranean cetaceans. Chemosphere. 44:147–154.
  • Massarsky A, Labarre J, Trudeau VL, Moon TW. 2014. Silver nanoparticles stimulate glycogenolysis in rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol. 147:68–75.
  • McCracken C, Zane A, Knight DA, Hommel E, Dutta PK, Waldman WJ. 2015. Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles. Toxicol In Vitro. 29:1793–1808.
  • McWilliams A. 2016. The Maturing Nanotechnology Market: Products and Applications (Highlights) [online]. NAN031G. BCC Research. [accessed 2017 Jan]. http://www.bccresearch.com/market-research/nanotechnology/nanotechnology-market-products-applications-report-nan031g.html.
  • Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 65:55–63.
  • Mueller-Spitz SR, Crawford KD. 2014. Silver nanoparticle inhibition of polycyclic aromatic hydrocarbons degradation by Mycobacterium species RJGII-135. Lett Appl Microbiol. 58:330–337.
  • Mukherjee SG, O’Claonadh N, Casey A, Chambers G. 2012. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol In Vitro. 26:238–251.
  • Munger MA, Radwanski P, Hadlock GC, Stoddard G, Shaaban A, Falconer J, Grainger DW, Deering-Rice CE. 2014. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine. 10:1–9.
  • Murugaiyan J, Rockstroh M, Wagner J, Baumann S, Schorsch K, Trump S, Lehmann I, von Bergen M, Tomm JM. 2013. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism. Toxicol Appl Pharm. 269: 307–316.
  • Naufal Z, Zhiwen L, Zhu L, Zhou GD, McDonald T, He LY, Mitchell L, Ren A, Zhu H, Finnell R, Donnelly KC. 2010. Biomarkers of exposure to combustion by-products in a human population in Shanxi, China. J Exp Sci Environ Epidemiol. 20:310–319.
  • Noreña-Barroso E, Gold-Bouchot G, Zapata-Perez O, Sericano JL. 1999. Polynuclear aromatic hydrocarbons in American Oysters from the Terminos Lagoon, Campeche, Mexico. Mar Pollut Bull. 38: 637–645.
  • Nowrouzi A, Meghrazi K, Golmohammadi T, Golestani A, Ahmadian S, Shafiezadeh M, Shajary Z, Khaghani S, Amiri AN. 2010. Cytotoxicity of subtoxic AgNP in human hepatoma cell line (HepG2) after long-term exposure. Iran Biomed J. 14:23–32.
  • Nwaichi EO, Ntorgbo SA. 2016. Assessment of PAHs levels in some fish and seafood from different coastal waters in the Niger Delta. Toxicol Rep. 3:167–172.
  • Okimoto Y, Watanabe A, Niki E, Yamashita T, Noguchi N. 2000. A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474:137–140.
  • Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 32:9810–9817.
  • Pessatti ML, Resgalla C, Jr. Reis FRW, Kuehn J, Salomão LC, Fontana JD. 2002. Variability of rates of filtration, respiration and assimilation and multixenobiotic mechanism resistance (MXR) of mussel Perna perna under lead influence. Braz J Biol. 62:651–656.
  • Rahmani R, Mansouri B, Johari SA, Azadi N, Davari B, Asghari S, Dekani L. 2016. Trophic transfer potential of silver nanoparticles from Artemia salina to Danio rerio. AACL Bioflux. 9:100–104.
  • Rank Miranda R, Bezerra Jr AG, Oliveira Ribeiro CA, Ferreira Randi MA, Voigt CL, Skytte L, Rasmussen KL, Kjeldsen F, Filipak Neto F. 2017. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicol in Vitro. 40:134–143.
  • Romanovskaya GI, Olenin AY, Vasil’eva SY. 2011. Concentration of polycyclic aromatic hydrocarbons by chemically modified silver nanoparticles. Russ J Phys Chem A. 85:274–278.
  • Sadikovic B, Rodenhiser DI. 2006. Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicol Appl Pharm. 216:458–468.
  • Sany SBT, Hashim R, Rezayi M, Salleh A, Rahman MA, Safari O, Sasekumar A. 2014. Human health risk of polycyclic aromatic hydrocarbons from consumption of blood cockle and exposure to contaminated sediments and water along the Klang Strait, Malaysia. Mar Pollut Bull. 84:268–279.
  • Sardar R, Park JW, Shumaker-Parry JS. 2007. Polymer-induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water. Langmuir. 23:11883–11889.
  • Schulte-Hermann R, Marian B, Bursch W. 1999. Chapter 8 – Tumor Promotion. In: H. Marquardt, S. G. Schäfer, R. McClellan and F. Welsch, editors. Toxicology. San Diego: Academic Press, 179–215.
  • Shavandi Z, Ghazanfari T, Moghaddam KN. 2011. In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacol Immunotoxicol. 33:135–140.
  • Shin SH, Ye MK, Kim HS, Kang HS. 2007. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol. 7:1813–1818.
  • Siddens LK, Larkin A, Krueger SK, Bradfield CA, Waters KM, Tilton SC, Pereira CB, Lohr CV, Arlt VM, Phillips DH, et al. 2012. Polycyclic aromatic hydrocarbons as skin carcinogens, comparison of benzo [a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharm. 264:377–386.
  • Smulders S, Larue C, Sarret G, Castillo-Michel H, Vanoirbeek J, Hoet PHM. 2015. Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicol Lett. 238:1–6.
  • Spryszyńska S, Smok-Pieniążek A, Ferlińska M, Roszak J, Nocuń M, Stępnik M. 2015. The influence of ATM, ATR, DNA-PK inhibitors on the cytotoxic and genotoxic effects of dibenzo[def,p]chrysene on human hepatocellular cancer cell line HepG2. Mutat Res Genet Toxicol Environ Mutagen. 791:12–24.
  • Stepkowski TM, Brzoska K, Kruszewski M. 2014. Silver nanoparticles induced changes in the expression of NF-kappa B related genes are cell type specific and related to the basal activity of NF-kappa B. Toxicol In Vitro. 28:473–478.
  • Tian SY, Zhang YD, Song CZ, Zhu XS, Xing BS. 2014. Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata). Environ Pollut. 192:59–64.
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS, 2015. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 6:1769–1780.
  • Vega-Avila E, Pugsley MK. 2011. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc. 54:10–14.
  • Waalewijn-Kool PL, Klein K, Forniés RM, van Gestel CAM. 2014. Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida. Ecotoxicology. 23:1629–1637.
  • Wakx A, Regazzetti A, Dargère D, Auzeil N, Gil S, Evain-Brion D, Laprévote O, Rat P. 2016. New in vitro biomarkers to detect toxicity in human placental cells: the example of benzo[a]pyrene. Toxicol In Vitro. 32:76–85.
  • Xu L, Shu X, Hollert H. 2017. Aggregate risk assessment of polycyclic aromatic hydrocarbons from dust in an urban human settlement environment. J Clean Prod. 133:378–388.
  • Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC. 2007. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere. 67:160–166.
  • Zhao Z, Zhang L, Cai Y, Chen Y. 2014. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicol Environ Safe. 104:323–331.
  • Zhao ZY, Chu YL, Gu JD. 2012. Distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Mai Po Inner Deep Bay Ramsar Site in Hong Kong. Ecotoxicology. 21:1743–1752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.